

Quantum interaction of a few particle system mediated by photons

Petr M. Anisimov

D-Wave Debrief April 27, 2017

UNCLASSIFIED

LA-UR-17-23498

Proposed work and goals

- Familiarize with D-Wave computing capabilities;
- Analyze a few particle system mediated by photons;
- Milestones:
 - a free space evolution of a single quantum particle; same for a photon state.
 - a photon-electron interaction in the context of x-ray free electron laser startup;
 - the capability limit how many electrons and photons could be included in the description?

UNCLASSIFIED

Quantum state evolution on D-Wave

- Familiarization with D-Wave capabilities has lead me to the conclusion that *it is not suitable to study evolution;*
- It is however appropriate for finding steady states of a system;
- 1st milestone could not be reached at the current level of understanding.

Photon-electron interaction

- X-ray FEL startup is described by Hamiltonian: $H = \frac{1}{2\bar{\rho}}\hat{p}^2 + \bar{\rho}(\hat{a}e^{i\theta} + \hat{a}^{\dagger}e^{-i\theta})$
- \hat{p} and $e^{i\theta}$ are electron operators; \hat{a}^{\dagger} photon creation operator
- Given quantum FEL parameter, $\bar{\rho} = 10$, what is a state of electrons and photons?

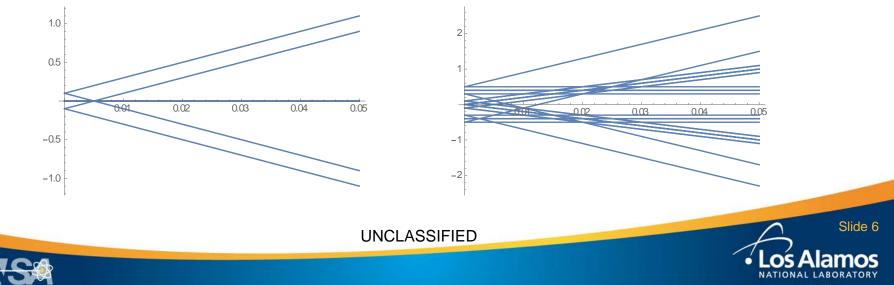
Assuming classical field such that $\hat{a}^{\dagger} \rightarrow \alpha^{*}$ and electron states with a momentum $k = \{-1,0,1\}$, our Hamiltonian is:

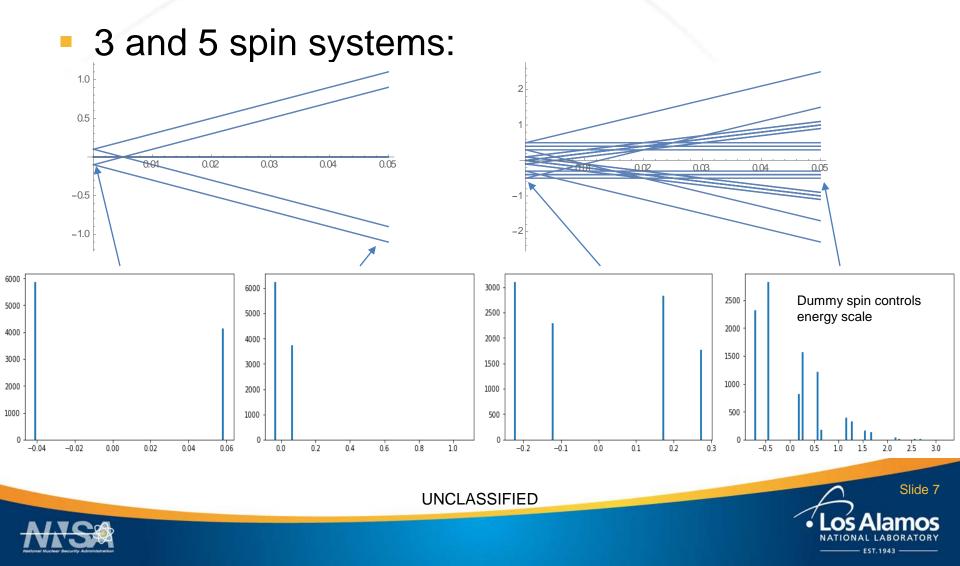
$$H = \begin{pmatrix} \frac{1}{2\bar{\rho}} & \bar{\rho}\alpha & 0\\ \bar{\rho}\alpha^* & 0 & \bar{\rho}\alpha\\ 0 & \bar{\rho}\alpha^* & \frac{1}{2\bar{\rho}} \end{pmatrix}$$

If a basis state could be represented by a spin operator then an Ising Hamiltonian will be:

$$H = \frac{1}{2\bar{\rho}}(s_1 + s_3) + \bar{\rho}\alpha(s_1s_2 + s_2s_3)$$

The resulting Hamiltonian spectrum for 3 and 5:



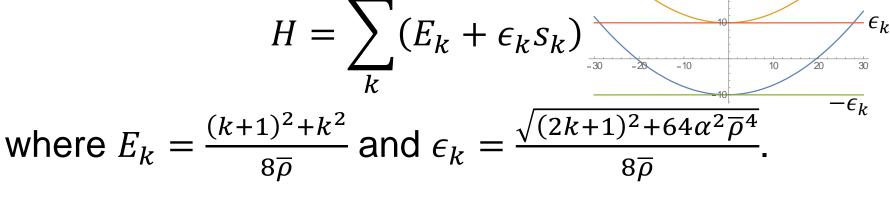


Let us represent
p̂ and *e^{iθ}* operators in a momentum basis:

 $\hat{p} = \sum_{k} k |k\rangle \langle k|$ and $e^{i\theta} = \sum_{k} |k+1\rangle \langle k|$ The electron interaction with a classical field becomes:

$$H = \frac{1}{2\bar{\rho}} \sum_{k} \left(\frac{(k+1)^2}{2} \left| k+1 \right\rangle \langle k+1 \right| + \frac{k^2}{2} \left| k \right\rangle \langle k \right| \right) + \bar{\rho} \alpha \sum_{k} \left(\left| k+1 \right\rangle \langle k \right| + \left| k \right\rangle \langle k+1 \right| \right)$$

We will thus relate a spin operator to each ksubspace:

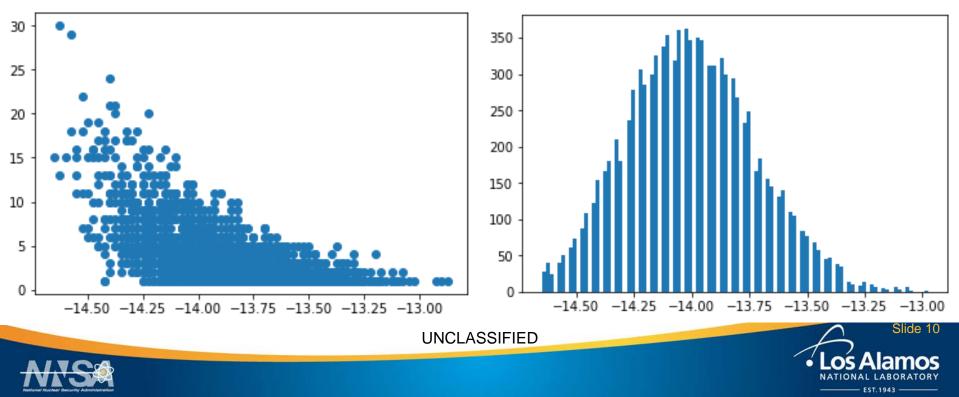


 $-\epsilon_k$

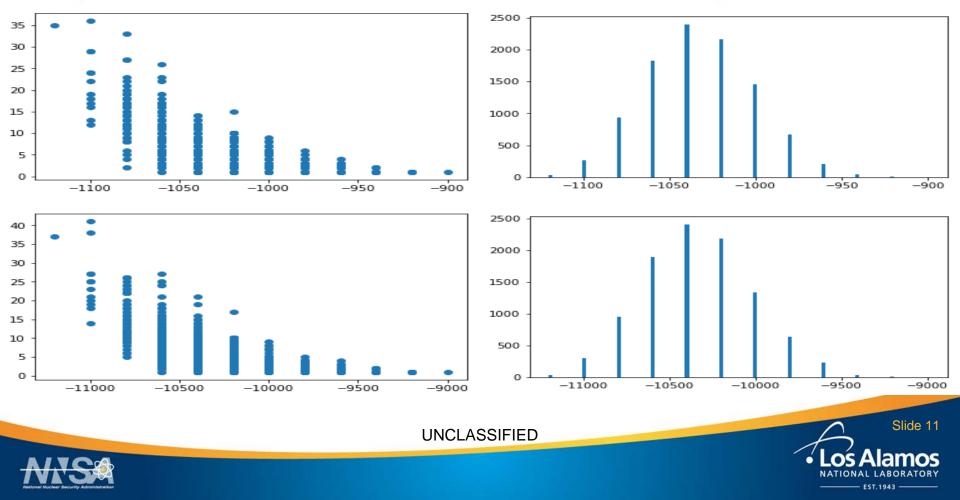
Slide 9

An expected soliton is $s_k = -1$ for all spins.

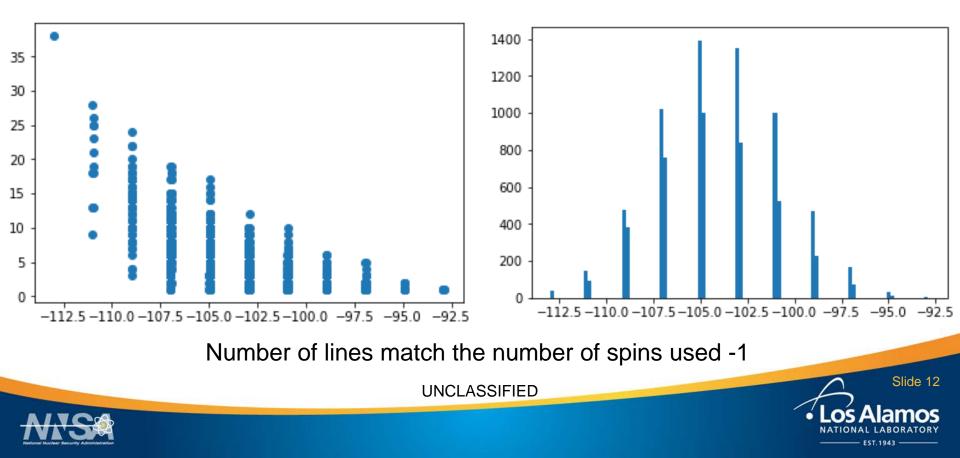
- Introducing a dummy spin, we can sample Boltzmann distribution beyond a ground state.
- In the absence of field and $k = \{-6, ..., 5\}$:



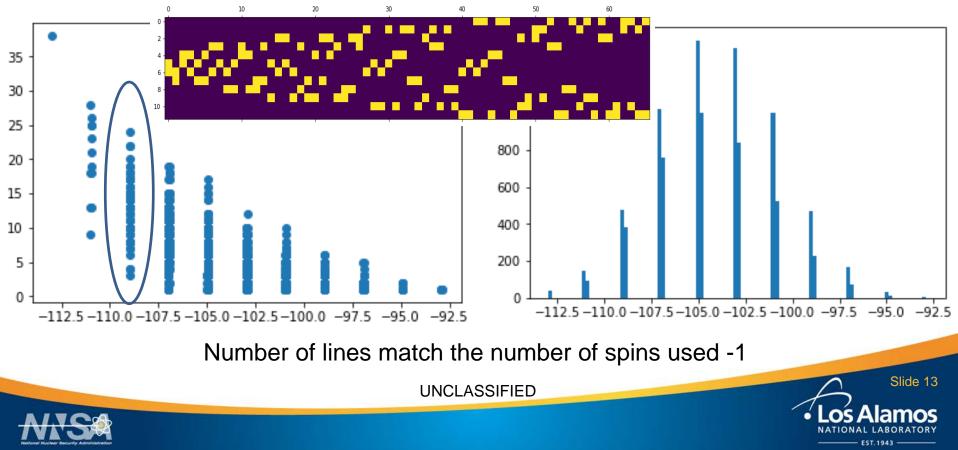
• Coherent field $\alpha = 1 \text{ or } 10$ saturates solutions:



• Coherent field less than 1, such as $\alpha = 0.1$, could be analyzed:



• Coherent field less than 1, such as $\alpha = 0.1$, could be analyzed:



Let us represent â[†] and â operators in a photon basis:

$$\hat{a}^{\dagger} = \sum_{n} \sqrt{n+1} |n+1\rangle \langle n|$$
 and $\hat{a} = \sum_{n} \sqrt{n+1} |n\rangle \langle n+1|$

The electron interaction with a classical field becomes:

$$H = \frac{1}{2\bar{\rho}} \sum_{k} k^2 |k\rangle \langle k| + \bar{\rho} \sum_{k,n} \sqrt{n} \left(|k+1,n-1\rangle \langle k,n| + |k,n\rangle \langle k+1,n-1| \right)$$

We will thus relate a spin operator to each ksubspace and each n-subspace:

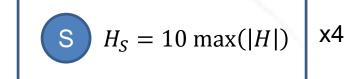
$$H = \frac{1}{2\bar{\rho}} \sum_{k} (2k+1)s_k^e + \bar{\rho} \sum_{k,n} \sqrt{n}s_k^e s_n^{ph}$$

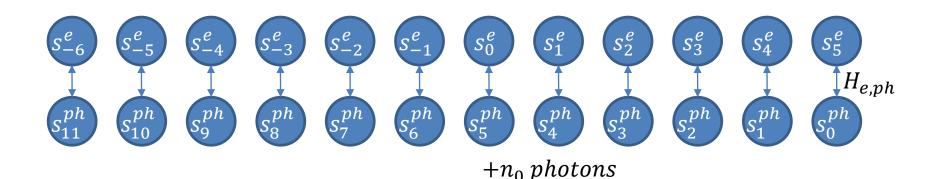
where acceptable solution should have s_k^e and s_n^{ph} antiparallel!

• Restriction k + n = const limits coupling to

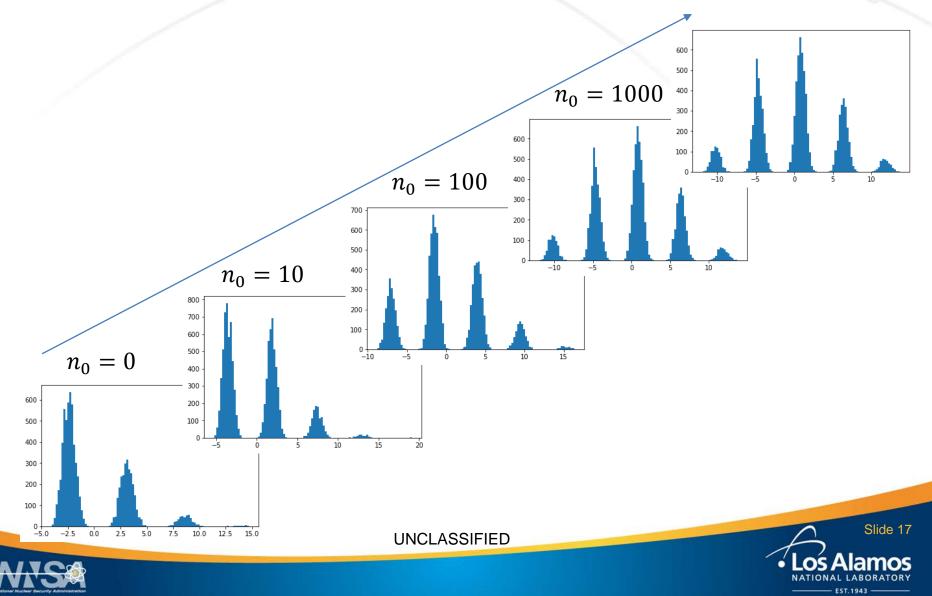
$$s_{k-1}^e \leftrightarrow s_{n+1}^{ph}, s_k^e \leftrightarrow s_n^{ph}, s_{k+1}^e \leftrightarrow s_{n-1}^{ph}$$

UNCLASSIFIED

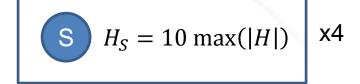




Antiparallel order is controlled by $C_{e,ph} = 6 \max(|H|)$



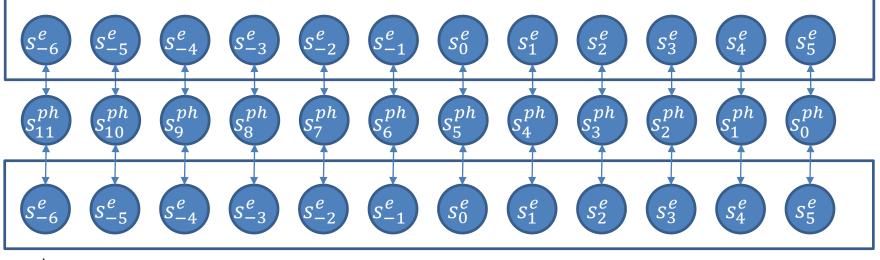
Photon-mediated interaction



Slide 18

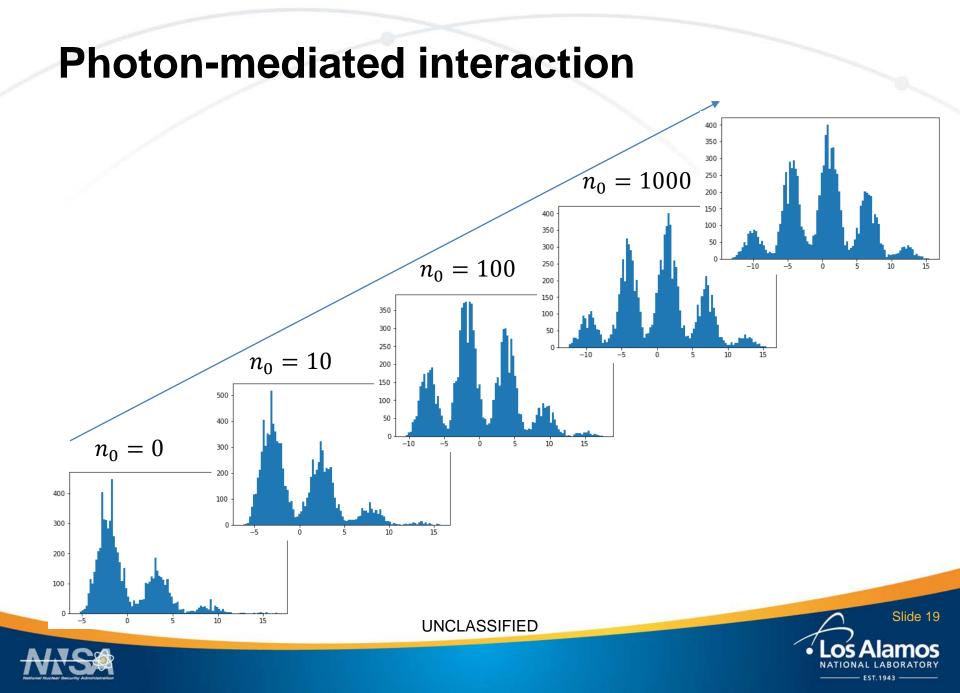
EST 1943

1st electron



2nd electron

UNCLASSIFIED



Conclusions

- We could not study a state evolution on D-Wave;
- Approach 1: Reports energy spectrum and states that are hard to relate to original task;
- Approach 2: Reports electron momentum distributions for coherent amplitude <0.1;
- Approach 3: Reports electron momentum distributions and corresponding photon distributions.

Conclusions

- Photon-mediated interaction could be analyzed:
 - Adding new electrons requires $n + \sum_i k_i = const$;
 - Successful study requires cloning momentum spins or photon spins in order to allow for $n + k \neq const$;
 - Interpretation of momentum and photon distributions requires additional time to understand.

