DOE/LANL Jurisdiction Fire Danger Rating:
  1. LANL Home
  2. Media
  3. Newsletters
  4. STE Highlights
July 31, 2025

Unprecedented actinide bonding revealed after scientists tune oxidation states

The ability to control chemical bonding is a new opportunity

6
Lab theoretical scientists found a missing piece in the puzzle of actinide-ligand interactions. This illustration demonstrates how lowering the actinide oxidation state unlocks hidden chemical bonding modes. Credit to: Maria Beltran Leiva, Los Alamos National Laboratory

Scientists at Los Alamos National Laboratory discovered that when they tuned the oxidation state in some actinide elements, which are among the heaviest and most radioactive on the periodic table, they could make the outermost electrons more “available” for chemical bonding. This resulted in stronger and more complex bonds, and, remarkably, the tuning enabled a reversal of the typical bonding process. 

Instead of accepting electrons, the metal centers of the elements could donate electrons back to the molecule, a phenomenon known as “back-bonds.” The research revealed a new type of f-orbital interaction called the phi (φ) “head-to-head” back-bond. 

In this interaction, the uniquely shaped actinide electron orbitals point directly at each other and overlap, allowing scientists to more precisely control their chemical behavior. This discovery reveals a new way to control chemical bonding and opens entirely new possibilities in both chemistry and technology.

Read the paper

Why this matters: Applications of this discovery could range from nuclear waste remediation — where radioactive elements can be separated from safer materials — to the potential use of f-element electrons in quantum computing to store and transfer information.

What they did:   

  • Scientists looked at several actinide elements, including uranium and protactinium, that attach to molecules called ligands, namely diallyl, cyclocumulene and cyclopropane — chosen because their shapes are a good match for these unusual bonds.
  • By tweaking the actinide’s oxidation state, which made the metal’s atom orbitals gain or lose electrons, scientists watched how the bonds changed.
  • When the orbitals spread out, they overlapped better with nearby atoms in a bond, changing how strong or what type of bond forms.

Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry program; and the Glenn T. Seaborg Institute Postdoc Fellowship

LA-UR-25-27361

Share

Stay up to date
Subscribe to Stay Informed of Recent Science, Technology and Engineering Highlights from LANL
Subscribe Now

More STE Highlights Stories

STE Highlights Home
Pellet Fuel Card

Can AI help fast track advanced fuels for nuclear reactors?

Novel technique cuts testing time, boosts confidence in predictions

Materials Model Stock Card

How to train a materials model to enforce the laws of physics

Machine learning approach makes predictions more reliable

Nuclear Theory Card

Surprising patterns challenge long-held nuclear theory

Unexpected oscillations in neutron reactions hint at missing physics

Scheinker Card

Scheinker joins editorial board of accelerator science journal

Brings expertise in generative AI and adaptive control for dynamic systems

Pfas Card

Mitigating ‘forever chemicals’ faster with AI and novel modeling techniques

Breakthrough framework, risk prediction map work in tandem

Gary Grider Best Card

Grider named a 2025 HPCwire Legend

‘Godfather of parallel file systems’ holds numerous patents