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Abstract

Short-fiber composites usually have low strength and toughness relative to continuous fiber
composites, an intrinsic problem caused by discontinuities at fiber ends and interfacial
debonding.  In this work, we fabricated a model polyethylene bone-shaped-short (BSS) fiber
reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial
strength, solves this problem.  Experimental tensile and fracture toughness test results show
that BSS fibers can bridge matrix cracks more effectively, and consume many times more
energy when pulled out, than conventional straight short (CSS) fibers.  This leads to both higher
strength and fracture toughness for the BSS-fiber composites.  A computational model was
developed to simulate crack propagation in both BSS and CSS-fiber composites, accounting
for stress concentrations, interface debonding, and fiber pullout.  Model predictions were
validated by experimental results and will be useful in optimizing BSS fiber morphology and
other material system parameters.

1. Introduction

Engineered composite materials are well known for their superior properties.  For
instance, fiber-reinforced composites have superior mechanical properties over their
unreinforced matrix. For civilian applications, cost is often a deciding factor in materials
selection.  Compared with continuous fiber composites, short-fiber composites are cost
effective because they can be adapted to conventional manufacturing techniques [1-6].
However, the application of short-fiber composites has so far been limited primarily to light-
load-bearing components, because of their low strength and toughness.  

The relatively low strength and toughness of short fiber composites are intrinsic
problems caused by two main factors.  First, numerous discontinuities provided by fiber ends
can produce stress concentrations on nearby fibers and promote matrix microcracking at these
ends.  These microcracks, which occur even prior to fiber failure, most likely coalesce to form
a large main crack.  Second, the fiber/matrix interface is often a limiting factor for improving
mechanical properties of short fiber composites [7-10].  With respect to interface selection,
there exists a trade off between the strength and toughness of short-fiber composites:  high
strength is often obtained at the sacrifice of toughness.  For a short fiber composite, a strong
interface is desirable to transfer load from matrix to fibers, since relatively stronger interfaces
can increase the effective fiber length over which the fiber carries load [11-13].  However,
strong interfaces and nearby fiber ends can produce stress concentrations which induce fiber
failure rather than fiber bridging and pull-out, particularly in response to an approaching crack
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[14,15]. Even for composites with highly ductile matrices, such as metal and polymer
matrices, strong interfaces will promote successive breakage of adjacent fibers [15,7], and
interfacial debonding and matrix crack bridging are not dominating failure mechanisms [16].
Weak interfaces, on the other hand, can reduce stress concentrations in a short fiber by
debonding.  However, they also significantly decrease the effective length of the fiber that
carries load, rendering the fiber ineffective in strengthening the matrix.  Extremely weak
interfaces may result in complete fiber interfacial debonding and pullout, producing a
significant loss in composite strength with no or minimal improvement in composite toughness.    

A new concept to overcome the interface problem of short-fiber composites has been
recently reported: fiber
morphology design [17,18].  In
previous work [17], short fibers
were designed to have two
enlarged ends. Because of the
resulting appearance, these
fibers were called bone-shaped
short (BSS) fibers.  BSS fibers
can effectively transfer load
from the matrix to the fiber at the
two enlarged ends by matrix-
fiber interlocking.  As a result, a
weak interface can be used to
allow easy interfacial debonding
and to reduce stress
concentrations, but without
compromising fiber-matrix load
transfer.  Composites reinforced
with BSS fibers have been
reported to have higher strength
and higher stiffness, but lower
strain-to-failure [17].  In this
work, we have further studied the
strength and fracture behavior of
these BSS-fiber composites, as
well as the crack-bridging
capability and pull-out resistance
of BSS fibers.  

The effectiveness of
these BSS fibers for different
composite material systems can
be predicted using computational
micromechanical modeling
which simulates crack propagation and macroscopic response.  In this study, a computational
model was developed and simulations were carried out to study the effect of the BSS fiber
morphology on crack-bridging and fracture resistance.  In particular, the influences of random
variations in fiber location and stress concentrations, caused by nearby fiber ends, on crack
propagation were accounted for.  

In this paper, we first describe the experimental procedure and compare the BSS-fiber
composite strength and toughness results with that of conventional straight short (CSS) fiber
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composites.  We then follow with development of a
computational model and its predictions and close with
implications of our results and future work.

2. Experimental Procedure

Continuous commercial polyethylene (Micro
DyneemaTM) fibers with diameter d = 160 µm and
Young's modulus E = 68.5 GPa were used to manufacture
both the BSS- and CSS-fiber composites.  The BSS fibers
were processed using a small hydrogen torch which
severed the fiber and caused the polyethylene to 'bead' up
at the ends [17].  As a result, the enlarged ends of the BSS
fibers looked like mushroom caps.  The CSS fibers were
precisely cut using a pair of scissors.  In bulk, the Young's
modulus Em and shear modulus G of the matrix were
measured as ~500 MPa and ~170 MPa, respectively.

Tensile test specimens of short-fiber reinforced
polyester matrix were fabricated with short-fibers well
aligned in the longitudinal (loading) direction [17].  The
matrix was thickened with amorphous fumed silica so as
to suspend the fibers in the matrix before curing.  Readers
are referred to [17] for more details on the fabrication of
these tensile composite specimens.  Double cantilever
beam (DCB) samples were also fabricated to measure the
crack resistance of the composites (Fig. 1a).  The short fibers were oriented perpendicular to
the precrack and as in the tensile specimen, were well aligned.  Because of the difficulty in
fabricating a whole DCB specimen with aligned fibers, only the section of the specimen
immediately ahead of the precrack was composite while other parts were matrix.  The tip of
the precrack was sharpened with a blade before testing.  As shown in Fig. 1a, a groove was
machined on both sides of the specimen to prevent the crack from deviating from the line of
symmetry.  For both the BSS- and CSS-fiber composites, the tensile specimens were
fabricated with l = 3.0 and 4.5 mm short fiber lengths and the DCB specimens with l = 3.0 mm
fiber lengths.  The fiber volume fraction in all specimens was approximately 5%. Fiber volume
fractions and fiber lengths were limited to these values by the curing and alignment procedures
[17].

Single-fiber pullout tests were also performed to compare the pull-out resistance and
consumed energies of the BSS and CSS fibers and to estimate fiber-matrix interfacial strength
for subsequent modeling.  The sample dimensions and testing rig are shown in Fig. 2.  The
embedded lengths Le were chosen as 3.5 mm and 6.4 mm.   

All composite samples were fabricated using the same matrix material and allowed to
cure in air at room temperature for seven days before mechanical testing, in order to attain a
consistent matrix properties.  All mechanical tests were conducted using a Model 1125 Instron
testing machine.  For tensile testing, an extensometer with a gage length of one inch was used
to measure the strain, and a constant strain rate of 1x10-4 s-1 was applied.  For DCB testing, an
LVDT was used to measure the crack opening, while a traveling microscope was used to
measure the in situ crack length.  Fracture surfaces were investigated using a JEOL 6300FXV
Scanning Electron Microscope (SEM).
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Fig. 2 A sketch of single-fiber
pullout testing.  The fiber is
embedded in the matrix for a
length of Le, and its
unembedded length is 20 mm.
The matrix is in cubic shape
with each edge = 12 mm.
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3. Experimental Results and Discussions

3.1 Tensile Properties

In Fig. 3 are pictures of (a)-(c) BSS-fiber and (d) CSS-fiber reinforced composite
specimens during tensile testing.  Figure 3a shows that at 5% strain, the surface of the BSS-
fiber reinforced composite specimen became rough.  The rough surface was caused by the
non-uniform stress state of the polyester matrix as a result of the spatial variation in the
location of the fibers. In the failure process, some of the BSS fibers contributed to forming the
crack and some contributed to bridging the crack and eventually were pulled-out.  Matrix
crack formation was found to be more likely in regions where several ends were roughly
aligned along a plane perpendicular to the straining direction.  The arrow in Fig. 3a indicates
such a weak cross-section of high local stress concentration, appearing as a linear surface
groove across the specimen surface.   

Upon further straining, a matrix crack was initiated at this site (Fig. 3b), but was
effectively bridged by BSS fibers to prevent catastrophic failure of the specimen. The surface
area directly above and below the crack is smooth due to stress relaxation in these areas, while
the surface away from the crack is rather rough.  As the specimen was further strained, it
became bent as the main matrix crack propagated in a stable manner from left to right with
BSS fibers pulling-out in its wake, and a second matrix crack developed (see arrow in Fig. 3c).
In contrast, CSS fibers could not as effectively bridge the matrix crack, resulting in immediate
pull-out and sample failure once a matrix crack formed (Fig. 3d).  In both cases, the fibers did
not fracture, composite strength was dominated by matrix crack initiation at fiber ends, and
fiber bridging and pull-out.

Fig. 3 In situ pictures of (a) - (c) BSS-fiber reinforced and (d) CSS-fiber reinforced
tensile specimens during tensile testing.   The engineering strain states are (a) 5%, (b)
13%, (c) 20% and (d) 25%.  
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What we have discussed above is the macroscopic observation of the tensile failure
process of BSS- and CSS-fiber composites.  More insightful information can be obtained from
microscopic fractographs of these composites (Figs. 4 and 5).  For the BSS-fiber composites,
the crack usually initiated at fiber ends (Fig. 4a), or at surface flaws on the specimen (see
arrow in Fig. 4b).  The main crack propagated by coalescing with small cracks formed at
nearby BSS-fiber ends.  The smaller cracks were often not on the same plane as the larger
crack, resulting in a very rough fracture surface.  Because of the processing technique used in
this study, the ends of BSS fibers were usually disk-shaped, with their broad face
perpendicular to the longitudinal axis of the fiber.  When a composite specimen was loaded in
tension, each fiber end acted much like a crack oriented perpendicular to the loading direction.
Though the bulk polyester matrix can sustain relatively large deformations, as shown by the
matrix stress-strain curves in Fig. 6, the complex, triaxial stress state of the matrix material in
the composite makes the matrix crack sensitive.  When a matrix crack is initiated at a fiber
end, the polyester matrix behaves in a brittle manner, as evidenced by the river-marks in
fractographs of both BSS- and CSS- fiber composites (Figs. 4 and 5, respectively).  These
river-marks are similar to that on the fractured surface of a typical brittle ceramic material.  As
a crack propagates, some BSS fibers bridging the crack might be pulled out, which is a
difficult process because of the enlarged ends.  The pullout process consumed large amounts
of energy, since it resulted in extensive damage to the matrix (Fig. 4c).

Figure 5 shows the fractographs of several CSS-fiber composite samples.  Figure 5a
shows a fracture surface which formed from a crack initiated at a fiber end (see the arrow
mark).  The small crack propagated slowly at the beginning, leaving a smooth mirror-like area.
Once the crack grew to a critical size, it propagated quickly across the whole specimen,
leaving a relatively flat fracture surface with river marks.  Figure 5b shows a case of initial
crack formation from clustered fiber ends (see arrows in the figure).  No smooth mirror zone
associated with slow crack propagation can be seen, apparently because the crack grew to an
unstable size by coalescence of several small cracks.  Once the crack reached a critical size,
it propagated through the entire cross- section of the sample, pulling out fibers in its wake.  It
can be seen from the river marks that the sample failed from a single crack (Fig. 5b).  This is
consistent with the observation in Fig. 3 that the crack propagated quickly after its formation.
In contrast to BSS fibers, the pullout of CSS fibers did not result in much matrix damage (Fig.
5c), which means less energy was consumed during the pullout process.
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The
different failure
processes of the
BSS- and CSS-
fiber composites
have a significant
effect on their
mechanical
response under
tensile loading, as
revealed in the
strain-stress curves
shown in Fig. 6.
The maximum
strengths measured
for each sample
are indicated by the
circles on these
stress-strain curves
and are also listed
in Table I.  Firstly,
despite the
relatively small
volume fraction Vf
and short fiber
length l, these BSS
fibers were
extremely effective
in strengthening the
bulk matrix
material.
Secondly, the
average strengths
of the BSS-fiber
composites are
greater than CSS-
fiber composites by
11.1% and 22.4%
for samples with l
= 3.0 and 4.5 mm,
respectively.  The
strengths of both
BSS- and CSS-
fiber composites should approach the strength of continuous fiber composites as l increases
further, and likewise, approach the strength of particulate-reinforced composites as l
decreases.  Therefore, although the difference in strength between the BSS- and CSS-fiber
composites may continue to increase (as shown in Table I), it will eventually decrease with
increasing l.  In other words, we expect there exists an optimum l at which BSS-fiber
composites will have the largest improvement in strength over CSS-fiber composites for a

Fig. 4 SEM micrographs of
fracture surfaces of BSS-fiber
composites.

Fig. 5 SEM micrographs of
fracture surfaces of CSS-fiber
composites.
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given material system.  This value of l will
be related to a critical length at which
statistical fiber strength, rather than the
density and distribution of fiber ends and
fiber length l, begins to govern composite
strength and pull-out lengths.

One salient feature of the strain-
stress curves of BSS-fiber composites is
the gradual stress decrease with
increasing strain at composite failure.
This is in sharp contrast to the strain-stress
curves of the CSS-fiber composite, in
which the stress suddenly dropped to zero
at composite failure.  This is consistent
with the observations seen in Fig. 3 that
cracks propagated in a stable manner in
the BSS-fiber composites, but cause
catastrophic failure the CSS-fiber
composites.  This reduced crack
sensitivity of the BSS-fiber composites is
provided by the effective crack-bridging
capability of the enlarged BSS fiber ends.
One of the strain-stress curves of BSS-
fiber composites in Fig. 6b shows three
abrupt stress drops (see arrows).  The first
drop occurred at 3.5% strain, which was
probably caused by the initiation of a
crack.  Afterwards, the composite sample
was able to sustain higher stresses at
larger applied strains due to the effective
crack-bridging of BSS fibers.  The second
stress drop at 7% strain was caused by
either the formation of a new crack or
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Fig. 6 Stress-strain curves of BSS- and CSS-
fiber composites and polyester matrix for (a) l = 3
mm and (b) l =4.5 mm.

Table I. The maximum strengths of the BSS- and CSS- fiber composites
(fiber length l = 3.0 and 4.5 mm, respectively).  The matrix stress at the
circle on the stress-strain curve is 11.5 MPa.

Composite strength σc  (MPa)

Sample #        l    = 3.0 mm         l    = 4.5 mm  
BSS CSS BSS CSS

1 14.6 13.7 16.7 13.8

2 14.8 13.5 16.0 13.3

3 14.8 12.3 16.5 13.0

Average 14.7 13.2 16.4 13.4
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sudden propagation of an existing crack.  The stress plateau following the second stress drop
suggests that the crack was also effectively arrested by BSS fibers.  Finally at 11% strain, the
BSS fibers could no longer prevent the propagation of the large crack, which led to a gradual
stress decrease with increasing strain.  

3.2 Effective Stress Analysis

The benefit of BSS fibers is also revealed when considering a simple "effective fiber
stress" analysis using data from Table 1.  In this analysis, these composite samples can be
approximately considered as reinforced by unidirectional short fibers. (Interested readers are
referred to [19,20] for more accurate analyses for the 3D non-symmetric fiber orientation
function from 2D image analyses and the strength of short fiber composites whose fiber
orientation can be described by an orientation function.)  The average fiber stress at
maximum composite strength, σef, can be approximated from a simple rule-of-mixtures
[21,16] as

σ σ σef c f m fV V= − −( )[ ]1 (1)

where σc is the maximum strength of the composites (See Table 1), Vf is the fiber volume
fraction, and σm is the stress in matrix at which the maximum composite strength is measured
(see Fig. 6 and Table 1).

In both the BSS- and CSS-fiber composites, Vf and l were the same; however, their σef

must be interpreted differently.  For a BSS fiber, σefb is the average stress along the fiber,
assuming l equals the volume of the fiber divided by its cross-section.  This assumption slightly
overestimates the actual l of the BSS fiber because of the volume associated with its enlarged
ends.  For the same l, a BSS fiber has a larger volume than a CSS fiber because of its enlarged
mushroom-shaped ends.  Also, the larger volume of the BSS fibers leads to a smaller number
of fibers per unit volume in BSS-fiber composites than in CSS-fiber composites for the same
Vf , as is the case in this study.  So given α, the volume ratio of a BSS fiber to a CSS fiber, the
relationship between the actual effective fiber stress, σ efb

a , and σefb  can be expressed as

σ ασefb
a

efb= (2)

For the polyethylene fibers used in this study, α = 1.27 for l = 3 mm and α = 1.18 for l = 4.5
mm and thus, σ efb

a  is larger than σefb calculated by Eq. 1.    
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Using the average maximum strength data from Table I, the effective fiber stress, σefb,
and actual effective fiber stress, σ efb

a , for the BSS-fiber composites and the effective fiber
stress, σefc, for the CSS-fiber composites, are calculated using Eqs. 1 and 2, and listed in Table
II.  It can be seen that the ratio of effective fiber stress in BSS fibers to that in CSS fibers,
σefb/σefc, is 1.72 when l = 3.0 mm, and increases to 2.19 when l = 4.5 mm.  The ratio σ efb

a /σefc

is 2.18 when l = 3.0 mm, and increases to 2.58 when l = 4.5 mm.  In other words, a BSS fiber
with the geometry used in this study is 118% more effective than a CSS fiber in improving
composite strength when l = 3.0 mm, and 158% more effective when l = 4.5 mm.  

There are two important factors of this effective stress analysis that we should note.
First, in Eq. 1, σef is considered as the average stress along the fiber and among all the fibers.
However, the stress distribution along the fiber length is not uniform [22], especially when
considering stress concentrations produced by nearby fiber ends.  Secondly, fibers in our
tensile samples did not fracture but instead pulled-out during the failure process.  This suggests
that the load transfer length was comparable or less than the fiber length.  In theory, this load
transfer length lc is estimated as [21,16],  

lc  =  σ0r/2τy (3)

In the case that l < lc, the rule of mixture can be expressed as [16],

σc  =  Vf  
τ yl

r2






+ Vmσm (4)

which implies that τy = 4.03 MPa  and 3.89 MPa for the BSS l  = 3.0 and 4.5 mm fibers and τy
=  2.43 MPa and 1.76 MPa for the CSS l  = 3.0 and 4.5 mm fibers.  Thus, the effect of the BSS
fibers are accounted for in Eq. 4 by a higher sliding resistance. However, Eq. 3 assumes that
the fiber strength, σ0, is equal among fibers; stress concentrations are negligible, and the
interface sliding shear stress, τy, is constant.  Thus, considering stress concentrations produced
by nearby fiber ends and randomly occurring weak fiber flaws, it is possible that fibers with
lengths below the lc predicted by Eq. 3 can fracture.  (The strength of these flaws which

Table II.  The effective fiber stress, σefb, actual effective fiber
stress, σ efb

a , for BSS-fiber composites and the effective fiber
stress, σefc, for CSS-fiber composites, as calculated using Eqs. 1
and 2.

Fiber length
l

l =3.0 mm l =4.5 mm

σefb (MPa) 71.7 116.5
σ efb

a   (MPa) 91.1 137.4

σefc  (MPa) 41.7 53.3

σefb/ σefc 1.72 2.19
σ efb

a / σefc 2.18 2.58
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govern fiber strength have been shown to follow a Weibull distribution for polyethylene fibers
having a wide range of fiber diameters and fiber moduli [23].)  Predicting lc is important since
the increase in the BSS fibers will be more effective when most of the fibers do not fracture.
For these reasons, computational modeling which can simulate all these synergistic effects
and potentially predict lc is considered later.  

3.3 Crack Propagation Resistance

In order to investigate the fracture toughness of the CSS-fiber composites and BSS-fiber
composites and crack-bridging effectiveness of the BSS fibers, DCB samples (Fig. 1) were
fabricated and tested.  Figure 7 shows the curves of normalized load, P , against crack length,
a, for both BSS- (solid marks) and CSS-fiber composites (open marks) with l = 3 mm.  The
normalized load was calculated asP =P/w, where P is the measured load and w is the crack
width (see Fig. 1a).  The crack length, a, was measured in situ as the distance between the
loading line and the crack tip (Fig. 1b).  It is clear from Fig. 7 that higher load is required to
propagate cracks in the BSS-fiber DCB specimens than in the CSS-fiber DCB specimens.
This further proves that BSS fibers bridge cracks more effectively than CSS fibers.  

The total normalized
energy consumed for a crack
to propagate from the initial
crack length a0 to crack length
a  can be calculated as

E a P v dv
v a

( ) = ( )
( )

∫0
(5)

where P  (v) is the normalized
load as a function of crack
opening displacement, v(a),
along the loading line (See
Fig. 1).  Each measured crack
length, a, corresponds to a
displacement, v(a).  Shown in
Fig. 8a are the total
normalized energies, E(a),
calculated by Eq. 5, as a
function of crack length for
DCB tests of both BSS- and
CSS-fiber composites.  As
shown, E(a) is higher for BSS-

fiber composites than for CSS-fiber composites.  

The supplied energy for a crack to propagate by a unit length can be calculated by      

ε a
dE a

da
( ) = ( )

(6)

This can be done by first fitting the curves in Fig. 8a of E(a) versus a with a polynomial
function and then obtaining its derivative.  As shown in Fig. 8a, E(a) values from an individual
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DCB testing is not a smooth function of crack length and vary substantially from specimen to
specimen, as a result of the random distribution of fibers bridging the crack.  Therefore, for
fitting purposes, we combined all three data sets of E(a) for each type, BSS- and CSS-fiber
composites, to fit them to a third order polynomial function (see Fig. 8a).

Using Eq. 6, ε(a) was
calculated from this polynomial
function and is shown in Fig. 8b.
For both types of DCB
specimens, ε(a) is an increasing
function of a.  Also note that ε(a)
includes energies consumed both
by crack propagation and by
further deformation in the two
beams of the DCB specimen,
which makes it larger than the
crack resistance, R, or the energy
consumption in the formation of a
unit length of crack [24].  As
shown, the BSS-fiber DCB
specimens require significantly
more energy for crack
propagation than the CSS-fiber
DCB specimens.  Since the fibers
did not fracture, this enhanced
crack resistance, or indirectly,
higher fracture toughness of the
BSS-fiber composites, is due
solely to their enhanced ability to
bridge matrix cracks and to resist
pull-out.

Figure 9 shows optical
photographs of crack surfaces for
DCB specimens made of (a)
BSS- and (b) CSS-fiber
composites.  River marks on the
crack surfaces reveal two distinct
regions for both specimens.
Region I on the left side of the
dark marking line is relatively
flat.  The river marks suggest that
this region was formed by the
extension of the initial crack.  Region II shows local hills and valleys resulting from local crack
formations and coalescence.  In
this region the crack propagated
by coalescing with small
microcracks formed in front of
the main crack.
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Fig. 9 Optical photographs of crack surfaces for DCB specimens made of (a) BSS- and (b) CSS-fiber
composites.

Region I in the DCB specimen made of BSS-fiber composite is much shorter (< 2 mm)
than that made of CSS-fiber composite (about 8 mm). This suggests higher crack-bridging
capability of BSS fibers.  In the BSS fiber composite, the precrack extended itself under
increasing load, circumvented the BSS fibers and created a large bridging zone.  As the load
increased further, the main crack was effectively bridged by the BSS fibers so that it could not
extend itself, and high enough stresses were produced to initiate local small cracks in front of
the main crack.  The crack propagation mechanism then switched to the coalescence of the
main crack with these small microcracks in front of it, forming region II.  Since the location
and orientation of local cracks usually did not coincide with that of the main crack, the crack
surfaces were roughened by crack coalescence, the process of which consumed additional
energy.

3.4 Single Fiber Pullout

Single fiber pullout tests were performed to compare the crack bridging capability of a
BSS fiber with a CSS fiber, to estimate the interfacial shear strength, τISS, sliding resistance,
τy, and critical local displacement at which the fiber end debonded from the matrix.  Figure 10
shows the load (F) versus pull-out displacement (u) curves of both BSS and CSS fibers for two
different embedded lengths, 3.5 mm and 6.4 mm.  The free length, L0 = 20 mm, was the same
in both cases.  For these embedded lengths, the fiber was fully pulled-out and did not break.



13

In all cases, the peak
load, Fmax, and energy
consumption for pulling out a
BSS fiber are much higher than
those for pulling out a CSS fiber.
For the pullout tests with
embedded fiber length Le = 3.5
mm (Fig. 10a), Fmax for pulling
out a BSS fiber is 9 times that
for pulling out a CSS fiber.
When Le was increased from
3.5 mm to 6.4 mm (Fig. 10b),
Fmax for pulling out BSS fibers
increased by only 10%.  In
contrast, Fmax for pulling out
CSS fibers increased by more
than 150%.  The total energy
consumed during fiber pullout,
or the area under these load-
displacement curves, also
increases with Le, following a
trend similar to that observed for
Fmax.  For Le = 3.5 mm, the BSS
fiber consumed 17 times more
energy than the CSS fiber.
When Le was increased from
3.5 mm to 6.4 mm, energy
consumption increased by 70%
for BSS fibers, as compared
with 400% for CSS fibers.  

The substantial
difference in the effect of Le between the CSS and BSS fibers on Fmax and energy
consumption is due to the difference in their pull-out failure mechanisms.  The CSS fiber
response depends primarily on the fiber-matrix interface integrity, which results in much more
dependence of Fmax on Le.  Increasing Le will increase Fmax because of the increased fiber-
matrix interface area associated with debonding.  In contrast, the BSS fiber response depends
on its enlarged end, which directly leads to a higher Fmax prior to the extraction process.  The
contribution from increasing Le or interface area is relatively small as compared to that
associated with mechanical locking of the enlarged BSS fiber end with the matrix.  However,
these results suggest that these relative differences between the BSS and CSS fibers will
decrease with increasing Le.

The analysis of this experiment to obtain reliable τy values for straight fibers is difficult
and has been approached in several ways (see for example, [25-27]).  Results have been
shown to depend on L0, Le, Poisson’s ratio and thermal mismatch, as well as fiber and matrix
material properties.  Readers are referred to [28,29] for methodologies to obtain interface
characteristics in multifiber composites.  For simplicity, we consider the first sign of deviation
from linearity (or initial elastic response) to correspond to initiation of adhesion failure, or when
the shear stress locally exceeds the interfacial shear strength τISS. The F-u curve continues to

0

2

4

6

8

10

0 1 2 3 4 5 6 7

L
oa

d
, 

F 
(N

) BSS

CSS

(a) L   = 3.5  mme

sliding τ
y

d
eb

o
n

d
in

g

u
CSS

 = 0.2

u
BSS

 = 1

0

2

4

6

8

10

0 1 2 3 4 5 6 7

L
oa

d
, 

F 
(N

)

Displacement, u  (mm)

(b) L   = 6.4 mme

Fig. 10   The load-displacement pullout-curves of
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rise as the debonding crack propagates along Le.  The subsequent decay in F with further pull-
out displacement u corresponds to the process of fiber extraction when the fiber (including its
end) is fully debonded from the matrix.  In this region, a simple shear-lag approximation
[16,26] dictates that the average sliding shear stress obtained from experimental F-u curves is

τy = 
dF

du r

1
2π

(7)

However, the pull-out portion of these F-u curves do not have a constant slope, and so dF/du is
calculated near the end of pull-out (where the effects of Poisson and thermal coefficient
mismatch is minimal [26]).  Using Eq. 7, rough estimates for τy for the Le = 3.5 mm BSS and
CSS fibers were 11 MPa and 7 MPa, respectively.

The F-u curves shown in Fig. 10 demonstrate that the potential of BSS fibers in
improving composite strength and toughness are far from being fully utilized in the BSS fiber
composites fabricated in this investigation.  To compare pull-out results with fibers embedded
in the composite wherein the stress is applied at both fiber ends, we consider 2Le. First of all,
since the fiber did not fracture, we suspect that the 2Le = 7.0 mm and 12.8 mm considered
were less than lc (Eq. 3), defined by the sliding characteristics of the interface, fiber shape, and
fiber strength.  Secondly, the matrix did not fracture, leading to a higher effectiveness of the
BSS fiber than when in the composite.  For example, the highest ratio of actual effective stress
of BSS fiber to the effective stress of CSS fiber is 2.58 (Table II) for l = 4.5 mm.  This is far
below the peak load ratio of BSS fiber to CSS fiber shown in Fig. 10a, which is about 9 in the
Le = 3.5 mm case or equivalently in the composite, l = 7.0 mm.  Lastly, to use the values of τy
estimated by Eq. 7 for Le = 3.5 mm in subsequent modeling, we consider a CSS and BSS fiber
composite in which l = 7.0 mm.     

3.5 Discussion of Fiber Geometry and Matrix Selection
BSS-fiber composites failed mostly by initiation of cracks at the enlarged fiber ends

and their coalescence.  This was due to a combination of factors, including the crack
sensitivity of the polyester matrix, the geometry of BSS fiber ends, and interaction among
these fiber ends.  The mushroom-shaped geometry of the BSS fiber ends (Fig. 11a) causes
tensile stress concentrations in the matrix near the mushroom edge, which can subsequently
lead to crack initiation.  The ends of BSS fibers promoted crack formation more severely than
CSS fibers, resulting in earlier formation of cracks in the BSS-fiber composites  This led to
less elongation to failure in BSS-fiber composites than in CSS-fiber composites (see Fig. 6).  In
contrast, in the pullout tests the single BSS fiber was pulled out without cracking the matrix,
and the BSS fibers were several times more effective than in the composites fabricated in this
study.
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For these reasons,
we believe that only a
small portion of the
strengthening potential of
BSS fibers was realized in
this study.  To suppress
crack formation, the tensile
stress concentration in the
matrix near the fiber ends
can be reduced by
modifying the geometry of
BSS fiber ends.  For
example, an ellipsoid fiber
end, such as the one shown
in Fig. 11b, will certainly
result in lower stress
concentration than the
mushroom-shaped
geometry (Fig. 11a).  Also
an optimized BSS fiber end
and interface
characteristics would allow
a BSS fiber to be pulled out
before the fiber stress can

grow to exceed the fiber strength.  Such a pullout process will increase the overall composite
work of fracture, thus making full use of the potential of BSS fibers for improving fracture
toughness of composite materials.  Also the increase in the number of BSS fibers bridging
matrix cracks rather than initiating them, would improve composite strength..  Experimental
studies on optimum short fiber geometry, which will depend on fiber type, interface, and
matrix properties, such as yield strength, plasticity, and crack sensitivity, will be pursued in the
near future.  Design of these experiments can be guided by computational modeling, as
discussed in the next section.  

4. Modeling Approach and Results

A physical model was developed to represent crack propagation in short fiber
composites from an initial notch.  Using the computational implementation of the model, we
can investigate how short fiber length, morphology, elastic properties, strength distribution, and
volume fraction and also the interface properties, control composite strength and toughness.  In
this section, we briefly introduce the model and the essential aspects of the computational
algorithm.  We refer the reader to Beyerlein et al. [30,31] for more details.  For the scope of
the present study, we develop the model to simulate crack propagation and use the DCB
experimental results to qualitatively validate predictions.  We also reserve application of this
model to design issues for future work [31].
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Fig. 11 (a) The disk-shaped geometry of a BSS fiber fabricated in
the current study promotes crack formation in the matrix, and (b) an
ideal ellipsoid geometry for BSS fibers to reduce crack formation.
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4.1 Model Composite
The model of a composite first assumes a relatively large initial notch and ns short

fibers laid out ahead of this notch and oriented perpendicular to the notch plane, z = 0, as
shown in Fig. 12. The short fibers are assumed to have equal (surface-to-surface) spacing h,
diameter d = 2r, Young's modulus E, and length l, but to vary randomly in their axial location.
Also, the cross-section of the CSS fibers is circular with area, ACSS = πr2 and is constant along
the fiber axis.  The cross-section of the BSS fibers is denoted as ABSS(z), varying along the
fiber length forming a dogbone shape shown in Fig. 11b.  In the random assignment of fiber
location, we restrict each short fiber to intersect the crack plane, z = 0, somewhere along its
length.  The fiber end on the z > 0 half plane is marked end “1” and the fiber end on the other
side, z < 0, is marked end “2”.  Also in this model, a far field axial load per fiber, P∞, is
applied.  For E, G, d, and ACSS, indicated in Fig. 11a, we use properties given in Section 2.
We set h = 10d as estimated from Figs. 4 and 5.  We also show the integer indexing of fibers in
Fig. 12.  The initial notch or precrack a0 is represented by a row of N contiguous fiber breaks
aligned along z = 0 and spanning fibers −N ≤ n ≤ −1.  The continuum crack length can be
related to these N breaks by a0 ≈  [N + 1](d+h).  The ns short fibers, which lie ahead of the
crack, span fibers 0 ≤ n ≤ ns − 1. Statistical variation in the location of short fiber i, where i = 1,
. . . , ns, is simulated by randomly placing one end of the fiber at z1

i  = lui  and the other at z2
i  =

l(ui  −1), as shown in Fig. 12.  The value of the uniform random variable, ui , lies between 0 and
1 and is obtained from a
random number generator for
every i.  Both the CSS and
BSS fibers are of the same
length l = 7.0 mm.

The code uses a 2D
break influence superposition
(BIS) technique [32] to
calculate the complex stress
fields as a result of these
numerous short-fiber ends
coupled with a through-
thickness notch.  The BIS
technique is an extension of
the Hedgepeth 2D multifiber
composite shear-lag model
[33] to account for out-of-
plane locations of fiber
breaks.   Using the BIS
technique, the stress
redistribution around an

arbitrary configuration of fiber break locations can be calculated quite efficiently and directly.
The computational effort depends jointly on the number of breaks and the size of the region
one wishes to use to calculate stress and displacement.  The technique is based on continuum
theory so the fiber and matrix are not discretized and thus, stress redistribution results do not
depend on the fineness of a mesh.  The spatial extent of the stress transfer from broken to
intact fibers depends on the properties of the composite and number of fractures.  For a row of
50 or more fiber breaks, this Hedgepeth shear-lag model produces stress distributions

n = 0 1 2 3 . . . n s

N

-2 -1

h

z1

z2 l

z

Fig. 12  Model CSS fiber composite with ns aligned short fibers
ahead of an N-sized fiber break crack.
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consistent with those predicted by plane elasticity theory for an orthotropic sheet containing a
through-thickness crack [30].  For this reason, we consider a notch consisting of N = 50 fiber
breaks.

The model also assumes that the fibers sustain all axial stress, with Young's modulus E,
and the matrix deforms only in shear, with shear modulus G.  This assumption is valid for the
composite material system considered here, since the matrix-to-fiber stiffness ratio Em(1-
Vf)/EVf = 0.135.  Also this analysis assumes that the fibers and matrix are linear elastic and
well-bonded.  In the original BIS technique, the effects of sliding of the fiber-matrix interface
were not considered, but are included in the present model in an approximate manner, similar
to that described in Zhou and Curtin [34].  Moreover, the usual boundary condition in the BIS
technique is that all break surfaces are traction free; however, in this short fiber model, we
introduce 'virtual' breaks, which are simply fractures sustaining nonzero, nonnegative tractions.
These virtual breaks are used to model the enlarged and round BSS fiber ends and also all
short fibers which are sliding and pulling-out of the matrix [31].

4.2 Local Failure Criteria
An inhomogeneous stress state is generated under loading, due to interactions between

the randomly spaced fiber ends.  Tensile and shear stress concentrations can promote
microcrack formation at the fiber ends and subsequent sliding at the fiber/matrix interface.
Short fibers remain intact during the fracture process and the macroscopic response is thus
dominated by fiber bridging and pullout.  All these features seen experimentally are thus
incorporated into the computational model.  To accurately represent the experimental results,
we need the limiting shear stress at which the fiber/matrix interface separates, the interfacial
shear stress for when the fiber is sliding relative to the matrix, and the critical displacement at
which fiber ends separate from the matrix.  

The limit shear stress or interfacial shear strength, τISS, may be obtained from pull-out
experiments.  However, in Section 3.4, only an estimate for the sliding shear stress τy was
obtained for the BSS and CSS fibers from pull-out tests with Le = 3.5 mm, which is equivalent
to an in situ composite length of l = 7.0 mm. Since accurate estimates of τy and τISS were not
possible for the current polyethylene fiber model systems and also since we wish to reduce the
parameter space, we assume τy = τ ISS = τ.  In the CSS case, we compare the shear stress at
both tips of the fiber, τn(z1,2), with τCSS = 7 MPa.  The CSS fiber ends are known to
experience the highest shear stress concentration.  In the BSS fiber, FEM calculations and our
shear-lag calculations show that the highest shear stress occurs between the fiber tip and the
middle of the spherical end [35].  Therefore, in this case, the shear stress τn at point A  in Fig.
11b of the BSS fiber end is compared with τBSS = 11 MPa.

The bond between the fiber end and matrix are assumed to be intact until a critical
displacement is reached.  Full separation of the fiber end from the matrix and thus, the process
of pull-out is assumed to begin at the maximum of the F versus u curves in Fig. 10.
Specifically, the F-u  curve in Fig. 10a for Le = 3.5 mm was used to estimate the critical
displacements corresponding to Fmax, uBSS and uCSS, as 0.2 mm and 1.0 mm, respectively.  

4.3 Simulation Algorithm.
In all simulations, the far field tensile load is increased to levels required to cause at

least one failure event.  Each crack propagation simulation occurs in discrete increments and
finishes when a crack propagates through all the short fibers and they all become fully
extracted.  At the end of each increment, there is a change in the failure ‘configuration’ (i.e. a
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newly debonded fiber end, pulled-out fiber, etc.), such that a recalculation of the stress
redistribution and displacements is necessary.  Therefore, at every increment, the stress
redistribution is recalculated using BIS.  In all the BIS calculations, equilibrium and
compatibility are satisfied [30].  

Each end of a short fiber can either be (i) fully intact, (ii) debonded from the matrix, or
(iii) sliding with respect to the matrix.  If at least one of the two ends of the short fiber satisfies
the failure criteria corresponding to both (ii) and (iii), then this fiber is considered either (iv)
pulling out but still ‘bridging’ the crack face or (v) completely pulled out of the main crack.
This fiber is pulled out of the crack if the opening displacements of the fiber end being
extracted, marked 1 or 2, exceeds z1 or z2, respectively.

The amount of crack extension, ∆ac, is defined from the length of contiguous fully
extracted short fibers nc starting from the initial notch. Similarly, ∆ab, is defined from the
length of contiguous ‘bridging’ fibers (or fibers in the process of pulling out) and fully extracted
short fibers nb starting from the initial notch.  Explicitly, ∆ac  = nc(h+d) and ∆ab  = nb(h+d).

4.4 Modeling Results
Figure 13 compares the opening displacement (CTOD) at the mouth of the initial notch

versus the amount of crack extension, ∆ac/(h+d) = nc, for the BSS and CSS fiber composites,
where N = 50, ns = 75 and l = 7.0 mm.  For each type of short-fiber composite, five CTOD
versus nc curves are shown, representing five composites with different random fiber spatial
distributions.  Plots of normalized applied load P  versus ∆ac or ∆ab show similar trends.  Prior
to or at initial crack extension, many failure mechanisms, such as fiber end detachment and
fiber sliding can occur ahead of the initial notch.  Variation between the BSS- or the CSS-fiber
composite curves is due solely to the statistical variation in locations of short fiber ends with
respect to the crack.  Also the sharp rise in CTOD as the crack propagates to a length nc ~60-
70 is due to boundary constraints provided by the intact fibers, i.e. fibers n > 75.  This boundary
effect also occurs in the DCB specimens.  We will neglect this response due to the boundary
effect when comparing the BSS- and CSS-fiber composites.  
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Figure 13 reveals
the effectiveness of the
BSS fibers.  Prior to the
sharp rise at the end, the
CTOD of the CSS-fiber
composites does not
increase appreciably
above the short fiber
length, l = 7.0 mm.
However, a much larger
(approximately 2.5 ~ 3.0
times larger) CTOD is
required to drive crack
extension and complete
pull-out in the BSS-fiber
composites than in the
CSS-fiber composites.
Also, although it appears
that the variation in the
response of the BSS-
fiber composite is much
larger, the coefficient of
variation, or standard
deviation to mean ratio,
in the CTOD of the BSS-
fiber composite at nc ~60
is slightly smaller
(0.2902 versus 0.3032
for the BSS and CSS-fiber composites, respectively).  This suggests that the CSS- and BSS-
fiber composites have the nearly the same sensitivity in crack propagation to variation in fiber
spatial distribution.  

Fig. 13 Simulation predictions for the opening displacement
(CTOD) at the mouth of the initial notch versus crack extension in
five different BSS and CSS-fiber composites with the same short
fiber length l  = 7.0 mm.
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To reveal the damage occurring ahead of the growing ∆ac or ∆ab, graphic ‘snapshots’
of an increment in the simulation for a CSS and a BSS-fiber specimen at approximately the
same far field normalized load (~17) are shown in Figs. 14a and b, respectively.  Short fiber

( a)

( b)

Initial
Not ch
N = 50

Number of fibers ahead of th e initi al not ch: ns =  7 5

Fiber ends:      =intact ;      = debonded;     = debonded and sliding

Fiber status at the  crack  plane:   =  bridging;   = pulled out fiber

Fig. 14   An increment in crack propagation of (a) a CSS fiber composite at
normalized applied load = 16.58 and (b) a BSS fiber composite at normalized
applied load = 16.91.  In (a) the crack extension ∆ac = 1 and ∆ab = 75 = ns, and in (a)
∆ac = 2 and ∆ab = 3.
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ends are in three states: (i) an intact end, (ii) a debonded fiber end, and (iii) a sliding fiber end,
respectively.  On the crack plane, z = 0, the fiber status is represented by two states: (iv)
bridging (at least one sliding and debonded end) and (v) pulled-out short fibers, respectively.
At this value of P , the matrix crack in the CSS-fiber composites has already propagated to the
end and contains a majority of pull-out fibers.  The BSS fiber composite, on the other hand,
contains a relatively smaller bridging zone at this applied load and, in general, contains both
bridging and pulled-out fibers.  Note that there are also a number of fibers ahead of the crack
that have already satisfied the debonded, sliding, or fully extracted criteria.  These fibers may
have ends which are clustered near the crack plane.  In these cases, the stress concentrations
from the approaching crack most often promote premature microcracking in these areas, even
if they are far from the crack-tip.  When encountered by the approaching crack, these areas
will lead to immediate crack extension or discrete steps in P  vs ac or ab curves.  Results from
this simulation code are consistent with trends observed in DCB specimen tests.

5. Conclusions
Short-fiber composites reinforced with bone-shaped fibers have proven to have both

higher strength and toughness than conventional short-fiber composites.  By using mechanical
interlocking at fiber ends to transfer load, BSS fibers allow a weak fiber/matrix interface to be
used without compromising the effectiveness of load transfer.  This avoids the dilemma in
designing CSS-fiber composites, in which a weak interface results in low strength because of
ineffective load transfer and a strong interface results in low toughness because of stress
concentration.

Interfacial debonding along a BSS fiber does not affect its load carrying capability,
making BSS fibers more effective than CSS-fibers in bridging a crack.  This leads to higher
fracture toughness for BSS-fiber composites.  Another factor which contributed to enhancing
the effects of the BSS fibers is the fact that the fibers used in these composites did not fracture.
This is because the BSS fiber ends are not large enough to prevent the fiber from being pulled
out before it is broken.  The critical size of BSS fiber ends that govern the transition from a
fiber being pulled out to being broken is influenced by the mechanical properties (e.g. strength,
strain-to-failure), shape, and length of the fiber and the properties of the matrix and interfaces. 

The crack sensitivity of the polyester matrix has played a major role in crack formation
in the BSS-fiber composites fabricated in this study.  The mushroom-shaped geometry of BSS
fibers, coupled with the high crack sensitivity of the polyester matrix, led to the failure of BSS-
fiber composites primarily by crack initiation and coalescence.  This mode of failure can only
utilize a small portion of the reinforcing and crack bridging potential of BSS fibers.  Although
the matrix in bulk can sustain large plastic strains, it behaves more like a brittle material once a
crack has formed, as evidenced by the river marks on the fracture surfaces of composite
specimens (Figs. 4 and 5).  Therefore, we propose that ellipsoidal fiber ends and a less-crack-
sensitive matrix (still providing a relatively weak interface) will suppress crack formation and
further increase the strength and toughness of BSS-fiber composites.  Overall, the results
presented here show that it will be worthwhile to develop commercial BSS-fiber reinforced
composites with weak interfaces, test their mechanical properties, and perform computational
modeling for optimum fiber shape and length.  

Predictions from this computational model will be used (i) to design further
experimental studies, (ii) to determine the dominate failure mechanisms, (iii) to study the
isolated or synergistic effects of specific parameters, and (iv) to optimize the selection of
parameters to evaluate experimentally.  For the present material system, volume fractions, and
short fiber lengths, the fibers did not break under monotonic axial tension in either the tensile or
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cantilever beam specimens.  Strength was dominated by fiber end cracking and fiber pull-out.
Thus, in the algorithm used in this computational model, a criteria for debonding was included,
but one for fiber failure was not.  However, future work will involve assigning Weibull flaw
strengths randomly along the short fiber lengths.  When doing so, one can determine the
relationship between the critical fiber length (length at which composite failure mode becomes
dominated by fiber fracture) and composite material properties, such as τ, Weibull fiber
strength, and BSS-fiber morphology.
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