Ultrafast Probes for Dirac Materials

Dmitry Yarotski

Center for Integrated Nanotechnologies
Materials Physics and Applications Division
Los Alamos National Laboratory

Quantum and Dirac Materials Workshop
March 8-11, 2015, Santa Fe, NM, USA
Collaborators and Acknowledgements

LANL Staff: Rohit Prasankumar, Antoinette Taylor, Abul Azad, Steve Gilbertson, George Rodriguez, Tomasz Durakiewicz, Aditya Mohite, Andrew Dattelbaum, Quanxi Jia, Stuart Trugman, Jian-xin Zhu

LANL Postdocs: Rolando Valdes Aguilar, Yaomin Dai, Keshav Dani, John Bowlan, Jingbo Qi, Jinho Lee, Georgi Dakovski

Brookhaven National Laboratory: Genda Gu, Ruidan Zhong

Rutgers University: Matthew Brahlek, Namrata Bansal, Seongshik Oh

Rice University: Sina Najmaei, Jun Lou, Pulickel M. Ajayan,

We gratefully acknowledge the support from the U.S. Department of Energy through the Center for Integrated Nanotechnologies, LANL LDRD Program, and the UC Office of the President under UC Lab Fees Research Program
Why Ultrafast Spectroscopy?

Ultrafast (10-100 fs) spectroscopy can resolve non-equilibrium dynamics (quasiparticle, transport etc.) at the fundamental time and spatial scales of electronic and nuclear motion.
Ultrafast Coherent Order Manipulation

Manipulation of order parameters ◆ Photoinduced phase transitions ◆ New non-thermally accessible phases.

DyFeO$_3$

T = 95 K

Faraday rotation (deg.)

Time delay (ps)

Vicario, Nature Phot. 2013

Above-bandgap excitation (arbitrary units)

Vibrational excitation

Fausti, Science 2011
Graphene: The Slice that Started It All

- **Graphene**: a basis for 0D buckyballs, 1D carbon nanotubes, and 3D graphite
- Quasiparticles are described by relativistic Dirac equation – *Dirac Material*
- Massless Dirac quasiparticles exhibit novel transport properties (high mobility, excellent conductivity)

Understanding the non-equilibrium behavior of photoexcited graphene is important for science and applications in detectors, solar cells and displays.

Bae et al. *Nat. Nanotech*. 2010

Bonaccorso et al. *Nat. Photonics* 2010
Quasiparticles in Graphene

Linear dispersion near Dirac point gives for relativistic quasiparticles:

\[E \approx \hbar v_F k \quad E_{F}^{e,h} \sim \hbar v_F \sqrt{\pi N_{e,h}} \]

Are photoexcited quasiparticles in graphene relativistic too?

Two types of optical conductivity in graphene:

Interband is *constant* in a wide spectral range (flat 2.3% absorption)

Intraband differs for linear and parabolic bands

Measuring conductivity change after photoexcitation as function of \(N \) will indicate whether non-equilibrium quasiparticles are relativistic

We measure the photoinduced conductivity change:

$$\Delta \sigma = (\sigma_{\text{inter}} + \sigma_{\text{intra}})_{\text{Photo-excited}} - (\sigma_{\text{inter}} + \sigma_{\text{intra}})_{\text{Intrinsic doping}}$$

The change in conductivity, as measured in a visible pump-probe experiment, is dominated by the intraband component!
- 1.55 eV pump, 1.77 eV probe experiments
- Fermi energy after photoexcitation = 700 meV (for $N \sim 3.1 \times 10^{13}/cm^2$)
- Decay dynamics are qualitatively identical for all photon energies (1.74-2.42 eV)
- Electron-electron thermalization within <100 fs – Amplitude gives optical $\Delta \sigma$
- Electron-phonon thermalization within 1.4 ps
Hot Dirac Fermions in Graphene

Our experiment reveals the relativistic nature of photoexcited Dirac quasiparticles in graphene

Reflectivity (or conductivity) change follows \(\sqrt{N} \) from \(E_{F}^{e,h} \sim \hbar v_{F} \sqrt{\pi N_{e,h}} \)

Time-Resolved ARPES

High Harmonic Generation – Extreme nonlinear frequency upconversion

STATIC ARPES:
- probes electronic structure in both E and k domains

DYNAMIC ARPES:
- probes transient electronic structure changes in both E and k domains
- Fills excited states to reveal their structure

Photoexcited Fermi-Dirac Distribution in Graphene

- Is the Fermi-Dirac distribution of photoexcited carriers in graphene more like a metal (same μ_e and μ_h) or like a semiconductor (separate μ_e and μ_h)?

- Do processes like Auger recombination influence the dynamics at early times?

- Time-resolved photoemission experiments show that, in our samples, the photoexcited carriers retain separate F-D distributions for a few hundred femtoseconds.
Recombination of Electronic States in Graphene

- Ultrafast pump/probe experiment on CVD grown graphene
 - 30 fs IR pump and sub-10 fs, 30-eV probe via HHG
 - measure tr-ARPES
- A short-lived distribution of carriers and holes is formed after optical excitation.
- Separate populations are:
 - semi-conductor like ($\mu^* \neq 0$) at early delays
 - metallic like ($T^* \neq 0$) at later times
Topological Insulators

Materials with exotic surface states
- Linear $E-k$ dispersion
- TRS protection against scattering
- Locked spin-k relationship
- Majorana Fermions
- Spintronics, optoelectronics

- Real materials are not ideal – dopants/defects result in significant bulk interference
- THz spectroscopy provides the ability to separate the collective motion of charge carriers in bulk vs. surface states

* after A. Lanzara
Optical Pump Terahertz Probe

35 fs @ 800 nm
1 KHz, 2.5W

chopper

beamsplitters

ZnTe
teflon

spherical lens

sample in cryostat

polarizing beamsplitter

photodiodes

lock-in

\[E_{\text{sample}}(t) \]

\[\sigma_{\text{real}}(\omega) \quad \sigma_{\text{imag}}(\omega) \]

conductivity (\(\Omega \cdot \text{cm}^{-1} \))

Frequency (THz)

Fourier Transform

Extraxt Complex Conductivity

Complex Transmissivity & Fresnel Analysis

\[T(\omega) = \frac{E(\omega)_{\text{sample}}}{E(\omega)_{\text{ref}}} \frac{1+n_1}{1+n_1+\sigma(\omega)dZ_\omega} \]
Terahertz Conductivity of Bi$_2$Se$_3$

- **Low freq. spectra:**
 - Drude component: $1/\tau \sim 1$ THz
 - Bulk phonon: $\omega_0 \sim 1.9$ THz

- **Electron density consistent with**
 - $n_{surf} \sim 1.5 \times 10^{13}$ cm$^{-2}$

- **Drude term is thickness independent**
 - Surface.

- **Phonon is not → Bulk effect.**
Time-Resolved THz Spectroscopy

Fix THz gate delay at maximum and scan pump-probe delay

(a)

$\Delta E/E_{max}$

Bi$_2$Se$_3$

10 QL 10 K

Pump-probe delay (ps)

(d)

$\Delta E/E_{max}$

Pump-Probe Delay (ps)

4 μJ/cm2

6 μJ/cm2

10 μJ/cm2

24 μJ/cm2

50 μJ/cm2

100 μJ/cm2

200 μJ/cm2
Photo-Induced Conductivity in Bi$_2$Se$_3$

Drude-Lorentz Model:

Well described by **single** carrier type

Carriers in 20 QL decay faster

Green: Drude (free electron).

Purple: Phonon.
Photo-Induced Drude Properties in 20 QL

Low Fluence: increase scat. rate -> increase T

High Fluence: increase plasma freq. -> decrease T
At high fluence, phonon shifts - similar to increase in temperature.

Highest lattice temperature ~ 200 K
- Plasma frequency doesn’t change as much as in 20 QL sample.
- Scattering rate does, so the sample becomes more transparent at higher fluence.
Physical Picture

Phonon-induced bulk-to-surface scattering is not effective below $T_D=180\, K$

Thin 10 QL films are similar to graphene:
- Surface electrons dominate, but $\Delta \omega_p$ is small
- Γ_{surf} increases due to e-h scattering and temperature rise ($\sim 200\, K$) due to e-ph relaxation

Thick 20 QL films:
- Surface response dominates at low fluences
- High fluences result in large number of bulk carriers \Rightarrow higher $\Delta \omega_p$ and Γ_{bulk}
- Bulk electrons decay in $\sim 5\, \text{ps}$
- Surface electrons decay in 20 ps preserving high scattering rates

Hot surface carriers can be accessed independently from the bulk ones using THz spectroscopy

Topological Crystalline Insulators

Liang Fu

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 5 October 2010; revised manuscript received 31 December 2010; published 8 March 2011)

TI → Time Reversal Symmetry

TCI → Crystalline Symmetry

Metallic states on High Symmetry surfaces!

(001) surface

Dirac Point

Energy (eV)

$E(k)$ vs. k
Topological Phase Transition in $\text{Pb}_{1-x}\text{Sn}_x\text{Se}$

P-induced TPT in $\text{Pb}_{1-x}\text{Sn}_x\text{Se}$

Xi et al. PRL 113, 096401 (2014)
Topological Phase Transition in $\text{Pb}_{1-x}\text{Sn}_x\text{Te}$

PbTe

Trivial

Doping-driven Topological phase transition

SnTe

TCI

$\text{Pb}_{1-x}\text{Sn}_x\text{Te}$

Can we use UOS to find the evidence for TPT with temperature and doping?

$X_c = 0.4$ at 5K

Yan et al. PRL 112, 186801 (2014)
Preliminary Results and Future Directions

Doping-induced TPT at 5 K

- Strong electron-phonon coupling in TI state – common to all TI
- Investigate the effect of magnetic field using THz spectroscopy to probe conductivity of photoexcited carriers.
- Apply circularly polarized pump to break TRS and study the dynamics of the k-spin locking process.

Temperature-induced TPT at $x=0.4$

- Coherent phonon
- Intervalley scattering
- e-ph coupling

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pb${0.8}$Sn${0.2}$Te</th>
<th>Pb${0.7}$Sn${0.3}$Te</th>
<th>Pb${0.6}$Sn${0.4}$Te</th>
<th>Pb${0.5}$Sn${0.5}$Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 K</td>
<td>Normalized $\Delta R/R$</td>
<td>Normalized $\Delta R/R$</td>
<td>Normalized $\Delta R/R$</td>
<td>Normalized $\Delta R/R$</td>
</tr>
</tbody>
</table>

X_c ?
Temperature Dependence of Decay Amplitudes

Pb$_{0.6}$Sn$_{0.4}$Te

- $A_1 (10^{-5})$: Decreases with increasing temperature.
- $A_2 (10^{-5})$: Increases with increasing temperature.
- $A_3 (10^{-5})$: Slightly decreases with increasing temperature.
- τ_3 (ps): Peaks around T_c.

T_c?