DOE/LANL Jurisdiction Fire Danger Rating:
  1. LANL Home
  2. Media
  3. Newsletters
  4. STE Highlights
November 18, 2025

Mitigating ‘forever chemicals’ faster with AI and novel modeling techniques

Breakthrough framework, risk prediction map work in tandem

Pfas Feature
PFAS can contaminate drinking water and cause ecological and human safety concerns. Credit to: Dreamstime

Widespread contamination from per- and polyfluoroalkyl substances (PFAS), often called “forever chemicals,” is a major public health concern that scientists at Los Alamos National Laboratory are addressing with two new tools.

The team created a national-scale risk prediction map that can aid researchers and communities prioritize monitoring and remediation efforts. They also developed a breakthrough framework that combines machine learning, molecular dynamics simulations and experimental analysis to understand how fast PFAS molecules can move through water, soils and sediments.
 
Read the paper
 
Why this matters: By integrating these approaches, scientists can better forecast PFAS behavior in groundwater and the environment, as well as accelerate the development of remediation strategies tailored to PFAS’ unique persistence.

  • PFAS resist degradation, persist in soil and water, and accumulate in human and ecological systems.
  • The compounds have links to some cancers and other diseases, immune system dysfunction and reproductive harm.

How they did it:

  • For the risk prediction map, researchers built machine learning models that can integrate national geospatial datasets with environmental and industrial information such as proximity to PFAS-related facilities (manufacturing, military sites, landfills), hydrological connectivity, and soil and geological features that influence contaminant movement.
  • For the fate and transport model, researchers trained a regression-based approach by iteratively targeting the most uncertain predictions for additional training. This data-efficient and adaptive process significantly improved model accuracy, reducing prediction error by 88% in estimating the physicochemical properties of PFAS.

Funding: The Laboratory Directed Research and Development program and the U.S. Department of Energy’s Office of Environmental Management

LA-UR-25-31133

Share

Stay up to date
Subscribe to Stay Informed of Recent Science, Technology and Engineering Highlights from LANL
Subscribe Now

More STE Highlights Stories

STE Highlights Home
Pellet Fuel Card

Can AI help fast track advanced fuels for nuclear reactors?

Novel technique cuts testing time, boosts confidence in predictions

Materials Model Stock Card

How to train a materials model to enforce the laws of physics

Machine learning approach makes predictions more reliable

Nuclear Theory Card

Surprising patterns challenge long-held nuclear theory

Unexpected oscillations in neutron reactions hint at missing physics

Scheinker Card

Scheinker joins editorial board of accelerator science journal

Brings expertise in generative AI and adaptive control for dynamic systems

Thumbnail Plus

New Plutonium Science Laboratory serves critical national security missions

New center prepares for fiscal year 2026 operations

Thumbnail Uranium

Unlocking uranium’s hidden influence in the behavior of plutonium alloys

Work advances understanding of nuclear materials performance