Generative Modeling for Machine
Learning on the D-Wave



Generative Models

* Two approaches in machine learning:
— Discriminative: Learn P(y|x)
— Generative: Learn P(y,x)

* Discriminative models are easier to train, but
generative models are more powerful because
in some sense it “understands” the world
better.



Boltzmann Machines: A generative
Model

Energy based model. Assign a scalar energy value to
configurations of interest

Associate lower energy with plausible configurations
Probability given by o(—E(z))

Z

Consists of visible units (data) and hidden units (capture
dependencies between data)

General Boltzmann machines have
arbitrary connectivity. Hard to train.




Restricted Boltzmann Machines

e Restrict connections to occur only between
pairs of visible and hidden units. No
connections among visible units or hidden

units.

* h’s are independent given v and v’s are
independent given h (markov property)



Restricted Boltzmann Machines

* Energy given by () 2 D
0’0 0‘0
E(v,h) = =b'v—c'h—h'Wu

. Conditional independence implies:

p(hlo) = [T p(hilo)

p(vlh) =] | p(v;|n)

* Once we know the parameters (b,c, W)
generating data is easy




Learning Parameters: RBM Training

* Learn parameters that maximize log-likelihood
of data. Assuming data independence we

have

arg max £(w,b, c) log P(v
g(wbc) Z 5

 The gradient is given by
Vol(0) = Z]Ep(mv) Vo(—=E(v', h)]

- nEp(v,h) (VQ(_E(Uta h))



RBM Training

Vol(0) = > Epn) [Vo(—E (', h)]
t=1
— nEp(y,n) (Vo(—E(v', h))
Gradient depends on joint distribution

Intractable since it involves the partition
function Z

To avoid this, use Gibb’s sampling to sample
from joint (boltzmann distribution). Involves
running a markov chain to convergence



Practical Ways to Train RBM

* |nstead of running MCMC to convergence, run
it for just a few steps. Sample from this
distribution (Contrastive Divergence)

* |n practice, k (number of steps) is < 100. Some
times even 1 step works well |
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D-Wave as a Boltzmann Sampler

* D-Wave is a physical boltzmann machine

* |n theory, should give samples from a
ooltzmann (parametrized by some effective
temperature) distribution after annealing

* |dea: instead of Gibbs’s sampling map RBM
into D-Wave and sample from solution states



Mapping RBM into D-Wave

e RBM'’s are full bipartite graphs. D-Wave has
sparse connectivity.

* Using logical qubits, can implement upto
48x48 bipartite graph. Lots of qubits lost

* For this work, no qubit chaining. Map each

pixel of the training image directly onto a
qubit



Chimera Restricted RBM
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Same embedding as in Benedetti et al (2015)
and Doulin et al (2014)



Mapping binary RBM to Ising

e RBM’s are binary {0,1} units. To map this to
Ising model where units are in {+1,-1} we use
the following transformation described in
Domoulin (2014)
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Experiments

e Basic Outline (classical side):
— Initialize visible units and hidden units
— Clamp visible units to a training sample
— Run few steps of contrastive divergence for gradient
— Update parameters
— Run till convergence

* On the D-Wave,same process except we do not
run contrastive divergence, but sample from
solution states



Data

MNIST (handwritten digits 0-9)

* Train on 1000 digits. Learn features. And then
see if the model can generate it's own
representations.




D-Wave effective temperature,
parameter noise etc

* D-Wave effective temperature is different
from physical temperature. Estimate this via
sampling and then find a best fit

* Did not do any corrections for weight and bias
noise.

e Effective temperature also fluctuates during
training (Benedetti et al 2015). Did not corret
for this.
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Generated Images

Epoch 15 filters

Epoch 1 filters



CD-50

o BT I L G P I e pi.
COoOTaTTITrouv
DI DI I
roCCFgTogTo
TG oCoOToCsTaoT g
o e i it o' s i sadionik '« Y o
crT oS aovaTag
2 T T I P T I
NIV cuvococuvao
TCTOCTFTIOITTC
v 2 e plE < i\l vl iy al~ ol
Tg0CrrdYIHIH8DIS I

T UV IS TrIryrogos
o T oo T o
oo cCorogdgddag




CD-100
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D-Wave (expt-1)
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Filters are sparse due to sparse connectivity graph



D-wave (expt-2)
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D-Wave Expt 3




D-Wave observations

e Effective temperature and parameter noise
affect modeling

* However, limited connectivity isa much
bigger problem

— RBM'’s are robust to limited connections. But the
D-Wave has less than 1% of possible connections

on a complete bipartite graph.

— Qubit chaining can overcomes connectivity issues,
but then image has to be significantly down-
sampled.




