
BSSD 2019 Performance Metric Q3 
 
Goal: Develop metagenomics approaches to assess the functioning of microbial 
communities in the environment. 
 
Q3 Target: Report on how transcriptomics and metagenomics analyses can be used in 
concert to elucidate microbial community function in environmental samples. 
 
Executive summary: 
 The LANL SFA in Terrestrial Microbial Carbon Cycling aims to inform climate modeling 
and enable carbon management in terrestrial ecosystems by discovering widespread biological 
processes that control carbon storage and release in temperate biome soils (primarily arid 
grass/shrub lands and forests).  Combined use of metagenomic (MG) and metatranscriptomic 
(MT) techniques is essential to achieve these goals.  Metagenomic inventories of the dominant 
taxa and/or functional genes in microbial communities are a springboard to develop hypotheses 
about functional changes and to down-select samples for resource-intensive metatranscriptome 
analyses that can provide greater mechanistic insight.  Integrated use of metagenomics and 
metatranscriptomics for ecosystem research is still in an early phase of development.  
Nonetheless, the SFA has successfully developed and applied these techniques in several field 
studies (separately funded and led by external BER-funded collaborators) to gain insight into 
“active” taxa and genes involved in ecosystem response to drivers of ecosystem change.   
 A general finding in comparing MGs and MTs is that they differ, sometimes dramatically, in 
the relative abundance of specific taxa or gene types.  For example, targeted MGs showed co-
dominance of Ascomycota and Basidiomycota fungi in surface litter in a pine forest under long-
term N fertilization, but targeted MTs suggested Basidiomycota fungi remained the most active 
players in cellulose decomposition [1].  Even more striking, shotgun MGs from forest soil 
samples have repeatedly indicated complete numerical dominance of bacteria (i.e., nearly all 
sequence reads are bacterial), whereas shotgun MTs show a large fungal component and have 
thereby provided far greater insight into fungal metabolic activities in soil [3, 5, 6].  For a Maple 
forest ecosystem under long-term N deposition, MTs revealed clear N fertilization effects on 
fungal and bacterial CAZyme activity and intriguing inter-kingdom CAZyme co-expression 
patterns, whereas only weak taxonomic responses occurred in parallel targeted MGs [4].  In 
contrast, a separate study found that inorganic nitrogen cycling pathways were not enriched in 
MTs as expected; instead the genes were 150-fold lower in abundance compared to MGs, 
illustrating unexpected challenges in use of MTs to broadly examine the integration of major 
biogeochemical cycles in surface soils [5].  Accurate interpretation of MT/MG data is also a 
challenge at this early stage of development.  Higher abundance of components in MTs 
compared to MGs is generally considered an indicator of “active” status.  Exploiting this 
concept, the SFA found evidence suggesting a much stronger role of dormancy in the 
maintenance of bacteria, but not fungi, in Maple forest litter decomposer communities [2]. 
However, modeling and simulation revealed the need for caution when using MT/MG 
comparisons for activity assessments because variation in the biology of different organisms can 
create limitations on data analysis that lead to erroneous conclusions if ignored [7].  Ongoing 
research in the SFA is addressing some fundamental challenges in use of MTs while, in parallel, 
integrating MT & MG to discover processes that underpin large differences in carbon cycling. 
  



Background 
Metagenome (MG) and metatranscriptome (MT) techniques can be combined in various 

ways to achieve greater insight into microbial community processes that underpin ecosystem 
behavior.  MGs document the “seedbank” of organisms and gene functions in a community.    
Metagenomic inventories are expected to represent a mixture of active organisms, dormant 
organisms (e.g. spores), recently dead cells, and even some extracellular DNA from older dead 
cells.  This motivates the use of metatranscriptomics to identify the subset of metabolically 
active organisms and the gene functions they express.   MG and MT techniques can be applied to 
microbial communities in targeted or shotgun 
mode, sampling a specific gene or all genes, 
respectively.  The four combinations of MG and 
MT modes provide different levels of functional 
insight with corresponding effort and expense 
(Table).   Effective methods for soil shotgun 
metatranscriptomics that provide inter-kingdom (e.g. prokaryotes and eukaryotes) coverage 
emerged only in the past 5 years, including the method published by the SFA in 2015 [4].  The 
LANL SFA mostly uses targeted metagenomics with shotgun metatranscriptomics but has 
applied various combinations in different studies since 2012, primarily to investigate the 
response of soil communities to N fertilization.     
 
MTs identify an “active” subset of cellulolytic fungi in MGs under long-term elevated CO2 
and N fertilization 

The SFA began developing soil metatranscriptomics in 2011, successfully applying targeted 
MT/MG comparisons to examine cellulolytic fungi contributing to carbon cycling at the Duke 
(North Carolina) loblolly pine plantation Free Air Carbon Dioxide Enrichment (FACE) site [1].  
Because cellulose-degrading microorganisms are not phylogenetically cohesive, ribosomal gene 
surveys are unable to detect specific responses of cellulolytic microorganisms that may be 
central in altered soil carbon cycling patterns. Published PCR primers targeting the gene coding 
for the catalytic subunit of fungal glycosyl hydrolase family 7 cellobiohydrolase I (cbhI), a key 
enzyme involved in cellulose degradation, enabled monitoring a subset of cellulolytic soil fungi 
using DNA- and RNA-based approaches.   The SFA generated DNA- and RNA-based profiles of 
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Figure 1.  Average relative abundance of Ascomycota 
versus Basidiomycota cbhI sequences among 12 targeted 
metagenome clone libraries (dark gray bars) versus the 
average abundance of the types in metatranscriptome 
libraries (black bars) from Duke Pine Forest FACE site 
soils (3 replicates per treatment).  From [1]. 

Figure 2.  Average abundance of the top 100 cbhI 
sequence types among 12 targeted metagenome clone 
libraries (light gray bars) versus the average 
abundance of the types in  targeted 
metatranscriptome libraries (black bars) from Duke 
Pine Forest FACE site soils. From [1]. 
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the cbhI gene from soils collected from the Duke FACE site. This site contained replicate plots 
exposed to elevated atmospheric CO2 or ambient CO2 (control plots) for more than a decade. 
Half of each CO2 treatment or control plot was fertilized with ammonium nitrate, which allowed 
the combined effects of altered CO2 and N on soil fungal communities to be examined.  
 The parallel MT and MG profiles differed in important ways.  The cbhI MG suggested 
similar abundance of cellulolytic Ascomycota and Basiodiomycota, whereas the cbhI MT 
suggested the Basidiomycota were the primary cellulose consumers (Figure 1; from [1]. Only a 
third of the cbhI types in the MGs were also recovered in the MTs (Figure 2) [1], consistent with 
the notion that metatranscriptomes can identify the active subset of a larger seedbank.  
 
Shotgun MTs reveal fungal functional genes obscured in MGs  

Bacterial cells are often more abundant that fungi in soils, which can pose a challenge to 
metagenomic assessments of fungal functions, but metatranscriptomes address some of this 
challenge.  When measured by culturing, bacteria often outnumber fungi by a factor of 100.  This 
numerical abundance can overwhelm shotgun metagenomic inventories such that only bacterial 
are represented.  The SFA found evidence consistent with this phenomenon.   
 In 2012, MGs of soil samples from the Duke FACE site were almost entirely bacterial reads, 
whereas MTs from the same samples were primarily 
eukaryotic and mostly of fungal origin (Figure 3)[3, 
6].      Similarly, 2017 MGs of soil samples from the 
Duke site used in a laboratory microcosm study were 
almost entirely bacterial reads (Figure 4A; from[5]).  
The corresponding MTs from the same samples 
contained a substantial fraction of fungal genes 
(Figure 4A; from [5]).   

The greater abundance of fungal transcripts in the 
MT data may reflect either greater fungal versus 
bacterial gene expression in the samples, or greater 
degradation of bacterial messenger RNA transcripts 
during sample processing.  This is one of many 
emerging technical issues that must be addressed for 
environmental metatranscriptomics. The SFA is 
exploring use of internal controls to address this and 
other technical challenges that must be solved to 
advance the field. 
 
Shotgun MTs reveal N fertilization effects obscured by shotgun MGs  
 Using a combination of shotgun metagenomics and shotgun metatranscriptomics, the SFA 
gained an un-expected insight into the effect of N fertilization on expression of microbial carbon 
cycling genes [5].  Ecosystems are receiving increased nitrogen (N) from anthropogenic sources, 
including fertilizers and emissions from factories and automobiles. High levels of N change 
ecosystem functioning. For example, high inorganic N has repeatedly been shown to decrease 
the rate of microbial decomposition of plant litter, potentially reducing nutrient recycling for 
plant growth. Numerous studies, including our own [1, 4, 8-12], have also documented soil 

Figure 3. Composition of total sequence reads 
and small subunit rRNA (SSU) sequences 
parsed from a pine soil metagenome and 
corresponding metatranscriptome, illustrating 
the enrichment of identifiable eukaryotic 
sequences in the metatranscriptome. [3]  



microbial community changes after long-
term experimental nitrogen (N) fertilization 
in natural ecosystems. However, it is 
unclear if the observed changes are a direct 
response to altered N supply, or instead a 
response of microbial communities to 
altered plant physiology or other secondary 
factors.  
 The clearest picture of direct microbial 
responses to N fertilization are likely to 
arise from measurements over a short time 
scale (hours to days) immediately after 
inorganic N deposition [5]. Therefore, the 
SFA assessed the short-term (3-day) 
transcriptional response of microbial 
communities in two soil strata from a pine 
forest to a high dose of N fertilization (ca. 1 
mg/g of soil material) in laboratory 
microcosms. During the 3-day experiment, 
all microcosms showed substantial 
microbial activity, but the nitrogen 
fertilization treatment significantly reduced 
microbial respiration in the two soil strata 
compared to the unamended controls [5].   
 Consistent with published studies of 
fungal pure cultures, we hypothesized that N 
fertilization would repress the expression of 
fungal and bacterial genes linked to N 
mining from complex plant litter. However, 
the data did not support this hypothesis [5].   
 The MG data suggested little change in 
fungal or bacterial community composition 
(Figure 4B & C; from [5]), suggesting little 
if any changes in population abundance.  In 
contrast, the MT data suggested substantial 
shifts in set of active fungal taxa (Figure 4B), 
and much smaller shifts in the set of active 
bacteria (Figure 4C) (Albright 2018).  The 
data illustrate the potential to assess 
population shifts with MG data and activity 
shifts with MT data.  
 At a high functional level (KEGG Level 2 cellular processes), the MG and MT profiles were 
quite similar between nitrogen treatments (Figure 5; from [5]), despite differences in the sets of 
active fungi (Figure 4B).  These findings illustrate another emerging challenge in environmental 

MetagenomeMetatranscriptome

A.

B.

C.

Meta-
genome

Meta-
transcriptome

Fungi

Bacteria

-- +N -- +N

Figure 4.  Response of pine forest soil litter layer 
microbiome to 64 hours of NH4NO3 exposure. 
Soil samples  were incubated in microcosms under 
constant water and temperature conditions.  The 
composition plots in panels A to C show the 
composite of four replicates per treatment (+/- 
NH4NO3). The NH4NO3 treatment significantly 
reduced respiration (CO2 efflux).  From [5]. 



metatranscriptomics – the absence of an 
interpretive framework that unambiguously 
links metatranscriptomic profiles at various 
KEGG functional levels to known 
physiological changes.  For example, the 
dynamic range of possible profiles at KEGG 
functional level 2 and the physiological states 
or changes represented within that dynamic 
range is unknown.  Such knowledge would 
dramatically enhance data interpretation.   
 The most pronounced differences in 
functional gene expression were between soil 
strata rather than in response to the N 
addition [5]. Overall, 4% of metabolic genes 
changed in expression with N addition, while 
three times as many (12%) were significantly 
different across the different soil strata used 
in the microcosms.   
 
 There was little evidence of repressed expression of genes involved in complex 
carbohydrate degradation (CAZymes) or inorganic N utilization [5]. Comparison of CAZymes in 
MT vs MG data suggested a subset of “active” CAZymes, but very few showed significant 
changes under N fertilization.  The most robust response occurred with three bacterial CAZyme 
families:  CBM52 and CE14 (bacterial enzymes) increased while CBM3 (cellulose binding, 
bacterial) decreased significantly with N 
addition in both soil strata.  Inorganic N 
metabolic gene expression (e.g., genes nifH, 
napA, nosZ, and amoB) did not change 
significantly in response to N addition.  N-
cycling genes were expected to be enriched in 
the MT data owing to their metabolic 
importance under a strong pulse of inorganic 
N and because the gene sequences would not 
be diluted by the presence of non-coding 
sequences that occur in MG data.  Contrary to 
expectation, N-cycling genes were 150-fold 
less abundant in MT data than in MG data, 
demonstrating the need for much greater 
transcriptome sequencing depth to effectively 
study integrated biogeochemical cycles in 
surface soils [5].      

Collectively, the findings suggested that direct N repression of microbial functional gene 
expression was not the principle mechanism for reduced soil respiration immediately after N 
deposition [5]. Instead, changes in expression with N addition occurred primarily in general cell 
maintenance areas, for example, in ribosome-related transcripts. This underscores the question of 
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Figure 5.  Relative abundances of functional groups 
(KEGG level 2) averaged across replicates (n = 4).  From 
[5]. 

Figure 6.  Correlation of CAZyme gene family 
abundance in paired metatranscriptomes and 
metagenomes.  The marker colors denote different 
CAZymes.  Dashed line indicates 1:1 correlation.  Points 
above the line are interpreted as more highly expressed. 



the proximal cause (community composition versus N-repression of gene expression) of 
differences in functional gene abundance under N fertilization in long-term field studies.   
 
MT/MG comparisons enable exploration of “dormancy” as an adaptive trait among 
microbial groups and its role in assembly of litter decomposer communities 
 The SFA combined MT and MG data to investigate the potential role of dormancy in 
structuring bacteria and fungi in Maple forest litter decomposer communities over an 
environmental gradient [2].  Dormancy, a strategy of entering a reversible state of reduced 
metabolic activity during unfavorable environmental conditions, is thought to foster diversity 
within microbial communities.  Consequently, it has important implications for community 
function. In addition to forming “seed banks” of microbial taxa, dormancy has been 
hypothesized in literature to provide a mechanism for coexistence of ecologically similar species 
by allowing competing organisms to partition resources across time, rather than in space. The 
role of dormancy in assembly of communities responding to changes in environmental 
conditions is unclear. Quantifying changes in the phylogenetic structure of the active and 
dormant communities in response to changing environmental conditions provides a means to 
simultaneously examine the distribution of 
dormancy among microbial groups to better 
understand how dormancy will interact with 
environmental conditions to structure 
communities.  

To measure the active and dormant 
communities of bacteria and fungi colonizing 
decomposing litter in maple forests, ribosomal 
RNA genes and transcripts from litter samples 
were compared across a natural environmental 
gradient [2]. Using an approach established by 
others, any OTU with a rRNA/rDNA>1 was 
scored as active, and any OTU with a 
rRNA/rDNA<1 was scored as inactive (dormant 
+ dead).  
 Within bacterial and fungal communities, 
the active and dormant communities were 
phylogenetically distinct, but patterns of 
phylogenetic clustering varied [2]. For bacteria, 
active communities were significantly more 
clustered than dormant communities, while the 
reverse was found for fungi. The proportion of 
operational taxonomic units (OTUs) classified as 
active and the degree of phylogenetic clustering 
of the active bacterial communities declined with 
increasing pH and decreasing C/N. No 
significant correlations were found for the fungal 
community. The opposing pattern of 
phylogenetic clustering in dormant and active  

Figure 7. Putative active versus dormant taxa in 
Maple forest leaf litter decomposer communities 
based on ribosomal RNA gene ratios of RNA:DNA. 
The graphs show the proportion of OTUs classified 
as active within individual phyla for bacteria (a) and 
fungi (b). The activity assessments were partially 
validated by correlation with the abundance of 
Resuscitation Promoting Factor C (rpfC) transcripts 
retrieved from metatranscritome data. From [2] 



communities and the differential response of active communities to environmental gradients 
suggest that dormancy differentially structures bacterial and fungal communities [2]. 
 
Calibration of MT/MG comparisons to classify taxa or genes as “active” 
 To improve interpretation of RNA/DNA ratios for identification of “active” taxa and genes, 
the SFA used modeling and simulation with a ground-truth dataset to assess potential errors [7]. 
The general use of RNA/DNA ratios is bewitching because it provides an extra layer of highly 
valuable information from high-throughput DNA sequencing data.  It offers a means to 
determine not only the seedbank of taxa present in communities but also the subset of taxa that 
are metabolically active. Although some activity assessments can be (at least partially) 
orthogonally supported as in [2], there are many circumstances in which validation is not 
possible.           
 The SFA addressed this issue by focusing on a specific test case—activity assessments based 
on ribosomal RNA gene data [7].  As cellular activity increases, the ratio of ribosomal RNA 
(rRNA) to ribosomal RNA genes (DNA) is expected to increase because ribosome abundance 
increases much more than the genome copy number in active cells. Consequently, organisms 
with a higher abundance of rRNA than DNA in community surveys are proposed to be active. A 
critical detail of the rRNA/DNA method used in microbial community analyses is that the true 
ratios of rRNA to DNA occurring within cells are not measured; instead, the relative abundance 
of a taxon in a metatranscriptome is compared to its relative abundance in a metagenome. 
Although a number of studies have used rRNA/DNA ratios to characterize active microbial 
populations in environmental samples, there has been little effort to investigate factors that may 
affect data interpretation. 
 Simulations were performed to investigate the effects of community structure, intracellular 
ribosomal RNA amplification, and sequence sampling depth on the accuracy of rRNA/DNA 
ratios in classifying bacterial populations as “active” or “dormant” [7]. Community structure was 
a non-significant factor. In contrast, the extent of rRNA amplification that occurs as cells 
transition from dormant to growing had a significant effect (P < 0.0001) on classification 
accuracy, with misclassification errors ranging from 16 to 28%, depending on the rRNA 
amplification model. The error rate increased to 
47% when communities included a mixture of 
rRNA amplification models, but most of the 
inflated error was false negatives (i.e., active 
populations misclassified as dormant). Sampling 
depth also affected error rates (P < 0.001). 
Inadequate sampling depth produced various 
artifacts that are characteristic of rRNA/DNA 
ratios generated from real communities. These 
data show important constraints on the use of 
rRNA/DNA ratios to infer activity status. 
Whereas classification of populations as active 
based on rRNA/DNA ratios appears generally 
valid, classification of populations as dormant is 
potentially far less accurate [7].        
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Figure 8. Effect of sample size on misclassification 
of activity status (dormant vs active) in simulations 
with two models of how the ribosome content of 
cells changes with activity state. From [7]. 



Shotgun MTs reveal long-term N fertilization effects undetected by targeted MGs  
 To assess the impact of long-term (16 years) of N deposition on Maple forest floor 
decomposer communities (Michigan), the composition and activity of bacteria and fungi in leaf 
litter samples from replicate plots at two geographically distant sites were examined [4].   Our 
hypotheses were (a) that the metatranscriptomes would illustrate community metabolic shifts that 
were not necessarily detectable in targeted metagenomic (ribosomal RNA gene) taxonomic 
surveys, and (b) the complex community in the forest floor material would show responses to N 
deposition that were manifest in both the bacterial and fungal CAZyme activity profiles.  
 Targeted MGs (ribosomal RNA (rRNA) 
surveys) of bacterial and fungal biomass and 
taxonomic composition showed no significant 
differences in either biomass, OTU richness, or 
bacterial taxonomic composition between the 
two sites or in response to N [4].  However, site 
and N amendment were significant variables for 
fungal community composition (Figure 9; from 
[4]), explaining 17 and 14% of the variability, 
respectively.  
 Functional activity of these communities 
was explored further using metatranscriptomes 
that simultaneously captured bacterial as well as 
eukaryotic sequences [4].  Site and N 
amendment responses were compared using 
about 74,000 Carbohydrate Active Enzyme 
(CAZyme) transcript sequences in each 
metatranscriptome. The relative abundance of 
expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the 
forests, and N-response trends were also identified in the second forest. Although the two 
ambient forests were similar in community biomass, taxonomic structure and active CAZyme 
profile, the shifts in active CAZyme profiles in response to N-amendment differed between the 
sites. One site responded with an over-expression of bacterial CAZymes, and the other site 
responded with an over-expression of both fungal and different bacterial CAZymes. Both sites 
showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment 
plots.  
 As an exploratory tool in single organism transcriptome studies, the co-expression of genes 
can be used to identify potential suites of co-regulated or interacting gene suites [4]. Although 
the interpretation of co-expression patterns in metatranscriptome samples is difficult due to the 
large number of genes recovered, the transcript correlation technique can still be used to identify 
suites of correlated, potentially interacting transcripts or organisms. Abundance correlations of 
the 100 most abundant CAZyme families are shown as a heat map (Figure 10; from [4]). 
Hierarchical clustering of these co-expression patterns showed a strong grouping of eukaryote 
CAZyme families (Figure 10, label A), representing many CAZyme families from all CAZyme 
classes (GH, GT, PL, CE, AA), most of which contain fungal lignocellulolytic activities. This 
cluster of genes is also negatively correlated with nearly all of the abundant bacterial CAZyme 
transcripts. Another striking cluster includes 15 bacterial CAZyme families (Figure 10, label B) 
that are highly correlated with one another. These families are associated with cleavage of beta- 

Figure 9. Phylum-level fungal composition from 
ribosomal RNA gene amplicon sequencing. Data 
are presented as plot averages (n = 3). From [4]    



and alpha-galactosidic bonds, glycogen binding, and beta- and alpha-glucosyltransferase activity 
(GH2, GH3, GH13, GH15). This same cluster is also negatively correlated with both the 
eukaryotic CAZyme cluster (A), and a cluster of five eukaryotic and six bacterial CAZy families 
associated with xylan and chitin degradation (GH2, GH5, GH10, GH16; Figure 10, label C), 
which represent multiple xylan- and chitin-degrading enzymes [4]. 
 

 
Targeted MG facilitates down-selection of communities for shotgun MT investigation of 
functional processes 
 The current research direction for the SFA routinely exploits the integrated use of targeted 
MG and shotgun MTs.  The research direction emphasizes discovery of microbial processes that 
create substantial variation in carbon flow under the same environmental 

Figure 10. CAZyme transcript abundance correlation heatmap. The co-expression of many CAZymes in the 
metatranscriptomes illustrates that this approach is able to detect complex patterns of co-expression among 
carbohydrate-active genes. Pairwise comparisons of the 100 most abundant CAZyme families shows that similar 
patterns of abundance among the forest floor samples are illustrated as shades of red, while those with differing 
abundance patterns are shaded blue. Stronger correlations, either positive (red) or negative (blue), are illustrated as 
darker shades, while pairwise Comparisons that show no co-variation are colored white. Hierarchical Clustering on X- 
and Y-axes was generated using complete linkage method. CAZyme abundance correlations were calculated using the 
Pearson method on Wisconsin double standardized abundance data. Box A indicates a group of eukaryote CAZyme 
families (with one bacterial family) that are co-expressed. Box B shows a group of bacterial CAZyme families that are 
also co-expressed, while the C Boxes include bacterial and fungal CAZyme families that are anti-correlated with those 
in Boxes A and B.  From [4]. 



conditions.  This requires screening large numbers (e.g. 100) of communities in order to 
sufficient cohorts that represent distinct functional states.  The functional states of interest are 
delineated by the abundance of dissolved organic carbon from plant litter decomposition. 
Contrasting functional states are described as “low” and “high” DOC, respectively, and 
functional means for the two states differ substantially (e.g., ~2-fold). 
 For each functional state cohort, targeted metagenomic sequencing of ribosomal genes (i.e., 
taxonomic profiling) is combined with functional measurements for baseline characterization.  
The MG data provide a stepping stone to infer functional phenomena when there are sufficient 
phenotypic metadata available for distinctive taxonomic groups within each cohort.  The MG 
data are also useful in down-selecting communities within each cohort for shotgun MT profiling.   
 With this approach, the SFA has screened 1600 microcosm decomposer communities 
(derived from over 400 natural soil samples), down-selected 500 for targeted MG sequencing, 
and further down-selected 78 for MT profiling.  This effort has included decomposition 
experiments with litter from 4 different types of plants in order to discover common bacterial 
processes that can create different functional states regardless of plant litter type.  An example of 
the MG data was presented in the BSSD 2019 Performance Metric Q1 report.  MT data are 
adding depth to inferences from the MG data by demonstrating distinctive functional profiles for 
cohorts representing contrasting functional states.  In broad terms, MT data show significant 
changes in the number and expression levels of CAZymes associated with the high and low DOC 
functional states.  Results from these studies are forthcoming in papers in different stages of peer 
review and preparation for journal submission.  
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Figure 11.  Volcano plot showing differential gene expression of decomposer communities (n=9 
per cohort) that represent distinct patterns of carbon flow (measured as Dissolved Organic 
Carbon abundance) from 44 days of pine leaf litter decomposition in laboratory microcosms.  
The dashed line is the p-value threshold, corrected for multiple testing.  Points below the line 
represent gene families with significant differences in expression. 



 
 
Bibliography 
 
1. Weber, C.F., M.M. Balasch, Z. Gossage, A. Porras-Alfaro, and C.R. Kuske, Soil fungal 

cellobiohydrolase I gene (cbhI) composition and expression in a loblolly pine plantation 
under conditions of elevated atmospheric CO2 and nitrogen fertilization. Appl Environ 
Microbiol, 2012. 78(11): p. 3950-7. 

2. Mueller, R.C., L. Gallegos-Graves, D.R. Zak, and C.R. Kuske, Assembly of Active 
Bacterial and Fungal Communities Along a Natural Environmental Gradient. Microb 
Ecol, 2016. 71(1): p. 57-67. 

3. Kuske CR, L.G.-G., Hesse C, Mueller R., 454 pyrosequencing shotgun 
metatranscriptomes and metagenomes from Duke pine plantation Free Air Carbon 
Dioxide Enrichment experiment. Unpublished data, 2012. 

4. Hesse, C., M.R. C, M. Vuyisich, L. Gallegos-Graves, C.D. Gleasner, D.R. Zak, and K.C. 
R, Forest floor community metatranscriptomes identify fungal and bacterial responses to 
N deposition in two maple forests. Front Microbiol, 2015. 6: p. 337. 

5. Albright, M.B.N., R. Johansen, D. Lopez, V. Gallegos-Graves, B. Steven, C.R. Kuske, 
and J. Dunbar, Short-Term Transcriptional Response of Microbial Communities to 
Nitrogen Fertilization in a Pine Forest Soil. Appl Environ Microbiol, 2018. 84(15). 

6. Kuske, C.R., R.L. Sinsabaugh, L.V. Gallegos-Graves, M. Albright, R. Mueller, and J. 
Dunbar, Simple measurements in a complex system: Microbial community structural and 
functional responses to nitrogen amendment in a Pinus taeda forest. Ecosphere, 2019. In 
press. 

7. Steven, B., C. Hesse, J. Soghigian, V. Gallegos-Graves, and J. Dunbar, Simulated 
rRNA/DNA Ratios Show Potential To Misclassify Active Populations as Dormant. Appl 
Environ Microbiol, 2017. 83(11). 

8. Berthrong, S.T., C.M. Yeager, L. Gallegos-Graves, B. Steven, S.A. Eichorst, R.B. 
Jackson, and C.R. Kuske, Nitrogen fertilization has a stronger effect on soil nitrogen-
fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol, 
2014. 80(10): p. 3103-12. 

9. Dunbar, J., S.A. Eichorst, L. Gallegos-Graves, S. Silva, G. Xie, N. Hengartner, B.A. 
Hungate, R.B. Jackson, D.R. Zak, R. Vilgalys, R.D. Evans, C.W. Schadt, J.P. Megonigal, 
and C.R. Kuske, Common bacterial responses in six ecosystems exposed to ten years of 
elevated atmospheric carbon dioxide. Environ Microbiol, 2012. 

10. Mueller, R.C., M.M. Balasch, and C.R. Kuske, Contrasting soil fungal community 
responses to experimental nitrogen addition using the large subunit rRNA taxonomic 
marker and cellobiohydrolase I functional marker. Mol Ecol, 2014. 23(17): p. 4406-17. 

11. Weber, C.F., R. Vilgalys, and C.R. Kuske, Changes in Fungal Community Composition 
in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil 
Horizon. Front Microbiol, 2013. 4: p. 78. 

12. Hesse, C.N., T.J. Torres-Cruz, T.B. Tobias, M. Al-Matruk, A. Porras-Alfaro, and C.R. 
Kuske, Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive 
fungal taxa from temperate pine forest soil. Mycologia, 2016. 108(6): p. 1082-1090. 

 


