Kondo Effect and Non-Fermi Liquid Behavior in Dirac Materials

Enrico Rossi
College of William and Mary

Work supported by

Quantum and Dirac Materials for Energy Applications Conference, Santa Fe, NM. March 8–11 2015
Collaborators

Kondo Effect in Dirac Materials

Alessandro Principi

Giovanni Vignale

University of Missouri

Effect of Spin-orbit coupling on impurity bound states in superconductors

Junhua Zhang

Younghyun Kim

Roman Lutchyn

William and Mary

University of California Santa Barbara

Microsoft Research, Station Q
Dirac Materials

2D Dirac Materials

Graphene

\[\mathcal{H} = v_F \mathbf{p} \cdot \sigma \]

3D Dirac Materials

3D Graphene and Weyl Semimetals

\[\mathcal{H} = v_F \mathbf{p} \cdot \sigma \]
Kondo Effect

\[\rho(T) = \rho_0 + bT^5 - a \ln(T) \]

There is a crossover temperature, \(T_K \), below which the coupling between the conduction electrons and the dynamical magnetic impurity grows non-perturbatively.

\(T < T_K \) Formation of a many-body singlet

For standard case

\[T_K = D e^{-\frac{1}{JN(0)}} \]

\(N(0) \propto \epsilon^\alpha \)

Pseudogap Kondo problem

Experimental evidence

Graphene

Theoretical approach

\[H = H_{DM} + H_{\text{imp}} \]

\[H_{DM} = \hbar v_F \hat{c}^\dagger_{k\sigma} (k \cdot \tau_{\sigma\sigma'} - \mu) \hat{c}_{k\sigma'} \]

\[H_{\text{imp}} = J \sum_{r,R} \hat{c}^\dagger_{r\sigma} \tau_{\sigma\sigma'} \hat{c}_{r\sigma'} \cdot S \delta(r - R) \]

Large-N expansion

\(\mathbf{S} \) is expressed in terms of auxiliary fermionic operators “f” satisfying the constrain

\[n_f = \sum_\sigma f^\dagger_\sigma f_\sigma = 1. \]

Then

\[H_{\text{imp}} = J \sum_{k,k',\sigma} \hat{c}^\dagger_{k\sigma} \hat{c}_{k'\sigma'} f^\dagger_{\sigma'} f_\sigma \]

The interaction is decoupled via the mean-field

\[S \sim \sum_{k,\sigma} \langle f^\dagger_\sigma \hat{c}_{k\sigma} \rangle \]

And the constrain on \(n_f \) is enforced via a Lagrange multiplier \(\mu_f \)
Determination of T_K

The field “s” and the Lagrange multiplier are obtained via the self-consistent equations:

\[
\int_{-D-\mu}^{D-\mu} d\varepsilon \frac{n_F(\varepsilon)(\varepsilon - \mu_f)N(\varepsilon + \mu)}{(\varepsilon - \mu_f)^2 + (\pi |s|^2 N(\varepsilon + \mu)/2)^2} = -\frac{1}{J}
\]

\[
\int_{-D-\mu}^{D-\mu} d\varepsilon \frac{n_F(\varepsilon) |s|^2 N(\varepsilon + \mu)}{(\varepsilon - \mu_f)^2 + (\pi |s|^2 N(\varepsilon + \mu)/2)^2} = 1
\]

We identify T_K as the highest T for which the two self-consistent equations admit a solution.
Scalings for T_K

At the Dirac point $\mu = 0$

3D

$$T_K = D \frac{\sqrt{3}}{\pi} \sqrt{1 - \frac{2}{N(D)J}}$$

$$J_{cr} = \frac{2}{N(D)}$$

2D

$$T_K = \frac{D}{\ln(4)} \left[1 - \frac{1}{N(D)J} \right]$$

$$J_{cr} = \frac{1}{N(D)}$$

Away from Dirac point $\mu \neq 0$

In the limit $k_B T_K \ll \mu \ll D$ and $J \lesssim J_c$

3D

$$T_K = D \exp \left[\frac{1 - 2/(JN(D))}{2\mu^2/D^2} \right]$$

2D

$$T_K = \kappa(\mu) \exp \left[\frac{1 - 1/(N(D)J)}{[\mu/D]} \right]$$

where $\kappa(\mu) = \mu^2/D$ [$\kappa(\mu) = D$] for $\mu > 0$ [$\mu < 0$].

A. Principi, G. Vignale, ER, arXiv 1410.8532

Scalings for T_K: general case

3D

2D

A. Principi, G. Vignale, ER, arXiv 1410.8532
Kondo resistivity: \(\rho_K \)

In the limit \(T = 0 \)

3D

\[
\rho_K(T = 0) = \frac{\hbar}{e^2} \left(\frac{32 g_s}{3 \pi^2 N_w^2} \right)^{1/3} \frac{n_{\text{imp}}}{n^{4/3}}
\]

Same scaling as for the case of non magnetic long-range scatterers

AA Burkov, MD Hook, L. Balents PRB (2011)

2D

\[
\rho_K = \frac{\hbar}{e^2} \frac{4}{\pi N_w} \frac{n_{\text{imp}}}{n}
\]

P.S. Cornaglia et al, PRL (2009)

At finite \(T \)

\[
\rho(T) \simeq -\rho_0 \frac{\pi^2}{2} [J \nu(\mu)]^3 S(S + 1) \ln \left(\frac{k_B T}{D} \right)
\]

A. Principi, G. Vignale, ER, arXiv 1410.8532
Interplay of scalar and magnetic potential

\[H_{\text{imp}} = U \sum_{r,R} \hat{c}_{r\sigma}^\dagger \hat{c}_{r\sigma} \delta(r-R) + J \sum_{r,R} \hat{c}_{r\sigma} \tau_{\sigma\sigma'} \hat{c}_{r\sigma'} \cdot S \delta(r-R) \]

d-wave superconductors

The scalar part of the impurity potential modifies the LDOS.

It modifies \(T_K \) uniformly across the sample.

\(T_K \) is uniform across the sample and well defined.

If the short range scalar potential is due to *other* impurities removed from the magnetic impurity it has little consequence.

Long-range disorder

Charge impurities are a common source of disorder. However they can often be treated as short range disorder. Things are different in most Dirac materials

- Linear dispersion \Rightarrow vanishing DOS close to Dirac points
 \Rightarrow poor screening of the disorder due to charge impurities

 The disorder is renormalized but retains its long-range character

- Charge impurities therefore cause strong, long-range, *density* inhomogeneities close to Dirac point

- Linear dispersion
 - Strong, long-range, *density inhomogeneities*

 Strong, long-range, inhomogeneities of the DOS
Interplay of scalar and magnetic potential: long-range scalar potential

Charge impurities

Not important in superconductors: well screened

In non-superconducting Dirac materials, due to vanishing DOS they induce strong, long-range, carrier density inhomogeneities

Experiment

Theory

Shifts bottom of the band
Fermi energy

2D
LDOS $\sim n$

3D
LDOS $\sim n^{2/3}$

Fluctuations of n imply fluctuations of LDOS

ER, S. Das Sarma, PRL. (2008)

Effect of long-range scalar disorder

For simplicity we assume a Gaussian distribution for the density probability

\[P_n(n) = \exp \left[-\frac{(n - \bar{n})^2}{2\sigma_n^2} \right] / \sqrt{2\pi\sigma_n}. \]

Using the relation between \(T_K \) and \(\mu \) and the fact that

in 3D: \(\mu \sim n^{1/3} \)

in 2D: \(|\mu| \sim n^{1/2} \)

Instead of a single value of \(T_K \) we have a distribution of \(T_K \)

\[P^{(3D)}(T_K) = \frac{3D^3}{8\sqrt{\pi} \sigma^3 \mu T_K} \left[\frac{(1 - J_c/J)^3}{\ln^5(k_B T_K/D)} \right]^{1/2} e^{-\frac{(\mu^3 - \bar{\mu}^3)^2}{2\sigma^6 \mu}} + e^{-\frac{(\mu^3 + \bar{\mu}^3)^2}{2\sigma^6 \mu}} \]

\[P^{(3D)} \propto \frac{1}{T_K[\ln(T_K)]^{5/2}} \]

\[P^{(2D)}(T_K) = \frac{\sqrt{2}D^2}{\sqrt{\pi} \sigma^2 \mu T_K} \left[\frac{(1 - J_c/J)^2}{\ln^3(k_B T_K/D)} \right] e^{-\frac{(\mu^2 - \bar{\mu}^2)^2}{2\sigma^4 \mu}} + e^{-\frac{(\mu^2 + \bar{\mu}^2)^2}{2\sigma^4 \mu}} \]

\[P^{(2D)} \propto \frac{1}{T_K[\ln(T_K)]^3} \]

Agrees with scaling obtained from numerical results by V.G. Miranda et al PRB (2014)

A. Principi, G. Vignale, ER, arXiv 1410.8532
For low T_K the scaling

$$\frac{1}{[T_K \ln^3(T_K)]}$$

very similar to

$$\frac{1}{(T_K^{0.8})}$$

obtained by fitting numerical results by V.G. Miranda et al. PRB (2014)

A. Principi, G. Vignale, ER, arXiv 1410.8532
LDOS fluctuations close to MIT

Typically in materials other than Dirac materials is difficult to obtain strong, long-range fluctuations of the LDOS. A similar situation can be obtained close to a metal-insulator transition. In this case the probability distribution for the LDOS ρ is log-normal

$$P(\rho) = \frac{1}{\sqrt{4\pi u}} \frac{1}{\rho} \exp \left\{ - \frac{1}{4u} \ln^2 \left(\frac{\rho}{\rho_0} e^u \right) \right\}.$$

In this case we also get a singular distribution for T_K

$$P(T_K) = (4\pi u)^{-1/2} \frac{1}{T_K \ln(\epsilon_F/T_K)} \exp \left\{ - \frac{1}{4u} \ln^2 [\rho_0 I e^{-u} \ln(\epsilon_F/T_K)] \right\}$$

V. Dobrosavlyevic, T.R. Kirkpatrick, G. Kotliar

PRL (1992)

However:

- **The conditions are difficult to achieve**

- **The effects are weaker than in Dirac Materials**
Free carriers even for $T \rightarrow 0$

Considering that

$$P^{(3D)} \propto \frac{1}{TK[\ln(TK)]^{5/2}}$$

$$P^{(2D)} \propto \frac{1}{TK[\ln(TK)]^{3}}$$

We see that at any is a considerable fraction of the sample for which T_k is very small.

At any T, no matter how low, there is a significant fraction, n_{fr}, of carriers not bound to the impurities.

We can obtain such fraction at temperature T by calculating the integral

$$n_{fr}(T) = \int_{0}^{T} dT_k P(T_k)$$

And we find, for $T \rightarrow 0$

$$n_{fr}(T) \propto |\ln(T)|^{-3/2} e^{-\bar{n}^2/(2\sigma_n^2)}$$

Even for $T \rightarrow 0$ n_{fr} is significant.
Non-Fermi liquid behavior

Consider the magnetic susceptibility. We have

\[\chi_m \propto \frac{n_{fr}(T)}{T} \]

And therefore we find:

3D

\[\chi_m \propto \frac{1}{T|\ln(T)|^{3/2}} \]

2D

\[\chi_m \propto \frac{1}{T|\ln(T)|^{2}} \]

\(\chi_m \) diverges for for \(T \to 0 \)

Strong Non-Fermi-Liquid Behavior

\(\chi_m \) also does not follow the Curie-Weiss law \((1/T)\) it diverges more slowly

P. Nozieres (1974)

A. Principi, G. Vignale, ER, arXiv 1410.8532
Impurity-bound states in SCs with SOC: motivation

A magnetic impurity can create states with energies within the gap due to the superconducting pairing. These states are spatially bound to the impurity (Yu-Shiba-Rusinov). A chain of impurities can create a band of these states.

In the presence of SOC a FM chain on SC with SOC appears to have Majorana states at the ends.

Measured using STM for isolated impurities

Shuai-Hua Ji et al. PRL (2008)
Impurity-bound states in SCs with SOC: model

\[H = H_{SC} + H_{imp} \]

\[H_{SC} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^\dagger [\tau_z \otimes (\xi_{\mathbf{p}} + \alpha l_{\mathbf{p}} \cdot \mathbf{\sigma}) + \tau_x \otimes (\Delta_0(\mathbf{p})\sigma_0 + \Delta_1 \cdot \mathbf{\sigma})] \psi_{\mathbf{p}} \]

\[H_{imp} = \hat{U}(|\mathbf{r} - \mathbf{R}|)\tau_z \otimes \sigma_0 + \hat{J}(|\mathbf{r} - \mathbf{R}|)\tau_0 \otimes \mathbf{S} \cdot \mathbf{\sigma} \]

Let

\[G_{SC} \equiv [E - H_{SC}]^{-1} \]

Then the Schrödinger equation for the Hamiltonian \(H \) can be rewritten as (F. Pientka, L. I. Glazman, and F. von Oppen, PRB (2013))

\[\psi(\mathbf{p}) - G_{SC}(E, \mathbf{p}) \int_{\mathbf{p}'} H_{imp}(|\mathbf{p} - \mathbf{p}'|)\psi(\mathbf{p}') = 0. \]

This equation admits nontrivial solutions for values of \(E \) such that

\[\det[1 - G_{SC}(E, \mathbf{p})H_{imp}(|\mathbf{p} - \mathbf{p}'|)] = 0. \]

For values of \(|E| < \Delta\) we have bound states (Shiba states)
Impurity-bound states in SCs with SOC: results

s-wave superconductor

\[
\frac{|E_{l=0,1}|}{\Delta_s} = \frac{\gamma^2 - J_0^2 J_1^2 \pm \gamma^{\frac{3}{2}} \sqrt{(J_0^2 - J_1^2)^2 + (\gamma - 1)(J_0 - J_1)^4}}{\gamma^2(1 + (J_0 - J_1)^2) + 2\gamma J_0 J_1 + J_0^2 J_1^2}
\]

\[
\gamma = 1 + \tilde{\alpha}^2
\]

\[
\frac{|E_{l=-1}|}{\Delta_s} = \frac{1 - J_1^2}{1 + J_1^2}
\]

As expected SOC mixes states with different \(l \). It also causes an interplay of \(U \) and \(J \)

Y. Kim, J. Zhang, ER, R. Lutchyn
Impurity-bound states in SCs with SOC: results

Dependence on θ

s-wave

p-wave

SOC induces strong θ dependence that can be used to tune the fermion parity of the bound state
Conclusions

• Obtained scaling of T_K and Kondo resistivity in 3D Dirac materials

$$\rho_K(T = 0) \propto \frac{n_{\text{imp}}}{n^{4/3}}$$

• Interplay of long-range disorder and Kondo effect in Dirac materials gives rise to a distribution of Kondo temperatures. Close to Dirac point:

$$P^{(3D)} \propto \frac{1}{T_K [\ln(T_K)]^{5/2}}$$

$$P^{(2D)} \propto \frac{1}{T_K [\ln(T_K)]^{3}}$$

• Low T tail of $P(T_K)$ induces NFL

$$\chi_m \propto \frac{1}{T |\ln(T)|^{3/2}}$$

$$\chi_m \propto \frac{1}{T |\ln(T)|^{2}}$$

• Study effect of SOC on impurity bound states in 2D superconductors

SOC strongly affects the bound states created by isolated impurities in superconductors

Can change parity of Shiba state
References

• A. Principi, G. Vignale, ER, arXiv 1410.8532 (2014)

For more see:

http://physics.wm.edu/~erossi/publications.html