DOE/LANL Jurisdiction Fire Danger Rating:
  1. LANL Home
  2. media
  3. publications
  4. national security science
November 29, 2023

Sustaining superconductors

The Los Alamos Pulsed Field Facility’s powerful magnets are essential for the development of superconductors with energy applications.

  • Ian Laird, Communications specialist
Nss Winter 2023   Sustaining Superconductors   Publication Feature with Title
Originally acquired to help with fusion research at Los Alamos, the generator pictured here is now used to power experiments conducted at the MagLab. The MagLab is home to some of the most powerful magnets in the world, with one magnet generating a record 100 Tesla non-destructive magnetic field in 2012. Credit to: Los Alamos National Laboratory

The National High Magnetic Field Laboratory (NHMFL) spans three locations: the University of Florida in Gainesville, Florida; Florida State University in Tallahassee, Florida; and Los Alamos National Laboratory in Los Alamos, New Mexico.

Each site has a magnetic field specialty, and Los Alamos is home to the Pulsed Field Facility (locally called “the MagLab”), where strong magnetic fields can be generated up to a few seconds following a pulse of electric current. This differs from the Tallahassee and Gainesville facilities, which generate weaker magnetic fields continuously. The magnets at Los Alamos are some of the most powerful in the world, and the strongest magnet at Los Alamos is capable of reaching 100 tesla (for comparison, a refrigerator magnet is about 0.005 tesla, and the Earth’s magnetic field is about 0.00005 tesla).

As part of the NHMFL, the MagLab is a user facility that is open to researchers from across the world. Hundreds of scientists use the facility annually, and included in that group are many Los Alamos scientists. Their experiments cover a range of programmatic and exploratory areas, including research with potential implications for the energy sector.

For the past two decades, the MagLab has been particularly useful for the study of superconductors, which are materials that typically expel magnetic fields and have no electrical resistance. High-temperature superconductors—superconductors that are capable of operating at just above -200 degrees Celsius—are key to creating commercial fusion energy because their exceptionally powerful magnetic fields can quickly and efficiently confine plasmas.

The Achilles heel of superconductors are magnetic vortices, which appear inside type II superconductors that are subjected to forces from electrical currents. These electrical forces cause the vortices to move, and the movement of these vortices generates dissipation preventing the superconductor from doing its job. 

However,  the vortices can be anchored at “pinning centers,” which are essentially material defects inside the superconductor. This anchoring process prevents energy dissipation, allowing the superconductor to stay in a superconducting state at higher currents. 

“Any superconductor that is useful for power applications is a type II superconductor,” says Los Alamos scientist Boris Maiorov, who has worked at Los Alamos for more than 20 years. “Back in the early 2000s, we found that columns were created when we added barium zirconate [to superconductors]; these columns are really good pinning centers that allow the superconductor to generate and withstand much higher magnetic fields.” 

While introducing defects through the addition of materials is now standard in superconductor production, adding too many defects can kill a superconductor. In a fusion reactor, for example, a superconductor is bombarded with neutrons, which produces defects. Determining how many defects a superconductor can sustain and how they react at high magnetic fields is now a focus of research at the MagLab.

“In the beginning, those defects are going to help you,” Maiorov says. “Then the question becomes: how many is too many?” To answer this question, Maiorov and other researchers are leveraging the Lab’s extensive plutonium expertise. Maiorov and his colleagues can identify properties and behaviors of plutonium that are applicable to superconductors, and then use that information to predict how a superconductor might behave. “For example,” he says, “we’re studying the self-irradiation of plutonium as a function of time and temperature, and we can use what we learn to try and model how superconductors might respond to the radiation of a fusion reactor”—an attractive outcome in more ways than one. ★

Share

Stay up to date
Get the latest content from National Security Science delivered straight to your inbox.
Subscribe Now

More National Security Science Stories

National Security Science Home
Darht Cover

The engineering issue

From the Manhattan Project to current efforts in maintaining and modernizing the U.S. nuclear arsenal, Los Alamos engineers play a vital role.

Engineering at Los Alamos Thumbnail

Engineering at Los Alamos National Laboratory

At Los Alamos National Laboratory, engineering plays a pivotal role in several areas.

Hill, John

A new chief engineer

John Hill brings more than 40 years of experience to the job.

Abstracts Sprints

Elevating engineering

A leadership group strengthens and supports engineering across the Lab.

Abstracts Sprints Peanutbutter

Peanut butter, potting soil, and prototype engineering

Los Alamos innovation sprints train engineers to solve critical challenges through hands-on creativity.

Abstracts W93sub

Full ahead for the W93

Los Alamos engineers help design a new warhead for submarine-launched ballistic missiles.

Follow us

Keep up with the latest news from the Lab