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ABSTRACT OF THE DISSERTATION 

Automated Feature Design for Time Series Classification by Genetic Programming 

by 

Dustin Yewell Harvey 

Doctor of Philosophy in Structural Engineering 

University of California, San Diego, 2014 

Professor Michael Todd, Chair 

Time series classification (TSC) methods discover and exploit patterns in time series and 

other one-dimensional signals. Although many accurate, robust classifiers exist for multivariate 

feature sets, general approaches are needed to extend machine learning techniques to make use 

of signal inputs. Numerous applications of TSC can be found in structural engineering, 

especially in the areas of structural health monitoring and non-destructive evaluation. 

Additionally, the fields of process control, medicine, data analytics, econometrics, image and 

facial recognition, and robotics include TSC problems.  

This dissertation details, demonstrates, and evaluates Autofead, a novel approach to 

automated feature design for TSC. In Autofead, a genetic programming variant evolves a 
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population of candidate solutions to optimize performance for the TSC or time series regression 

task based on training data. Solutions consist of features built from a library of mathematical and 

digital signal processing functions. Numerical optimization methods, included through a hybrid 

search approach, ensure that the fitness of candidate feature algorithms is measured using 

optimal parameter values. Experimental validation and evaluation of the method is carried out on 

a wide range of synthetic, laboratory, and real-world data sets with direct comparison to 

conventional solutions and state-of-the-art TSC methods. Autofead is shown to be competitively 

accurate as well as producing highly interpretable solutions that are desirable for data mining and 

knowledge discovery tasks. Computational cost of the search is relatively high in the learning 

stage to design solutions; however, the computational expense for classifying new time series is 

very low making Autofead solutions suitable for embedded and real-time systems.  

Autofead represents a powerful, general tool for TSC and time series data mining 

researchers as well as industry practitioners. Potential applications are numerous including the 

monitoring of electrocardiogram signals for indications of heart failure, network traffic analysis 

for intrusion detection systems, vibration measurement for bearing condition determination in 

rotating machinery, and credit card activity for fraud detection. In addition to the development of 

the overall method, this dissertation provides contributions in the areas of evolutionary 

computation, numerical optimization, digital signal processing, and uncertainty analysis for 

evaluating solution robustness. 
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  Chapter 1

Introduction 

1.1. Time Series in Structural Engineering 

Time series measurements are employed throughout structural engineering to 

characterize and quantify structure behavior. Structural response data typically consists of time 

histories of kinetic and kinematic quantities under various loading and operational conditions. 

Such measurements are conventionally used for fitting, updating, and validating structural 

models, often through conversion to the frequency domain. Design certification, risk 

assessment, and other tasks rely on accurate models; however, highly complex structures may 

not admit reliable physical modeling in which case direct methods to utilize time series data are 

required. In the areas of non-destructive evaluation and structural health monitoring, data-based 

approaches are increasingly common for determining local thickness, joint integrity, bond 

condition, and other structural health information. Many of these problems can be addressed 

using techniques from the more general areas of machine learning and time series classification.  
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1.2. Machine Learning 

The field of machine learning encompasses methods and techniques for discovering, 

describing, and utilizing patterns in data. Machine learning is further divided based on input and 

output characteristics into classification, clustering, and regression. Regression methods 

produce numeric output, while classification and clustering deal with nominal or categorical 

output, i.e. classes. Furthermore, classification methods are applied to supervised learning 

problems where the input data includes corresponding class labels. When class information is 

unavailable, the problem is categorized as unsupervised learning, as in clustering. 

Machine learning methods find application in a variety of fields including search 

engines, marketing and advertising, process control, econometrics, and medical diagnosis. As an 

example, a medical researcher may apply a variety of techniques to patient records with 

confirmed diagnoses of a specific disease in an effort to develop new diagnostic tools. The input 

data consists of categorical and numeric attributes, or features, of each patient such as age, 

weight, and results of various diagnostic tests. This example is representative of a classification 

problem since known examples, or instances, are available from each class of interest. The 

objectives of such studies are to develop or select a method that generalizes with maximum 

accuracy to unseen instances. 

Together with data mining, the two fields constitute the more general area of pattern 

recognition. Whereas the primary objective in machine learning is accuracy, data mining 

employs many of the same tools in an effort to discover knowledge about the data-generating 

system. Jain, Duin, and Mao provide a summary of pattern recognition methods, issues, and 

examples [1]. Additional background can be found in books by Bishop [2] and Hastie, 

Tibshirani, and Friedman [3]. 
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1.2.1. Classifiers and Learners 

Machine learning for multivariate scalar features is a near-mature field in pattern 

recognition. Learning algorithms, or learners, build and fit classification models using training 

data. A classifier describes the assumptions, structure, and representation of a specific class of 

models that may be created from a variety of different learning algorithms. Many learners and 

associated classifiers are available that make certain assumptions about the classes leading to 

tradeoffs in accuracy, complexity, and computational cost. The assumptions are a form of bias 

in the classifier selection process. Low-bias methods make minimal assumptions allowing for a 

more flexible model, but requiring more instances for the training process to converge. 

Conversely, high-bias methods are more robust to variance in the training data and therefore 

often generalize better to new data provided the assumptions made are correct or reasonable for 

the problem at hand. For example, the common assumptions of feature independence and 

Gaussian feature distributions together create the popular Gaussian Naïve-Bayes classifier. This 

high-bias model works well on a wide variety of data sets and has very low computational costs, 

but it may perform poorly with features that are highly-correlated or far from Gaussian. 

Typically, designers select an appropriate algorithm after basic statistical analysis of the feature 

set through a trial-and-error process.  

Other types of classifiers include instance-based methods, decision trees, ensemble 

methods, neural networks, support vector machines, and various other statistical models such as 

linear discriminant analysis. Instance-based, or lazy learning, classifiers have no associated 

learning stage; instead, a distance measure is computed between new data and all training 

instances then the new instance is labeled with the class containing the most similar (minimum 

distance) training instance. Decision trees use a hierarchical structure where each step in the 

labeling process involves thresholding of a single feature. Ensemble methods, or meta-
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algorithms, employ multiple realizations of a classifier or different classifiers in conjunction 

with a voting scheme to combine results from the set of classifiers. Boosting and bagging are 

examples of ensemble schemes [3]. 

1.2.2. Evaluating Accuracy 

A common issue in machine learning arises due to the finite size of data sets for training 

and evaluating solutions. Most learners require large instance counts to reach convergence of 

the classifier model. Additionally, accurate error rate estimation requires large instance counts, 

and the two steps of training and testing classifiers must be performed on mutually exclusive 

data sets to avoid overly optimistic in-sample error estimates. While accurate classifiers are 

always desirable, the ability to truthfully estimate error is equally important. Poor error 

estimates on training data in the solution design stage lead to loss of performance on test data 

through non-optimal selection of classifiers and parameters.  

The most basic percentage split, or holdout, method separates available data into a 

training set and testing set to perform out-of-sample error estimation. More advanced 

procedures such as  -fold cross-validation, leave-one-out, and bootstrapping improve on the 

holdout method by generating multiple pairs of testing and training splits to better utilize finite 

data. Even with such sampling methods, estimation of generalization error from limited data is 

still a challenging task. Overfitting of training data is a common issue wherein a learner is able 

to effectively model the noise within a small training data set leading to solutions that do not 

generalize to new instances. The interested reader is directed to Japkowicz and Shah for more 

detailed discussion of the evaluation process and related issues [4]. 
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1.2.3. Feature Sets 

The input data for standard machine learning tasks is represented as feature, or attribute, 

sets. Each instance contains a feature vector that can include nominal, ordinal, and numeric 

features. The terms feature selection, construction, transformation, and extraction all refer to an 

intermediate step of creating an improved, often reduced size, feature set from the original data. 

Feature selection simply identifies a subset of the original features that minimizes information 

loss. Feature construction, transformation, and extraction attempt to recombine the original 

features linearly or non-linearly into new features. Principal component analysis, factor 

analysis, and neural networks are popular techniques in the area of feature construction [1]. The 

optimal, minimal-basis feature set retains all the information present in the original data that is 

relevant to the classification problem within an orthogonal feature space. 

1.2.4. Higher Dimension Inputs 

Increasingly, researchers and analysts find themselves inundated with high-dimensional 

data for use in classification tasks. Here, dimensionality refers to the number of independent 

variables required to represent sampled data. Time series and spectra are one-dimensional 

signals while images require two spatial dimensions. As such, feature vectors are considered 

zero-dimensional but multivariate in the case of multiple features. Example applications 

involving one-dimensional signals include the monitoring of electrocardiogram signals for 

indications of heart failure, network traffic analysis for intrusion detection systems, vibration 

measurement for bearing condition determination in rotating machinery, and credit card activity 

for fraud detection. In such applications, domain knowledge primarily drives the selection and 

design of pre-processing steps, features, models, and learning algorithms that constitute a 

pattern recognition system for high-dimensional data. Ever-decreasing costs of sensing, data 
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acquisition, and data storage hardware have led to many applications where such data is 

abundantly available, but domain knowledge is very limited. 

Feature-based methods for high-dimensional data require an additional step of feature 

design. Feature design is a challenging task, especially in the absence of sufficient domain 

knowledge, since one-dimensional signals have no explicit features and one cannot enumerate 

all possible features [5]. Here, we differentiate between feature design and methods for feature 

construction, feature extraction, or feature transformation based on the presence of order-

dependent operations. To clarify, an automated, evolutionary feature construction process with a 

one-dimensional signal input is described by Guo, Jack, and Nandi [6]. In this work, the input 

contains 33 ordered Fast Fourier Transform (FFT) bins that may contain relevant, dynamic 

information within their structure. However, no order-based operations are used to construct 

new features; therefore, each FFT bin is treated independently making the system more 

indicative of standard feature construction than feature design. Other high-level approaches 

exist that directly classify high-dimensional data without a separate step of measuring features, 

for example instance-based approaches that compute distance measures on the original input 

signals.  

As an example, consider a critical machine in a manufacturing process that undergoes 

periodic maintenance but still experiences occasional bearing failures causing expensive 

downtime. If maintenance were performed as needed, downtime would be minimized compared 

to a time- or usage-based maintenance schedule or run-to-failure approach. A damage 

monitoring system based on pattern recognition would allow for such a condition-based 

maintenance approach. Traditionally, an expert in condition monitoring for rotating machinery 

would be consulted to design a damage monitoring system based on available literature and past 

experience with similar machines. An automated machine learning approach would allow an 
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unfamiliar engineer or technician to design a similar system from example data alone. First, the 

user would instrument the machine with a vibration sensor and periodically record time series. 

For supervised learning, records are then labeled as either from the healthy state or just prior to 

known failures. Finally, an automated feature design approach is applied to design optimal pre-

processing steps and features for the specific machine and failure mode from the time series 

data set. The latter approach represents significant potential savings in development time and 

expense, improved performance of the damage monitoring system, and relaxation of the need 

for an expert. 

1.3. Time Series Classification 

Time series classification (TSC) methods discover and exploit patterns in time series 

and other numeric sequence data for a variety of applications. The field has developed rapidly 

over the last decade with dozens of new techniques and a wide variety of problems. With the 

ever-increasing deployment of sensors in industrial, defense, and civilian arenas, powerful 

automated tools are needed to maximize the utility of these rich data sets. TSC is an extension 

of standard classification of attributes and features to handle one-dimensional signals such as 

time series, spectra, and one-dimensional representations of shape and image data. Applications 

of TSC can be found in the areas of process control, medicine, structural health monitoring, data 

analytics, econometrics, and robotics as well as image, shape, and facial recognition from one-

dimensional representations. In a review on the related topic of time series data mining, Fu 

notes that “the fundamental problem is how to represent the time series data,” either through a 

transformation to an improved data space, computation of a feature vector, or in another form 

[7]. Xing, Pei, and Keogh provide an overview of the general field of sequence classification for 

both numeric and symbolic data [5]. In comparison to standard classification tasks, Xing et al. 
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cite the difficulty of sequence data as a lack of explicit features, high-dimensionality, and 

additional complexity of building interpretable classifiers. Further review of time series 

representations, distance and similarity measures, indexing, classification, and clustering is 

found in the work of Esling and Agon [8].  

Xing et al. categorize the various approaches to sequence classification as either model-

based, distance-based, or feature-based [5]. Model-based approaches consist of building 

generative models then applying pattern recognition techniques to the model parameters or 

predictive errors. These approaches are found infrequently in the literature and are not 

appropriate for problems where the relevant information is not well represented in the global 

sequence behavior captured by a generative model. Distance- (or similarity-) based approaches 

discussed in section 1.3.3 typically employ an instance-based classifier such as nearest 

neighbors directly to the time series data in conjunction with an appropriate distance measure. 

Feature-based methods that apply standard classifiers to feature vectors computed from the time 

series are described in section 1.3.4. 

1.3.1. Applications 

Potential applications for TSC methods are numerous including the following: 

 Diagnosing indications of heart failure from electrocardiogram signals 

 Monitoring automotive sensors for early failure detection 

 Detecting fraud from credit card activity 

 Analyzing network traffic for intrusion detection systems 

 Developing financial models based on econometric data 

 Identifying manufacturing defects in industrial processes 
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 Determining bearing condition in rotating machinery from vibration measurement 

1.3.2. Objectives 

The goals of TSC research include improved accuracy, solution interpretability, and 

reduced computational expense. Accuracy is estimated as the expected generalization error 

when applying a given solution to unseen data. Standard evaluation methods as discussed in 

section 1.2.2 are directly applicable to TSC. The interpretability of solutions is particularly 

important for data mining applications and knowledge discovery. Easily understood algorithms 

and models provide the possibility to develop a physical interpretation of solutions leading to 

improved understanding of the data-generating system. Lastly, minimal computational expense 

is critical for many applications such as embedded systems. The computational cost of a method 

should be considered both in the learning or solution design stage as well as in the application 

stage where new instances are classified. For a specific application, the computational expense 

in one or both stages may be relevant to the method selection process. 

1.3.3. Distance-Based Methods 

Distance-based TSC employs traditional instance-based classifiers with a variety of 

specialized time series distance or similarity measures. The 1-nearest neighbor classifier with 

Euclidean distance between time series is the simplest approach. A variety of specialized 

distance measures have been proposed to correct for global and local shifts and scaling of the 

samples in the time domain. Wang et al. review and experimentally compare a variety of 

distance measures both as representation methods and for their accuracy as classifiers [9]. The 

study showed the very popular dynamic-time warping (DTW) measure to be at least as accurate 

as other measures. Dynamic-time warping corrects local time shifts by finding the optimal 
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many-to-many monotonic mapping of samples between two time series and has long been 

employed as the benchmark method for TSC [10].  

More recent developments have proposed alternatives to the approach of elastic 

distance measures. Class-specific, Mahalanobis distances were shown to outperform simple 

Euclidean distance [11]. Additionally, Bagnall, Davis, Hills, and Lines proposed an ensemble of 

distance-based classifiers utilizing various data transformations including the original input 

data, auto-power spectrum, auto-correlation function, and principal components [12]. This study 

concluded that the correct data representation may provide competitive accuracy and improved 

interpretability when compared to complex classifiers and distance measures. In general, 

distance-based TSC tends to be well-suited for certain classes of problems such as recognition 

of one-dimensional shape representations; however, as in standard instance-based learning, the 

computational cost to classify new time series is relatively large, especially due to the high 

dimensionality of the data. Also, distance-based TSC provides limited insight for data mining 

tasks, as there is no reduction of dimensionality. 

1.3.4. Feature-Based Methods 

Feature-based TSC methods infer features from training data then apply standard 

machine learning methods to classify the resulting feature vectors. Here, we define a feature 

algorithm as a sequence of operations to transform one or more time series inputs to a single, 

scalar feature. Possible operations include, but are not limited to, digital filtering; thresholding; 

transformations among time, frequency, phase space, or hybrid domains; correlation analysis; 

principal component analysis; and many more. The algorithm must include a dimension 

reduction step to produce a scalar feature from the input signal. Feature algorithms can be 

considered as complex dimension reduction processes with the goal of optimally representing  
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Figure 1 – Feature-based TSC workflow 

information relevant to a decision process as opposed to the traditional dimension reduction 

goal of faithfully representing data in a lower dimensional space. In other words, feature 

algorithm design is a dimension reduction process with a performance objective other than self-

representation. Figure 1 depicts the workflow for feature-based TSC in both the application and 

learning stages to show how these methods extend standard classification to time series data. 

Traditionally, feature design has been performed by domain experts on an ad-hoc basis. 

While this approach generates very interpretable solutions, accuracy is rarely optimal except in 

cases of near complete domain knowledge. A generalized approach to optimal feature design 

that is able to produce low-dimensional, interpretable feature vectors would be highly valuable 

both for TSC applications and data mining and knowledge discovery from time series databases. 

Compared to distance-based TSC, feature-based methods are usually more interpretable 

depending on the complexity of the feature algorithms. Additionally, the computational cost is 

generally lower for classifying new time series although the learning stage is often 

computationally intensive. Another benefit of the feature-based approach is that the classifier 

can be replaced with a regression algorithm to perform time series regression and forecasting 

tasks using the same basic methods. A number of recent developments in feature-based TSC 

show promise as methods with competitive accuracy to distance-based techniques and various 

levels of interpretability. 
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Ye and Keogh proposed the concept of shapelets, which have been used to develop a 

variety of TSC methods [13]. A shapelet is a time series subsequence that is maximally 

representative of a single class or of the difference between classes. A shapelet feature is 

computed as the minimal distance between any subsequence in a time series and the shapelet. 

The originally proposed shapelet algorithm learned a decision tree by searching for the most 

informative shapelet at each node [14]. Later, shapelets were shown be more accurate when 

used to construct feature vectors for use with standard classifiers [15]. Shapelets are more 

interpretable than distance-based TSC, as the shapelet identifies critical time series behavior for 

the classification task. 

Two recent works demonstrated approaches for generating large feature sets requiring 

advanced classifiers or an intermediate dimension reduction step using standard feature 

selection and construction methods. The time series forest (TSF) method randomly generates 

simple statistical features over thousands of random subsequences of the time series [16]. The 

features were then used to build a random forest resulting in one of the most accurate methods 

to date. Although the ensemble classifier and large feature set is difficult to interpret, Deng, 

Runger, Tuv, and Vladimir also produced temporal importance curves from the classifiers 

providing indication of the most informative regions of the time series.  

A very different, pragmatic approach was taken by Fulcher, Little, and Jones to 

generate interpretable features. An extensive review of scientific literature was carried out to 

catalog thousands of features used in many disparate application areas [17]. To perform 

classification, the authors demonstrated a greedy, forward feature selection approach to reduce 

the feature database then application of a simple, linear classifier [18]. As all of the features 

included in the database are well understood by the scientific community, this approach 

produces perhaps the most interpretable solutions available. Interestingly, the accuracy achieved 
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utilizing thousands of expert designed features appears to be outperformed by the random 

feature set generated by the TSF approach, although the feature sets were utilized differently in 

the two methods making direct comparison of the features difficult. 

Another approach is to search in the program space for feature algorithms from their 

constituent operations. In this space, solutions are composed of functions and arguments where 

the functions consist of any operations that may be part of a feature algorithm. Whereas 

treatment of feature design as a program search has certain advantages, the program space is 

infinite, making a brute force approach impossible. Some deterministic program search 

strategies exist such as Levin search [19], Hutter search [20], and the optimal ordered problem 

solver [21], which provide performance guarantees under certain conditions but can be 

computationally impractical for even moderately complex problems. Additionally, a random 

search over an infinite space is unlikely to be efficient. However, evolutionary computation 

provides a practical, proven search heuristic in the form of genetic programming (GP) formally 

introduced in [22]. GP methods for feature-based TSC are discussed in section 1.4.3. 

1.4. Genetic Programming 

GP is a search heuristic originally developed to automate computer programming [22]. 

Since its introduction, the idea has been adapted to a wide-range of problems including 

controller design, robotic programming, analog circuit design, and many more [23]. The search 

process evolves a population of candidate solutions where each individual represents a 

computer program built from a pre-defined set of inputs and operations. GP is unique as a 

search technique because the final size of the solution is not pre-determined. Interested readers 

are directed to [23] for a thorough introduction on the field. 
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Standard implementations are not directly applicable to the feature design problem, but 

the concept has been successfully adapted to a wide range of problems including feature design 

for image processing tasks such as edge detection and object recognition [24, 25]. In particular, 

GP-based methods have demonstrated success on problems with the following characteristics 

all of which apply to the field of TSC [23]: 

• Minimal knowledge and understanding exists for problem domain. 

• Size and structure of desired solution are unknown. 

• Large amounts of digital data are available. 

• Good solutions are easily tested but not directly obtained. 

• Analytical solutions are unavailable. 

• Optimal solutions are desired but approximations are acceptable. 

• Incremental improvements are considered worthwhile. 

1.4.1. Solution Space Design 

 The solution space for GP consists of a solution structure and the terminal and function 

sets that serve as building blocks for the programs. The terminal set consists of input data for 

the problem and often a set of pre-defined constants. Standard GP methods rely on the search 

process to evolve optimal constants within the solutions from this base set of constant values. 

The function set consists of all operations available within a solution. Typical function sets are 

on the order of 5-15 functions and can be as simple as basic mathematical operations of add, 

subtract, multiply, and divide.  

The most common solution structure uses a tree-based program representation with 

functions serving as nodes connected by branches to the input data at the terminal leaves. The 

root of the tree generates the final output of the program. Other possible structures include 

stacks, graphs, recursive structures, and multi-program solutions. Careful design of the program 
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structure, function set, and terminal set is critical to create an effective solution space resulting 

in an efficient search process and high accuracy solutions. 

1.4.2. Search Method 

The search objective is to find the best combination of terminals and functions within 

the selected solution structure and size constraints to maximize, or minimize, a fitness measure. 

Fitness measures are highly problem-specific and often defined within a GP interpreter, which 

takes a candidate solution as input, executes the program, and returns the solution fitness. The 

search process uses standard evolutionary computation techniques with genetic operations 

specific to GP. First, an initial population is randomly generated and evaluated for fitness. 

Parent solutions are chosen from the population through standard selection methods such as 

tournament or roulette wheel selection. Next, the breeding process applies genetic operators to 

pairs of parents to produce offspring solutions. The offspring replace solutions in the population 

with poor fitness then the search continues until a desired fitness value or count of individuals is 

reached. 

Genetic programming methods rely on the persistence and recombination of beneficial 

code segments in the population to find optimal-fitness solutions. The mechanism for this 

process is the preferential selection of solutions with better fitness as parents and utilization of 

appropriate genetic operators. Common GP operators include mutation and crossover. Mutation 

acts on a single parent to replace a section of code with a new, randomly generated section. 

Crossover transfers a section of code between parents. For tree-based structures, crossover 

selects a random subtree in one parent to replace the subtree at a randomly selected node in the 

second parent. Many varieties of crossover and mutation exist to improve search effectiveness 

or tailor the operators for a specific solution structure. GP operators are unique as they allow the 
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size of the offspring to vary from that of the parents removing the requirement in most 

evolutionary computation methods for a fixed, user-specified solution size. 

1.4.3. Classifier Induction by GP 

Genetic programming has been employed as a learner to infer classification algorithms 

for standard machine learning problems from supervised training data. Espejo, Ventura, and 

Herrera provide a thorough review on the use of GP for classifier induction [26]. Such methods 

can evolve decision trees, rule-based systems, discriminant functions, neural networks, and 

other structures with some advantages over standard learning algorithms. Classification 

accuracy of evolved systems is often equivalent or slightly better than traditional algorithms. 

However, the computational cost to evolve a problem-specific algorithm is significantly higher 

than using standard methods from machine learning, and the evolved classifiers are often very 

difficult to interpret or are “black box” in nature [26]. 

1.4.4. Feature Design by GP 

As with traditional classification algorithms, standard GP methods accept multivariate 

scalar input but cannot take advantage of additional information within sampled signals. The 

literature includes a handful of adaptations for TSC and related problems. The scanning 

approach is the simplest adaptation wherein standard trees operate on a time series in a 

recursive manner to breed non-linear digital filters [27]. The Zeus system evolves feature 

vectors as a forest of strongly-typed trees with each tree producing a single feature [28, 29]. 

Two systems, genetic programming environment for FIFTH (GPE5) [30, 31] and parallel 

algorithm discovery and orchestration (PADO) [32, 33], circumvent the need for a strongly-

typed system by using a single data stack and “smart” functions designed to handle all possible  
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Table 1 – Comparison of genetic programming methods for feature-based TSC 

Method, 
Year 

Solution structure Search method Classification Comments 

Scanning/ 

recursive 
trees, 1995 

[27] 

Single tree evaluated 

recursively while 
scanning along time 

series. Solutions act as 

non-linear digital 
filters. 

Standard tree-based 

genetic programming 
with simulated 

annealing to optimize 

numeric parameters 

Single feature output requires 

classification to be performed 
simultaneously with feature 

design during algorithm search. 

Solution structure does not 

naturally lend itself to many 
common features, but use of 

numerical optimization within 

GP search proved beneficial. 

PADO, 

1995 [32, 
33] 

Separate program 

computes confidence 
for each class. 

Programs consist of 

nested graph structures 
acting on single data 

stack  

Custom genetic 

operators evolve 
graphs with function 

parameters evolved as 

values on the data 
stack. 

Feature selection performed 

through adjustment of weights 
in voting procedure to 

determine program output. 

Classification simplified to 
selecting class based on 

confidence levels. 

Structure and functions designed 

such that many input types can 
be handled including sequences, 

images/matrices, and video data. 

Zeus, 2002 

[28, 29] 

Forest of strongly-

typed trees where each 

tree computes one 
feature in feature 

vector 

Standard tree-based 

genetic programming 

and evolved constants 

Feature design and selection 

performed through custom 

genetic operators with 
classification of feature vectors 

by SVM classifier. 

Proposes and advocates use of 

wrapper approach wherein 

evolved front-end feature 
algorithms are combined with 

standard back-end classifiers. 

FIFTH/ 
GPE5, 

2007 [30, 

31] 

Linear series of 
“smart” functions with 

single data stack 

written in custom 
signal processing 

language 

Standard genetic 
operators with 

crossover constrained 

to compatible 
sequences and evolved 

constants 

Single feature output requires 
classification to be performed 

simultaneously with feature 

design during algorithm search. 

Uses high-level functions such as 
the FFT which are efficiently 

calculated from standard 

optimized libraries and are 
unlikely to be evolved from basic 

mathematical operations 

input data types. Table 1 compares the solution structure and search method for these systems 

and discusses how each system accomplishes the TSC task. Standard evaluation methods are 

usually employed to compute metrics such as classification accuracy to serve as the fitness 

measure for the GP search. 

1.5. Contributions of the Dissertation Work 

The contributions of this dissertation work are motivated by the need for improved time 

series tools in structural engineering applications such as structural health monitoring and non-

destructive evaluation. Development of these tools necessitated integration of techniques from 

signal processing, machine learning, numerical optimization, and evolutionary computation as 

well as novel advancements in each of these areas. The significant contributions are 

summarized as follows: 
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1. Autofead method performs automated feature design for time series classification 

including numerous novel developments in the areas of time series analysis, 

evolutionary computation, and numerical optimization 

a. Autofead yields a compact, interpretable solution space design for discovery of 

TSC solutions in form of expert designed systems 

b. A comprehensive, flexible library of functions for digital signal processing and 

time series analysis is generated and exploited in the design. 

c. A hybrid numerical optimization and genetic programming search method with 

novel genetic operators is developed for implementation. 

d. A sequential global optimization scheme with a weighted evaluation framework 

for decoupling of parameter sets in complex optimization scenarios is presented. 

e. A fast, non-parametric, binary classification procedure to estimate univariate 

decision boundaries. 

2. Experimental validation of Autofead method is performed and a comprehensive 

benchmark study with comparison to state-of-the-art time series classification methods 

is presented. 

3. The data mining potential of Autofead method is demonstrated through numerous case 

studies including a variety of structural health monitoring applications. 

4. A fast implementation of non-probabilistic uncertainty analysis for feature-based time 

series classification algorithms to evaluate solution robustness is presented. 
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1.6. Outline of the Dissertation 

The remainder of this dissertation details, demonstrates, and evaluates the Autofead 

method for TSC and expounds on various related topics. Chapter 2 presents Autofead in-depth 

including the development process and history of the method. Chapter 3 experimentally 

validates the approach on two categories of synthetic TSC problems referred to as the dynamics, 

stationarity, and distributions (DSD) problem and signal detection problems. These problems 

are valuable for validation purposes as optimal analytic solutions are known and require a wide 

range of evolved solution behaviors. Chapter 4 presents results on three laboratory experiments 

related to the field of structural health monitoring. The selected experiments include binary 

classification, multi-class classification, and multivariate time series regression. A 

comprehensive benchmarking study on 49 openly-available, real-world datasets is described in 

Chapter 5 with direct comparison of Autofead to state-of-the-art TSC methods. Further 

evaluation of the Autofead method is discussed in Chapter 6 with targeted analysis carried out 

on experiments from the previous chapters. Chapter 7 proposes a non-probabilistic uncertainty 

analysis technique for evaluating the robustness of TSC solutions. The robustness analysis is 

intended to alleviate some of the issues of the Autofead method described in Chapter 6 but is 

applicable to other TSC methods as well. Lastly, conclusions and recommendations for future 

work are presented in Chapter 8.  

Portions of this chapter have been published in IEEE Transactions on Evolutionary 

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional 

portions of this chapter have been submitted for publication in Data Mining and Knowledge 

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 
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Feature Design for Time Series Classification”. The dissertation author was the primary 

investigator and author of these papers. 
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  Chapter 2

Autofead Method 

2.1. Overview 

This dissertation presents a novel TSC method for automated feature design called 

Autofead. The overall goal of this work is to develop a general learner that can infer from time 

series examples an optimal, minimum-basis feature set for a given supervised training data set. 

Additionally, a method that produces interpretable features algorithms in a compact 

representation is desirable for time series data mining. Therefore, Autofead is designed 

according to the eight following principles: 

1. Support multivariate, one-dimensional signal input 

2. Perform mutli-class classification and regression 

3. Generate feature algorithms substantially similar in form to human-designed features 

4. Minimize required user input and assumptions on input data  

5. Use standard pattern recognition methods to evaluate candidate feature sets 

6. Employ numerical optimization methods appropriately and efficiently 
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7. Avoid black box solutions and strive for easy interpretation of features 

8. Promote independence of features to minimize information redundancy 

This work represents the first automated feature design system for numeric sequences to 

leverage the power and efficiency of both numerical optimization and standard pattern 

recognition algorithms. Autofead uses a GP variant to evolve features for input to standard 

pattern recognition algorithms through a wrapper approach as depicted in Figure 2. The unique 

solution space is specifically designed to generate compact, interpretable solutions while also 

allowing flexibility of the method to produce a wide array of feature behaviors. Unlike 

traditional GP, the solution structure has no constants in the terminal set; instead, a hybrid 

search is employed where parameters within feature algorithms are numerically optimized prior 

to fitness evaluation. Feature selection is performed concurrently with feature design by 

intelligent genetic operators. Fitness of candidate solutions, i.e. feature vectors, is measured by 

the classification accuracy of the selected classifier applied to the measured features through 

standard sampling procedures. 

 

 

Figure 2 – Wrapper approach workflow for TSC 
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2.2. Solution Space 

The Autofead solution structure is highly-constrained and simplified compared to other 

genetic programming systems developed for feature-based TSC such as Zeus [28, 29], FIFTH 

[30, 31], and PADO [32, 33], see section 1.4.4. A restricted structure was chosen primarily for 

two reasons. First, most conventional, human-designed algorithms are linear in structure and 

operate on one or two signals, i.e., not tree or graph structures; second, the restricted solution 

structure allows inclusion of high-level operations within a large function library without 

creating an unfeasibly large search space. The Autofead solution space includes the program 

structure, function library, function parameters, and classifier selections. 

2.2.1. Program Structure 

Autofead solutions consist of a set of one or more features each computed through a 

series of sequence-handling functions operating on one or two time series inputs. For example, a 

feature that computes energy would use the two-function algorithm [square, sum]. Each feature 

algorithm ends with a dimension-reduction function such as sum to ensure scalar feature output. 

Relatively short algorithms of 2-5 functions are typical facilitating easy analysis and 

interpretation of solutions. Figure 3 diagrams a single solution individual. The example shown  

 

 

Figure 3 – Example Autofead solution structure 
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includes three features of increasing complexity through the inclusion of a merging function in 

feature 2 and the sliding windows function in feature 3.  

Merging functions allow a feature to operate on two input time series of the same 

length. Cross-correlate is an example of a merging function. Each input to the feature algorithm 

is processed identically through functions prior to the merging function.  

The sliding windows function transforms the input sequence to a matrix of 

subsequences. Subsequent functions operate on each subsequence individually until a 

dimension-reduction function returns the data flow to a single sequence. A second dimension-

reduction function is then required to compute a scalar feature. This function is inspired by the 

segmentation process used in power spectral estimation via Welch’s method [34]. 

Terminal sets in Autofead are greatly simplified, as there is no notion of constants. The 

terminal set simply consists of one or more time series inputs in the training data instances. For 

multivariate problems, each feature has an associated input index to select which time series the 

algorithm uses as input, or two inputs in the case of merging functions. While the method is 

intended for direct input of raw measurement data such as time series, domain knowledge may 

indicate that alternative representations are beneficial for a specific application. In this case, 

transformed input data can be used instead of or in addition to the raw time series.  

Class mean signals allow for additional interesting feature behaviors. A class mean 

signal is generated by merging functions as the mean of all signals in the training data from a 

single class. The merging function then utilizes the computed class mean signal as the second 

input sequence. For example, the feature [element difference (class 0), square, sum] computes 

the square of the Euclidean distance between the input time series and the mean signal for class 

0. The first input index must always be non-negative to select an input time series. When a 
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merging function is present and class mean signals are enabled, the implementation adds a 

selection for each class mean signal as a possible second input index. 

2.2.2. Function Library 

The function library is designed to allow creation of a wide range of feature behaviors 

from relatively short feature algorithms with minimal function redundancy. The functions are 

selected to admit features derived from the distributions, dynamics, and transient behaviors of 

time series. In many cases, functions were formed by decomposing common signal processing 

algorithms into their individual operations and then reducing redundancy within the overall 

function set [34]. Although the current library has demonstrated success on a wide range of 

problems, design of the optimal, minimal-basis function set for time series analysis remains an 

open research topic. The current set of 47 functions and their parameters is described in Table 2. 

Each function, with the exception of sliding windows and merging functions, takes a single 

sequence as input and outputs a modified sequence. Dimension-reduction functions reduce the 

output sequence length to a single sample.  

The sliding windows function is of particular interest as it provides the primary 

mechanism for analysis of transients or non-stationarity in a sequence. The input sequence is 

expanded to a matrix of subsequences by extracting consecutive overlapped windows. To 

constrain the function to a single parameter and limit growth of data sizes within algorithms, the 

number of windows constructed and number of overlapping samples in sequential windows is 

internally determined based on the ratio of the window length parameter to the input sequence 

length. The total data size of the output subsequence matrix is limited to between 1.5 and 2 

times the size of the input sequence. 
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Table 2 – Autofead function library 

Function Output Parameter (*integer type) 

Element operations 

Absolute value Absolute value of input values - 

Cube Cube of input values - 

Exponential Exponential function of input values - 

Inverse Reciprocal of input values - 

Log10 Base-10 logarithm of absolute value of input values - 

Sigmoid             for input values,   , bounded on [-1,1] - 

Sign Sign of input values, -1 or 1 - 

Square root Square root of absolute value of input values - 

Square Square of input values - 

Distribution-altering functions (sample order independent) 

Center Input values with mean of all training data removed - 

Center and 
scale 

Standard deviations from mean of all training data for input values - 

Control chart 
Input with central values of data range set to center of range 

Percentage of range kept 
(0-1) 

Demean  Input values with mean of individual sequence removed - 

Normalize Standard deviations from mean of individual sequence for input values - 

Set minimum 

value 
Input with values below threshold raised to threshold  

Data range threshold (0-1) 

Set maximum 

value 
Input with values above threshold lowered to threshold  

Data range threshold (0-1) 

Order-dependent functions 

Auto-

correlation 
function 

Biased estimate of input sequence auto-correlation function for positive lags - 

Convolve Convolution of input sequence with pre-specified sequence - 

Cumulative 

summation 
Cumulative summation of input sequence - 

Difference First differences of input sequence - 

FFT magnitude Magnitude of FFT of input sequence, [0,π] rad/s bin range - 

FFT phase Phase of FFT of input sequence, [0,π] rad/s bin range - 

FFT real Real part of FFT of input sequence, [0,π] rad/s bin range - 

FFT imaginary Imaginary part of FFT of input sequence, [0,π] rad/s bin range - 

Hanning 

window 
Input sequence with Hanning window applied - 

Hilbert 

magnitude 
Magnitude of Hilbert transform of input sequence - 

Hilbert phase Phase of Hilbert transform of input sequence - 

Hilbert 
imaginary 

Imaginary part of Hilbert transform of input sequence - 

High-pass filter 
High-pass filtered input sequence, zero-phase digital filtering by 3rd order 

Butterworth filter 

Normalized cutoff 

frequency (0-1, upper 

bound = π rad/s) 

Low-pass filter 
Low-pass filtered input sequence, zero-phase digital filtering by 3rd order 

Butterworth filter 

Normalized cutoff 
frequency (0-1, upper 

bound = π rad/s) 

Sort order Indices of values in sorted input sequence, ascending order - 

Wavelet Detail coefficients of discrete-wavelet transform using pre-specified wavelet 

family, parameter value of 0 produces approximation coefficients at the 
maximum useful level of decomposition 

*Wavelet detail level 
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Table 2 – Autofead function library (continued) 

Function Output Parameter (*integer type) 

Index-altering functions 

Keep beginning Input sequence with samples removed from end *Samples to remove 

Keep end Input sequence with samples removed from beginning *Samples to remove 

Sliding 

windows 

Subsequences extracted from sliding a window along input sequence, number of 

windows and overlapping samples between adjacent windows determined 
internally, no change to already windowed input 

*Window length 

Transpose 
windows 

Swaps window indices and sample indices - 

Merging functions 

Cross-correlate Cross-correlation of two input sequences, output is same length as inputs - 

Element sum Element-wise sum of two input sequences - 

Element 
difference 

Element-wise difference of two input sequences - 

Element 

product 
Element-wise product of two input sequences - 

Element 

quotient 
Element-wise quotient of two input sequences - 

Dimension-reduction functions 

Select Sample at index of input sequence; internal brute force index search to optimize 

performance of output as single feature solution; for windowed input, each 
subsequence is treated as a separate fitness case for index selection 

*Internal index selection 

Bisection select Same as select function but using bisection index search *Internal index selection 

Sorted select Same as select function but with input sequence sorted *Internal index selection 

Sorted bisection 
select 

Same as sorted select function but using bisection index search 
*Internal index selection 

Slope fit Slope of best linear fit to each input sequence - 

Sum Sum of all input values, occurs implicitly at end of every feature - 

2.2.3. Function Parameters 

In the feature algorithm design process, optimal features may be overlooked because of  

poor parameter choices. For example, in a filtering operation, proper filter design parameters 

maximize signal-to-noise whereas poor parameter choices can completely obscure the useful 

information. Numerical optimization techniques are well understood and designed specifically 

to handle this task; however, standard GP uses pre-defined or random constants that are evolved 

within the program. This approach does not provide for an efficient numerical search. Some 

previous work has adopted a hybrid approach including a numerical optimization step prior to 

fitness evaluation resulting in improved solutions with faster convergence [35]. 
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The hybrid approach is adopted by Autofead to perform optimization of the parameters 

listed for the functions in Table 2. The function parameters are divided into continuous type 

(normalized between 0 and 1) and integer type, which are handled separately within the 

parameter optimization process. Continuous parameters include filter cutoff frequency for 

filtering functions and threshold values for thresholding functions. Keep beginning and keep end 

require an integer type parameter that specifies the number of samples to remove from the input. 

Additionally, wavelet, sliding windows, and the four select function variants all use integer type 

parameters.  

2.2.4. Classifiers 

Bagnall et al. take the position that the largest performance gains in the area of 

sequence classification can be achieved through optimal transformation and representation of 

input data as opposed to development and use of complex classifiers [12]. Therefore, Autofead 

uses the wrapper approach with the idea that a simple classification algorithm is sufficient to 

determine relative performance of features during the feature algorithm design process. 

Classifiers for Autofead solutions are selected through the evolution process from a set of pre-

selected standard algorithms. Once the final feature set is formed, more complex classifiers 

could be applied to further improve solution accuracy. Because the Autofead solution space has 

many degrees-of-freedom with multiple features, many functions, and selection of parameter 

values, the method is susceptible to overfitting with small data sets. For this reason, it is 

important to select simple, high-bias classifiers to reduce the possibility of overfitting. 

Recommended classifiers include Gaussian Naïve-Bayes, Linear Discriminant Analysis, and 

Logistic Regression. These three classifiers were implemented using the machine learning 

package scikit-learn from Pedregosa et al. [36]. 
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2.3. Search Method 

Designing an Autofead solution consists of selecting a classifier and the number of 

features then specifying for each feature the input indices, functions in the algorithm, and the 

functions' parameter values. The solution space is far too large for a brute force approach, and 

too complex (including potentially highly discontinuous) for standard optimization methods; 

however, the hybrid GP and numerical optimization process depicted in Figure 4 has shown to 

be very effective in navigating the space efficiently and consistently. To configure an Autofead 

search run, the user defines the training instances, or fitness cases, and sets any problem- 

 

 

Figure 4 – Autofead search process flowchart 
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specific run parameters. The search begins with a randomly-generated initial population. Then 

the search proceeds through four modules of parameter optimization, fitness evaluation, 

evolution strategy, and breeding. The run continues until termination conditions are met such as 

a desired fitness level or a maximum number of individuals. 

2.3.1. Population Initialization 

The initial population of an Autofead run is generated through a ramped initialization to 

create solutions of varying size. The number of features, the function count within the feature 

algorithms, and the number of allowed parameters within the feature algorithms are uniformly 

distributed throughout the initial population up to the selected maximum initial solution size 

constraints. The number of allowed parameters is constrained in addition to function count 

within a feature algorithm to manage computational cost as most of the computational effort of 

a run is directed toward parameter optimization. Additionally, the initialization process enforces 

uniform usage of classifiers and functions within the population.  

For multivariate problems, each feature algorithm requires the additional specification 

of an input index to select which time series the algorithm will use as input(s). The first input 

index for each feature in the initial population is distributed uniformly between the available 

inputs. For features containing a merging function, the second input index is chosen randomly 

from the set of remaining inputs and class mean signals, if enabled.  

2.3.2. Parameter Optimization 

Before solutions are evaluated for fitness, the parameter values within the feature 

algorithms must be selected. A single individual can contain multiple features each containing 

multiple parameters. Due to the nature of the parameter surfaces, a global optimization strategy 

is required; however, global optimization of all parameters within an individual during each 
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iteration of the search process is prohibitively expensive computationally. Additionally, the goal 

of the parameter optimization scheme within the Autofead search process is not necessarily to 

find the true optimal parameters with high accuracy but rather to assist the overall search by 

ensuring that good feature algorithms are not overlooked due to poor parameter choices. The 

parameters of the final solution’s features can be re-optimized post-search by standard global 

optimization methods before implementation in real systems.  

Accounting for these considerations, a sequential global optimization strategy is 

employed including a number of parameter independence assumptions. Assumption of 

independence both between features in an individual and between parameters in a feature 

algorithm greatly reduces the computational requirements for optimization. First, a parameter 

grid is built and evaluated for each new feature in the population. Grid evaluations are stored for 

subsequent optimizations to reduce repeated computations. Then, parameters are locally 

optimized starting from the best grid point on a randomly selected subset of the fitness cases.  

Within a single individual, each feature is locally optimized independently to avoid the 

computational cost of training and evaluating multivariate classifiers to compute the objective 

function. Independent optimizations, however, may lead to high correlation between features if 

no method is used to promote orthogonality in the optimization process. For example, in an 

individual containing two identical algorithms that estimate location of a spectral peak in a 

parameterized frequency band, performance will improve if the two features operate in separate 

frequency bands to reduce redundant information. Therefore, a fitness case-weighting scheme is 

employed within the local optimization stage. Error-based weights for the fitness cases are 

adjusted after local optimization of each feature. For classification, the solution is reduced to 

only the features with finalized parameter values then predictions are made for the fitness case 

subset. The error for each fitness case is computed by the overall search fitness function. Next, 
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the errors are normalized to the relative error ranks across the fitness cases before updating the 

weights. New weights are computed as the average of previous weights and the error ranks. 

Therefore, subsequent features’ parameters are optimized with emphasis on the fitness cases 

which produce largest error using previously optimized features in the individual. 

The objective function for parameter optimization can be computed as classification 

error for any high-bias classifier or a standard divergence or information measure. For binary 

classification, Autofead uses a direct threshold estimation routine to determine decision 

boundaries for classification from a single feature. First, a low-order polynomial is fit to the 

difference between the normalized, empirical cumulative density functions for the two classes. 

Thresholds are computed as the extrema of the polynomial fit, effectively estimating zero-

crossings of the difference in class probability density functions. Use of a polynomial of 3
rd

 or 

4
th
 order ensures a small number of decision boundaries. This procedure produces a very fast, 

reasonably-accurate, univariate, binary classifier. For multi-class problems, Autofead uses 

linear discriminant analysis as the classifier in the objective function. 

To further reduce computational expense, the optimization of the set of integer 

parameters is performed independently from each continuous parameter in a given feature. The 

continuous parameters in the filtering and thresholding operations tend to have strong effects on 

feature performance without altering the overall feature behavior. Additionally, all of the 

continuous parameters have a natural default value that results in minimal or no change to the 

input. For instance, a high cutoff frequency parameter in the low-pass filter function causes 

minimal filtering effects. In contrast, the integer parameters tend to have coupled relationships 

leading to a wide range of possible behaviors. For example, the sliding windows function 

followed by the select function creates a decimation behavior where the window length 

parameter controls the new data rate and the index selection parameter varies the first index 
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retained in decimation. For a feature containing    integer parameters and    continuous 

parameters, this decoupling leads to a single,   -dimension optimization followed by   , single 

parameter optimizations instead of a single,        -dimension optimization. Figure 5 

diagrams the parameterization scheme for a single solution individual containing both integer 

and continuous type parameters. 

For the integer parameter set, the initial grid search is performed using an adaptive grid 

density determined by variance-based total effect sensitivity indices [37]. Default values for the 

continuous parameters are used while building the integer parameter grid. The grid search for 

subsequent continuous parameters assumes the best parameter values from previous grid 

searches. Local optimization of the integer parameter set is performed through a bisection  

 

 

Figure 5 – Parameter optimization scheme flowchart 
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search with initial step sizes calculated from the adaptive grid density in each dimension. Then, 

the continuous parameters are optimized via Brent’s method [38].  

As noted in Table 2, the family of four select functions has internally-optimized index 

parameters. Because these functions occur at the end of a feature, the feature output can be 

evaluated for different index selections without reevaluating the entire feature from the 

beginning. Two unsorted and sorted variants of the select function are included in the library 

employing either a brute force or bisection search. The index parameter for the unsorted select 

function tends to have high sensitivity and a sparse optimization surface. These characteristics 

suggest a brute force search, which would be prohibitively computationally expensive if 

reevaluating long features for each index but is tractable through the internal index selection. 

For the sorted select function, the index parameter surface tends to be much smoother, thus 

admitting a bisection search. Hence, it is recommended the select and sorted bisection select 

functions be used in the function set with bisection select and sorted select omitted. 

2.3.3. Fitness Evaluation 

Fitness of candidate individuals is based on performance of the selected pattern 

recognition algorithm applied to the individuals’ feature vector. In the case of regression, linear 

regression algorithms and RMS error are standard tools and work well for Autofead’s wrapper 

approach. For classification problems, the fitness function,  , is calculated as 

       , (1) 

where   and   are classification error and quadratic loss, respectively. The value of   is 

selected to be small such that the only role of   is to break ties in  . The inclusion of quadratic 

loss as a tiebreaker is especially important in cases of small data sets where many candidate 

solutions may have zero classification error on the training data. It is important to note that 
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fitness here is defined as a metric to be minimized contrary to convention in most evolutionary 

optimization processes. 

Fitness is estimated by an adaptive, repeated, stratified  -fold cross-validation 

procedure. In each data split,  -1 folds are used for training with a single fold held out for 

testing. The number of folds and repetitions is determined adaptively and designed to 

exhaustively sample small classes, provide accurate estimates for medium-sized classes, and 

reduce computations for very large classes. Number of repetitions,  , and number of folds,  , 

are computed based on the number of instances in the smallest and largest classes,      and 

    , respectively. Fold count   is restricted to the interval [5, 10] and varies linearly with 

     such that when        ,      creating a leave-one-out procedure for the smallest 

class. At         , k is reduced to the minimum value of 5 folds. Furthermore, folds are 

restricted to a maximum of 50 instances per class to reduce computations. This means classes 

with more than 250 instances do not use all available data within a single cross-validation 

procedure. Therefore, the number of repetitions varies with the largest class as           

with a maximum value of 5 to make better use of very large classes. At the beginning of a single 

search, or run, a fixed set of training and testing splits is generated for use throughout the run. 

Individual runs on the same problem create a new set of splits with the same number of total 

repetitions and folds. 

2.3.4. Evolution Strategy 

The evolution strategy determines how the population is controlled and allowed to 

evolve. A generational approach is the simplest strategy where the entire population is replaced 

with an equal number of offspring during each iteration of the search process. An issue with the 

generational approach arises when the search moves in a detrimental random direction such that 

the offspring generation has lower fitness than the parents. Introducing elitism is one method to 
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alleviate this problem. Autofead adopts a more advanced    ⁄     strategy that maintains a 

large diverse population of   individuals based on methods in Bäck [39]. In each iteration of the 

search, the population is truncated to a parent pool of the best   individuals from which   

offspring are generated. Finally, an updated population is selected from the best   offspring and 

parents such that the search only moves in the direction of the offspring if they outperform the 

parents. Figure 4 depicts the    ⁄     strategy in the context of the overall Autofead search 

process. 

2.3.5. Selection and Breeding 

The GP portion of the search involves selection of parent pairs from the truncated 

parent pool and breeding of offspring solutions through genetic operators. This part of the 

search selects the most useful functions in the function set, designs the feature algorithms, and 

performs feature selection to combine features into an individual forming full solutions. 

Classifier selection is also performed through the GP component of the hybrid search. 

Parent selection within Autofead can be performed by any standard selection 

mechanism such as roulette wheel, a.k.a. fitness proportional, selection or reward-based 

selection. Tournament selection provides certain benefits in terms of search efficiency including 

allowing back chaining [40]. In back chaining, fitness of individuals is only evaluated on an as-

needed basis, often allowing many evaluations to be skipped without impacting the search. 

Additionally, hypothesis testing can be implemented within a tournament to reduce evaluations 

to the minimal amount required to select the preferred parent with statistical significance. In 

Autofead, all individuals are initially evaluated on a small number of cross-validation data splits 

to determine the ranking required for parent pool truncation. Within a tournament, further 

evaluations are carried out on remaining data splits in order, as needed, until the tournament is 

won by an individual according to the corrected, resampled t-test with 90% confidence [41]. All 
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evaluations performed within a tournament are stored to improve the individuals’ fitness 

estimates and to avoid repeated computation in future tournaments. Individuals that reach the 

final population in an Autofead run are fully evaluated on remaining data splits. 

The Autofead genetic operators are simplifications of the standard “crossover”, 

“mutate”, and “reproduce” operators in tree-based GP supplemented with operators that 

intelligently perform feature selection. The usage frequency of each operator is controlled 

through assigned genetic operator probabilities. “Crossover” and “mutate” modify a single 

feature algorithm within the first parent. “Crossover”, the most often used operator, replaces a 

random segment of functions within one feature algorithm with a random algorithm segment 

from one of the second parent’s features. The mutation operator randomly removes, inserts, or 

swaps out a single function in a feature algorithm or changes the feature’s associated input 

index for multivariate problems. “Mutate” can also modify the solution’s pattern recognition 

algorithm section. Mutation helps maintain function diversity within the population as it 

converges and enacts small changes to locally search the solution space. “Reproduce” clones a 

single parent with no modification of the features. Although the feature algorithms are identical 

for the clone, parameters may change as optimization is performed on a new fitness case subset 

in the subsequent search iteration.  

Feature selection is performed through the “remove feature” and “add feature” 

operators inspired by the architecture-altering operations by Koza [42]. The objective function 

from the parameter optimization process is used to identify the relative value of adding features 

to or removing features from an individual. The “remove feature” operator deletes the worst 

feature from a single parent according to the unweighted objective function. “Add feature” 

begins by generating fitness case weights using all features from the first parent by the same 

method used in parameter optimization. Then, the features from the second parent are evaluated 
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using the weighted objective function to determine which feature is most beneficial to transfer 

to the first parent. 

2.4. Problem Configuration 

As in any evolutionary search process, Autofead requires specification of the many 

parameters that control the size of the population, population initialization, frequency of genetic 

operators, and other components of the method. For each experiment performed as part of this 

dissertation, the run configuration is summarized in a Koza tableau as shown in the example of 

Table 3. The example table describes the primary run parameters that may be varied to best suit 

specific problems. Choices related to the function set, parameter optimization process, 

population size, and termination conditions have significant impact on the computation expense 

of the run and are therefore often necessitated by the available computing environment and 

available time. Run parameters used in the following studies are based on common practice 

with similar GP systems and the authors’ engineering judgment. 

 

 

Table 3 – Autofead Koza tableau example 

Parameter Parameter description 

Objective Problem specific objective related to the desirable features for Autofead to design 

Solution structure One or more features conforming to Autofead structure and selection of pattern recognition algorithm 

Function set Count of functions from function library in Table 2 and any omissions 

Pattern recognition Specification of classifier, regressor, or list of available selections 

Fitness Fitness measure, bounds, and direction of optimality 

Fitness case sampling Sampling procedure selected 

Evolution strategy Population and breeding configuration 

Solution size Individual solution size constraints 

Population initialization Initialization approach and initial individual solution size constraints 

Selection Parent selection method and related parameters 

Genetic operators List of genetic operators and corresponding genetic operator selection possibilities 

Termination  Termination conditions such as fitness level, search iterations, or total individual count 

Run repetitions  Number of runs performed on problem 
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2.5. Development History 

The three-year development of Autofead began in the application area of feature 

extraction for structural health monitoring systems described further in Chapter 4. The authors 

soon broadened the research to address the more general area of time series classification. The 

versions of Autofead presented during early development were significantly similar to the 

current method but lacked certain minor components and some major implementation 

improvements [43, 44]. Important modifications present in later studies include improvement of 

the evolution strategy, fitness estimation, and function library as well as the addition of merging 

functions, class mean signals, and evolved pattern recognition algorithm selection [45]. The 

authors’ believe the Autofead implementation presented in this dissertation represents a 

substantially mature method; however, the potential for further refinement is acknowledged 

under the recommendations for future work in section 8.2. 

Portions of this chapter have been published in IEEE Transactions on Evolutionary 

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional 

portions of this chapter have been submitted for publication in Data Mining and Knowledge 

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Time Series Classification”. The dissertation author was the primary 

investigator and author of these papers. 
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  Chapter 3

Experimental Validation 

3.1. Detecting Dynamics, Stationarity, and Distributions 

The first validation experiment requires Autofead to generate three simple but very 

different features and perform feature selection to combine the three features in a single 

individual. The three required features measure information related to signal dynamics, 

stationarity, and distributions, here referred to as the DSD problem. It is important to note that 

derivation of the optimal, analytic solutions requires complete knowledge of the signal 

generation process. Autofead is designed to discover optimal and near-optimal solutions with 

minimal knowledge represented by training data alone. No application-specific information is 

provided to the system in any of the validation experiments in this chapter that would benefit 

the method. 

The DSD problem involves separating a zero-mean, unit-variance, white, Gaussian 

noise (WGN) process in class 0 with one of three equally-likely subclasses within class 1. 

Subclass 1a is generated by passing WGN through a weighted, 2-sample moving average filter.  
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Table 4 – Koza tableau for DSD run configuration 

Parameter Setting 

Objective Derive features to separate class 0 from each subclass of class 1 

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals 

Function set 
35 functions from function library plus separate function, sum windows; omitted center, center and 
scale, convolve, cross-correlate, element difference, element product, element quotient, element sum, 

inverse, sigmoid, slope fit, and wavelet 

Pattern recognition Kernel-based Naïve-Bayes classifier 

Fitness Minimize classification error bounded on [0,1] 

Fitness case sampling 96% testing percentage split for each generation 

Evolution strategy Generational, population size of 500, no elitism 

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters 

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters 

Selection Tournament, tournament size 4 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  20 generations; 10,000 individuals 

Run repetitions  30; 300,000 total individuals 

Subclass 1b has a slight variance increase halfway through the signal, and a white, uniform-

distribution noise process produces subclass 1c. Each subclass involves a slight modification to 

the WGN process of class 0, but the expected mean values and signal energies are unaltered. All 

signals consist of 100 samples with index 0 to 99. Table 4 summarizes the Autofead 

configuration for the DSD problem. The best Autofead solution from a single run contained five 

features. Two features were redundant and have been removed with no loss of fitness. The 

remaining three features each target detection of a specific subclass of class 1.  

Subclass 1a has altered dynamics from a moving average filter with weights √    and 

√    for the 0 and 1 sample lags, respectively. The optimal feature to detect this change is the 

value of the auto-correlation function at 1 sample lag. The Autofead feature took a different 

approach by calculating an energy measure for the high-frequency band of the signal. The 

feature algorithm is [high-pass filter (      ), cube, absolute value, sum]. Because the 

moving average filter is a low-pass filter, class 0 contains higher energy than subclass 1a in the 

high-frequency band. The sequence [cube, absolute value, sum] computes an energy measure 

using the third power instead of the second power. 
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Subclass 1b is non-stationary with a variance change from √    to √    at sample 50. 

The global dynamics and distribution of subclass 1b are identical to a WGN process requiring 

the optimal feature to detect a non-stationary change in the signal. The difference in the 

variance of the two signal halves provides the optimal discriminator between class 0 and 

subclass 1b. Autofead accomplishes the task through the feature algorithm [cube, absolute 

value, cumulative summation, select (    )]. Again, the sequence [cube, absolute value, sum] 

from the cumulative summation computes an energy measure. By taking a cumulative 

summation and selecting index 46 as the feature value, only samples from the low variance 

section of the signal are included in the feature. Here, the optimal parameter choice is index 49 

to capture the entire first half of the signal, but index 46 was selected as optimal for the 

particular subset of training fitness cases used during optimization with minimal performance 

loss. 

Lastly, a white, uniformly-distributed noise process is used to generate subclass 1c. 

Bounds of -√  to √  for the uniform distribution are selected to produce zero-mean, unit-

variance signals. For this subclass, the optimal feature simply detects the presence of any values 

outside the bounds of the uniform distribution. Consequently, the associated feature in the 

Autofead solution finds the largest magnitude sample using the algorithm [absolute value, 

sorted select (    )]. The sorted select function, using index 99, selects the maximum value. 

Figure 6 illustrates how class 0 and each subclass are separated by the associated 3 

features in the Autofead solution. Each column provides a series of images corresponding to the 

processing steps in a single feature algorithm. For each image, the horizontal axis indicates 

samples of the sequences at the given processing step and is supplemented with the sum of the 

current sequences on the right end. The vertical axis represents the entire data range for 

individual sequence indices. At each sequence index, the values from all fitness cases are sorted 



43 

 

and replaced by their known class labels. Then, the background images are generated by 

assigning a color or gray-level value to each class. In the foreground, median values and 

quartiles at each sample across all sequences are shown by black and white lines, respectively. 

This visualization technique provides a number of advantages for feature algorithm 

analysis and design in conjunction with Autofead. Although absolute values and distribution 

shapes are admittedly obscured, class separability is only dependent on the relative distribution 

of the classes over the value range, which is explicitly presented by the visualization. For 

example, Figure 6(a) shows a completely heterogeneous image indicating that the two class 

distributions are highly overlapped across the entire sequence. In terms of feature design, a fully 

heterogeneous image dictates application of an order-dependent function as any element 

operations or distribution-altering, index-altering, or dimension-reduction functions would act 

equally on both classes.  

In contrast, the final image for each feature shows clear regions of homogeneity 

indicating a difference between classes that can be exploited as a feature. After the absolute 

value operation in feature 1, Figure 6 (d) shows the largest values across the sequence belong to 

class 0 and the smallest values fall in subclass 1a. The sum column on the right clearly shows 

that summing the sequences at this point generates a feature with excellent class separability. 

Features 2 and 3 end with different dimension-reduction functions than feature 1 

corresponding to specific characteristics apparent in the processing images. Figure 6(h) contains 

columns in the middle of the sequence with large class separability even though the sum column 

only shows small class differences. Consequently, feature 2 ends by selecting index 46 as the 

feature output. Lastly, Figure 6(j) shows that the largest values across all indices belong 

unanimously to class 0. The presence of a percentile level (row in the image) composed of  
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Autofead feature 1 Autofead feature 2 Legend 

   

(a) Input (class 0 and subclass 1a) (e) Input (class 0 and subclass 1b) Autofead feature 3 

   

(b) 1. High-pass filter (p=0.700) (f) 1. Cube (i) Input (class 0 and subclass 1c) 

   

(c) 2. Cube (g) 2. Absolute value (j) 1. Absolute value 

   

(d) 3. Absolute value (h) 3. Cumulative summation (k) 2. Sort (from sorted select) 

4. Sum 4. Select (    ) 3. Sorted select (    ) 

Figure 6 – DSD solution processing steps 
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largely a single class suggests terminating the feature through the sorted select function. The 

image in Figure 6(k) after the sort operation alone clearly shows excellent class separation for 

the largest indices corresponding to the maximum values in the unsorted sequences.  

The feature distributions for the optimal solution and Autofead solution are given in 

Figure 7 conditioned on class 0 and the three subclasses of class 1. The arrows in Figure 7(c) 

and Figure 7(f) indicate impulse or near-impulse distributions. For each feature, one, and only 

one, subclass shows large separation from class 0 verifying that the problem requires at least 

three features to construct a near-optimal solution. In this case, the accuracy of the discovered 

solution is identical to the optimal solution to within 0.1%. The results for the DSD problem 

demonstrate that Autofead can design simple features and perform feature selection within its 

population. 

 

 

 

   

(a) Autofead feature 1 (b) Autofead feature 2 (c) Autofead feature 3 

   

(d) Optimal feature for subclass 1a (e) Optimal feature for subclass 1b (f) Optimal feature for subclass 1c 

Figure 7 – DSD solution features’ probability density function estimates 
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3.2. Signal Detection Problems 

The second set of validation experiments employs two classic problems from detection 

theory, involving determining the presence of a sinusoidal signal obscured by WGN. The run 

configuration for these problems is provided by Table 5. Solutions were limited to a single 

feature in these experiments to reduce computational expense as the optimal solutions were 

known to only require a single feature. 

For signal detection problem 1, class 0 contains noise alone, and class 1 includes a -10 

dB signal-to-noise ratio sinusoid with random phase and frequency. The phase is uniformly 

distributed over –  to   radians, and the frequency is uniformly distributed between     and 

     rad/s. With 100 sample input signals, the frequency range endpoints correspond to the bin 

centers of FFT bins 10 and 20. 

The optimal feature for signal detection problem 1 is the maximum magnitude of the 

FFT from bins 10 through 20. Four separate behaviors are necessary to compute the optimal 

feature. Low- and high-frequency content outside the signal frequency range must be removed. 

 

Table 5 – Koza tableau for signal detection run configuration 

Parameter Setting 

Objective Derive optimal single feature for signal detection 

Solution structure Single feature consisting of a sequence of functions, omitted class mean signals 

Function set 

35 functions from function library plus separate function, sum windows; omitted center, center and 

scale, convolve, cross-correlate, element difference, element product, element quotient, element sum, 

inverse, sigmoid, slope fit, and wavelet 

Pattern recognition Kernel-based Naïve-Bayes classifier 

Fitness Minimize classification error bounded on [0,1] 

Fitness case sampling 96% testing percentage split for each generation 

Evolution strategy Generational, population size of 500, no elitism 

Solution size Single feature limited to 15 functions and 8 parameters 

Population initialization Single feature ramped to initial maximum size of 5 functions and 3 parameters 

Selection Tournament, tournament size 4 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  20 generations; 10,000 individuals 

Run repetitions  30; 300,000 total individuals 
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Next, the amount of sinusoidal energy present at each frequency is measured. Finally, the 

maximum energy level is selected as the feature. Figure 8 depicts four solutions found by 

Autofead that perform these behaviors in different ways. Feature A is the true optimal feature in 

minimal form. Feature B uses simple filtering operations to control the frequency content with a 

slight reduction in fitness due to the filter roll-off characteristics in the filtering functions. 

Function C utilizes an interesting pattern to select the maximum over the first 20 FFT bins with 

the low-frequency content removed by high-pass filtering. Lastly, feature D extracts FFT bins 

10 to 20 using the sliding windows function resulting in optimal fitness. Here, the construction 

of the third of 9, 11-sample subsequence windows corresponding exactly with indices 10 

through 20 is purely coincidental. With a different range of signal frequencies, the same feature 

would have suffered a small performance loss by missing useful, or retaining unneeded, FFT 

bins. 

 

 

 

Figure 8 – Signal detection problem 1 solution feature algorithms 
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Signal detection problem 1 represents a significantly more challenging feature 

algorithm design problem than the DSD problem. Here, the optimal solution requires at least 

four functions including three parameters. Autofead again performed excellently finding a 

variety of optimal and near-optimal features. Furthermore, the search discovered 

unconventional function patterns to effectively perform needed behaviors such as in feature C. 

For all of these features, the optimized parameter values selected in the optimization scheme 

represented the true, global optimal values. 

Signal detection problem 2 adds an additional level of complexity to the previous 

experiment by obscuring the sinusoidal signal in a longer WGN sequence with a random signal 

arrival time. Each signal contains 500 samples with class 1 including a 100-sample long 

sinusoid with starting index uniformly distributed over sample range 0 to 399. The optimal 

solution requires calculation of the optimal feature from signal detection problem 1 for every 

100-sample subsequence in the time series then selecting the maximum value. The sliding 

windows function is designed to permit this type of behavior; however, the restrictions on 

number of windows and overlap between sequential windows make the optimal solution 

unrealizable in the solution space. The best Autofead solution as-found is shown in Figure 9 

along with the optimal solution utilizing an all sliding windows function not present in the 

function library. The classification accuracy of the as-found solution is 85.8% compared to the 

optimal level of 90.8%, and the solution is accomplished with only three parameters as opposed 

to five in the optimal feature.  

Although Autofead did not find an optimal-fitness solution, the as-found feature is 

sufficient as a starting point for manual refinements to reach the optimal feature. Figure 9 shows 

three refinement steps based on understanding of the behaviors within the as-found feature.  
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Figure 9 – Signal detection problem 2 solution feature algorithms 

First, the auto-correlation function prior to an FFT operation is removed as it only acts as a 

triangular windowing process due to the biased estimation process. For refinement 2, it is 

recognized that the Hanning window and keep beginning functions act together to weight a 

range of sequence indices in the summation. Replacing Hanning window with keep end creates 

a rectangular window sized by the parameter optimization process. Lastly, repeated power 

functions and exponentials before a summation tend to emphasize the largest values, so we 

replace the three square functions with sorted select resulting in the final and optimal feature. 

Therefore, the Autofead as-found solution, while useful on its own, is best treated as a starting 

point for a post-search refinement and improvement process. Currently, such refinement must 

be performed manually but could be automated. 

Through the DSD and signal detection experiments, Autofead is shown to produce 

optimal and near-optimal solutions in substantially similar form to the known analytical 

solutions. Only training instances are provided to the method to achieve these results whereas 

derivation of the optimal solution requires complete system knowledge. These experiments 

validate the basic solution space design and hybrid search method utilized by Autofead. 
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A portion of this chapter has been published in IEEE Transactions on Evolutionary 

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Numeric Sequence Classification by Genetic Programming”. The 

dissertation author was the primary investigator and author of this paper. 
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  Chapter 4

Application to Structural Health Monitoring 

4.1. Introduction to Structural Health Monitoring 

Structural health monitoring (SHM) systems provide in-situ damage and performance 

information for civil, aerospace, and other high-capital value or safety-critical structures. The 

conventional processing flow for data-driven SHM systems begins with acquisition of time 

series structural response measurements. After pre-processing, a set of one or more damage-

sensitive features is calculated in a feature extraction process that is then input to a pattern 

recognition algorithm to perform the desired task. The classification or regression analysis 

forms the basis for decision-making under the uncertainty and noise that typically affect the 

SHM process. Summary reviews on the field are provided in Doebling, Farrar, and Prime [46] 

and Farrar, Doebling, and Nix [47]. For the interested reader, Farrar and Worden provide a 

more comprehensive treatment of the field of SHM in their recent work [48]. 

Typical structural response measurements used by SHM systems consist of time series 

or spectral measurements of acceleration, velocity, force, or strain. The desired output includes 

binary detection of damage, classification of damage type, and estimation of damage location 
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and extent. As such, the field can be viewed as a specialized application of time series 

classification. In conventional model-based SHM, knowledge of the structure, loading, and 

operating conditions drives the development and verification of a model, which can be data-

based or physics-based [48]. Parameters of the model or error measures within the modeling 

and prediction processes are used as features. Feature-based approaches are also common for 

SHM with feature algorithm design based on engineering judgment and domain knowledge. 

Little work has applied general time series classification methods that rely on training data 

alone to SHM problems.  

4.2. SHM Feature Extraction 

Development of effective features for a specific SHM system presents two key 

difficulties. First, the features must be sensitive to the damage states of interest in the system 

such that statistically detectable changes occur when the system undergoes damage. Second, the 

features must be insensitive to the varying operational or environmental conditions the system 

may experience in use. SHM axiom IVb states that “without intelligent feature extraction, the 

more sensitive a measurement is to damage, the more sensitive it is to changing operational and 

environmental conditions” [49]. The design of robust, damage-sensitive features for a specific 

application can be an expensive and time-consuming task requiring extensive system 

knowledge and domain expertise or, absent that, substantial trial-and-error. 

The objectives of a fully data-driven approach to SHM feature design are thus two-fold. 

First, the question is posed “How should we process response measurements to extract damage 

information when minimal system and domain knowledge is available?” An automated, data-

driven approach to feature design directly infers from a training database of response 

measurements a feature set specific to the problem at hand. Such an automated approach 
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provides the additional benefit of significantly reduced time and effort for the overall SHM 

system design process. Second, the additional goal of designing robust features may be met 

directly by including examples of the expected operational and environmental variability within 

the training data. Thus, the fundamental assumption in this approach is that data are available 

that are known to span the desired classification or regression spaces of the SHM system. 

Autofead provides a feature-based time series classification solution with no required 

knowledge of the data-generating system. This approach is widely applicable to SHM problems 

involving complex structures or failure modes that are difficult to model or to reduce the 

required development time and effort for an SHM system. The remainder of this chapter 

demonstrates direct application of Autofead to three SHM-related laboratory experiments. 

4.3. Ultrasonic Damage Detection 

For the first experiment, the goal is to determine the presence of damage in a steel beam 

simulated by a magnet using a single pitch-catch measurement from a pair of piezoelectric 

elements. The experimental structure is shown in Figure 10. The training data contains 500 

undamaged instances with no magnet and 500 damaged instances with the magnet located at 40 

different locations on the same side of the beam as the actuator and sensor. Recorded signals 

include 750 samples collected at 2 MHz as seen in the examples in Figure 10. The actuation 

signal is a 200 kHz Gaussian-modulated sine wave with 0.6 normalized bandwidth. 

Conventional pre-processing operations for this task include matched filtering, envelope 

analysis, and baseline subtraction. The convolve function is configured here to perform 

convolution with the actuation signal for matched filtering. An envelope analysis can be carried  
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(a) Experiment photos 

  

(b) Undamaged (without magnet) example time series (c) Damaged (with magnet) example time series 

Figure 10 – Ultrasonic damage detection experiment 

out by the Hilbert magnitude function. Additionally, the undamaged measurements are 

averaged to provide a healthy baseline input. By including a baseline, it is possible for Autofead 

to construct features including a baseline subtraction component through the element difference 

merging function. The use of the actuation signal for convolution and inclusion of an average 

baseline channel represent examples of how domain knowledge can be incorporated into 

Autofead to tailor the method for a specific problem.  

For comparison solutions, waveforms are pre-processed by matched filtering and 

envelope analysis; then total energy and peak amplitude features with and without baseline 

subtraction are computed. Interested readers are directed to Farrar and Worden [48], Raghavan 

and Cesnik [50], and Flynn, Todd, Wilcox, Drinkwater, and Croxford [51] for an introduction to 

the use of ultrasonics and guided-waves in SHM. The Autofead solution was found using the 

configuration in Table 6. 
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Table 6 – Koza tableau for ultrasonic damage detection run configuration 

Parameter Setting 

Objective Design optimal feature set to detect presence of simulate damage by magnet 

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals  

Function set 44 functions from function library; omitted bisection select, convolve, and sorted select 

Pattern recognition Kernel-based Naïve-Bayes classifier 

Fitness Minimize classification error bounded on [0,1] 

Fitness case sampling  -fold cross-validation 

Evolution strategy         with        ,        , and      

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters 

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters 

Selection Tournament, tournament size 2 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  980 iterations; 50,000 individuals 

Run repetitions  50; 2.5 million total individuals 

The Autofead solution contains a single feature based on a cross-correlation between 

the measured waveform and average baseline. Figure 11 characterizes the original input data 

and how the data progresses through each processing step in the Autofead feature. See section 

3.1 for a detailed interpretation of the solution processing images. 

 

 

 

 
 

 

(a) Input signals (d) 3. Control chart modifies values on [-0.38,0.42]  

  

(b) 1. Cross-correlate (with averaged baseline) (e) 4. Low-pass filter (       ) 

  

(c) 2. Sigmoid (f) 5. FFT imaginary  

  6. Sum 

Figure 11 – Ultrasonic damage detection solution processing steps 
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Figure 12 shows class-conditioned histograms and probability density function (PDF) 

estimates for the Autofead feature and four conventional features. From the distributions, the 

Autofead feature clearly provides greater separation of the undamaged and damaged classes. 

The unusual distributions for the damaged class are primarily due to the inclusion of 40 

different magnet locations with varying levels of detection difficulty. For example, if only a 

single damage location was included, one would expect peak amplitude without baseline 

subtraction to either be consistently smaller, larger, or identical with damage to the undamaged 

class. The receiver operating characteristics (ROC) curves in Figure 13 show the trade-off 

between false positives and correct detections using each feature from Figure 12. The ROC 

curves confirm that the Autofead feature outperforms the conventional solutions with nearly 

 

 

  

 (b) Total energy (d) Peak amplitude 

   

(a) Autofead feature (c) Total energy after baseline 
subtraction 

(e) Peak amplitude after baseline 
subtraction 

Figure 12 – Ultrasonic damage detection solutions’ feature probability density function estimates 
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Figure 13 – Ultrasonic damage detection receiver operating characteristic (ROC) curves 

perfect classification accuracy at 99.9%. However, it is important to note that the Autofead 

solution is designed to be specific to the training data. In this case, the experiment only includes 

a single beam, sensor pair, and damage type in a controlled laboratory environment. The 

comparison solutions may generalize better to variation of the conditions of the experiment as 

well as other ultrasonic structural interrogation applications. To design a general feature for 

these applications, any expected structural, operational, and environmental variability would 

need to be included in the training data input to Autofead. 

4.4. Damage Type Identification for Rotating Machinery 

The second experiment involves identifying three bearing health states in the 

Machinery Fault Simulator from Spectraquest, Inc. depicted in Figure 14. The motor drives a 

gearbox through a set of drive belts and a 91.4 cm shaft supported by three Rexnord ER12K ball 

bearings. Damage is introduced to the bearing farthest from the motor by replacing the healthy 
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Figure 14 – Rotating machinery experiment photos 

bearing with a pre-damaged specimen. The damage cases include a bearing with ball spalling 

and a bearing with an outer race fault.  

Time series response measurements are collected from the accelerometer located on top 

of the housing of the bearing of interest. Each response measurement consists of 540 samples 

collected at a sampling rate of 2.56 kHz. All responses are collected at a steady-state shaft speed 

of 1,000 rpm (16.7 Hz). Figure 15 shows example measurements for each class.  

 

 

   

(a) Healthy (b) Ball spalling (c) Outer race fault 

Figure 15 – Rotating machinery example time series 
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Table 7 – Koza tableau for rotating machinery run configuration 

Parameter Setting 

Objective Design optimal feature set to detect presence of damaged bearings 

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals 

Function set 45 functions from function library; omitted bisection select and sorted select 

Pattern recognition Kernel-based Naïve-Bayes classifier 

Fitness Minimize classification error bounded on [0,1] 

Fitness case sampling  -fold cross-validation 

Evolution strategy         with        ,        , and      

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters 

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters 

Selection Tournament, tournament size 2 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  980 iterations; 50,000 individuals 

Run repetitions  50; 2.5 million total individuals 

The loading of the gearbox through the drive belts and the presence of an outer race 

fault on one bearing specimen produce an asymmetry to the system along the shaft axis. 

Therefore, the system is disassembled and reassembled 8 times per bearing specimen to mitigate 

experimental errors. 5,120 instances are collected for each of the three damage conditions. 

Autofead’s training data includes twenty-five percent of the instances with the rest held out for 

independent solution testing. The selected run parameters are listed in Table 7.  

Conventional solutions for comparison are selected from ten metrics presented in the 

review of vibration analysis methods for rotating machinery by Lebold, McClintic, Campbell, 

Byington, and Maynard [52]. Calculation of many of the metrics requires knowledge of the 

internal geometry of components such as bearings and gearboxes to identify fundamental 

frequencies for various filtering operations. Of the ten metrics, FM4 and RMS provide the best 

performing pair of features for use with the classifier used by Autofead solutions. 

Figure 16 shows the signal processing flow for the two features in the Autofead 

solution. The first feature is approximately the median value after pre-processing by a non-

linear scaling operation, high-pass filtering, and lastly an envelope analysis. This feature is 

difficult to interpret due to the untraditional pre-processing sequence. Feature 2 is simply the 
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energy within a narrow frequency band after the sigmoid operation, which primarily reduces the 

effect of outliers. Both features contain parameters that are optimized to remove lower-

frequency components of the response. 

 

      

(a) Input signals 

Feature 1 Feature 2 

  

(b) 1. Exponential (g) 1. Sigmoid 

  

(c) 2. Normalize (h) 2. FFT magnitude 

  

(d) 3. High-pass filter (       ) (i) 3. Keep end (     ) 

  

(e) 4. Hilbert magnitude (j) 4. Keep beginning (     ) 

  

(f) 5. Sorted select (index 599) (k) 5. Set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑       ) 

 6. Sum 

Figure 16 – Rotating machinery solution processing steps 
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(a) Feature 1 parameters (b) Feature 2 integer type parameters 

 
Fitness 

 

 (c) Feature 2 continuous parameter 

Figure 17 – Rotating machinery solution parameter spaces 

Figure 17 presents the parameter spaces for the two parameters in feature 1 and three 

parameters in feature 2. In each image, fitness levels are computed with all other parameters in 

the individual held to their final optimized values indicated by the black circles. These surfaces 

show some of the complexity and variety of parameter optimization problems encountered 

within the Autofead solution space. The parameter space for feature 1 is fairly smooth and 

unimodal, while the space for the integer parameters in feature 2 is dominated by a large low-

fitness region. The small region of higher fitness is fairly rough containing many local extrema. 

Finally, the surface for the set minimum value parameter in feature 2 includes a significant 

discontinuity around       . In each case, Autofead’s parameter optimization scheme 

provides results near the global optimum. 
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(a) Autofead solution (b) Conventional solution 

Figure 18 – Rotating machinery solution feature space 

The two-dimensional feature spaces for the Autofead solution and conventional metrics 

are given in Figure 18 including decision boundaries from the Naïve-Bayes classifier. The 

conventional solution relies primarily on the RMS metric to separate the classes and achieve 

classification accuracy of 78%. In comparison, the two features in the Autofead solution 

complement each other to provide excellent separation between all three classes resulting in 

99% classification accuracy. 

4.5. Vibration-Based Damage Extent Estimation 

The final experiment uses the bolted, aluminum bookshelf structure in Figure 19 with 

the goal of estimating damage extent from vibration-based response measurements. The 

structure is composed of four, 2.5 cm thick aluminum plates measuring 30.5 cm wide by 30.5 

cm deep. The plates are supported by rectangular columns at each corner for a total structure 

height of 53.1 cm. The entire structure is mounted on a rail system to constrain the motion to a  
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Figure 19 – Damage extent estimation experiment photos 

single primary direction. An electrodynamic shaker provides excitation along the midline of the 

bottom floor though a stinger and load cell. Responses are measured by accelerometers mounted 

to the midlines of each floor in the primary direction of motion. 

Damage is introduced by changing the width of the gap in a bumper and column system 

mounted on the second and third floors, respectively. Relative motion of the two floors causes 

impacts between the bumper and column. When the width of the gap is small, more impacts 

occur for a given excitation representing a higher level of damage. Six damage levels are 

included in the training data with the task of estimating the damage level using linear regression 

from the four response measurements and the input measurement from the load cell. Damage 

level 0 represents the healthy state with a wide enough gap such that no impacts occur. Damage 

levels 1, 1.33, 1.54, 2, and 4 are proportional to their respective gap widths of 0.20, 0.15, 0.13, 

0.10, and 0.05 mm. 
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Table 8 – Koza tableau for damage extent estimation run configuration 

Parameter Setting 

Objective Design optimal feature set to estimate extent of simulated damage from bumper impacts with column 

Solution structure Set of features consisting of a sequence of functions  

Function set 44 functions from function library; omitted bisection select, convole, and sorted select 

Pattern recognition Linear regression 

Fitness Minimize RMS error [0,1] 

Fitness case sampling  -fold cross-validation 

Evolution strategy         with        ,        , and      

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters 

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters 

Selection Tournament, tournament size 2 

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  980 iterations; 50,000 individuals 

Run repetitions  50; 2.5 million total individuals 

The structure is excited by band-limited white noise from 20-150 Hz to include the first 

three natural frequencies and avoid low-frequency, rigid-body modes. Response measurements 

are collected at 320 Hz for 3.2 seconds (1,024 samples). Two hundred fitness cases are included 

in the training data from each of the six damage levels. Full details of the structure, data 

acquisition system, and test plan are found in Figueiredo, Park, Figueiras, Farrar, and Worden 

[53]. The Autofead configuration for this multivariate regression task is given by Table 8. 

A multitude of possible solutions exist in the literature for vibration-based damage 

detection and localization such as those in Farrar and Worden [48]. For this example, 

conventional solutions were selected from the methods compared in Figueiredo et al. [53]. The 

statistical moments solution includes the mean, variance, skewness, and kurtosis for each of the 

four response channels for a total of 16 features. Skewness is a particularly useful feature for 

this problem as the simulated damage case adds asymmetry to an initially symmetric system. 

The natural frequencies solution includes estimates of the first three natural frequencies of the 

structure through the frequency response and complex mode indicator functions. Two solutions 

are based on autoregressive (AR) time series modeling. The AR(5) parameters solution uses the 

parameters from a fifth-order model as features. A separate model is fit for each response 
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channel to generate 20 features. Lastly, AR(20) RMS error includes the root mean square error 

level for each response channel using a 20-order model fit to responses from damage level 0. 

For this solution, the RMS error is expected to increase as the damage level increases creating a 

system progressively less similar to the healthy state. 

The Autofead solution uses three features as depicted in Figure 20. For visualization 

purposes, the processing images are displayed with only damage levels 0, 1, and 4. Features 1 

and 2 use the second floor response while feature 3 uses a cross-correlation between the top two 

floors. While these features are difficult to fully interpret due to highly non-linear behavior of 

some of the element operations, certain characteristics of the data are clear. For instance, the 

higher damage levels contain more high-frequency content. Unsurprisingly, all three features 

utilize the response measurements from the floors where the bumper and column are mounted. 

Investigation of the three-dimensional feature space formed by the Autofead solution 

reveals the complementary nature of the three features. Figure 21 depicts a three-dimensional 

scatter plot with PDF estimates along each feature axis conditioned to the six damage levels. 

Features 1 and 3 both increase monotonically with the damage level but cannot separate damage 

levels 0 and 1; however, feature 2 provides the additional information needed to separate the 

lowest two damage levels. Although the classes are fairly well-separated in the feature space, it 

is clear that a linear regression model is insufficient to fully utilize the information in the 

Autofead solution. This is an example where the simple pattern recognition algorithm is 

sufficient within Autofead to perform feature design, but the final solution would benefit from 

selection of a more advanced regressor. 

To evaluate the relative performance of the Autofead solution and four comparison 

solutions, distributions of the damage level estimates using linear regression are shown in  
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 Feature 2 (floor 2 input) Feature 3 (floor 2 and 3 inputs) 

   

(a) Floor 2 input (f) 1. High-pass filter (       ) (l) 1. Normalize 

   

(b) Floor 3 input (g) 2. Absolute value (m) 2. High-pass filter (       ) 

   

Feature 1 (floor 2 input) (h) 3. Normalize (n) 3. Cross-correlate 

   

(c) 1. Cube (i) 4. Log10 (o) 4. Log10 

   

(d) 2. FFT magnitude (j) 5. Log10 (p) 5. Square root 

   

(e) 3. FFT real (k) 6. Sorted select (index 642) (q) 6. Sorted select (index 868) 

4. Sum   

Figure 20 – Damage extent estimation solution processing steps 
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Figure 21 – Damage extent estimation solution features’ probability density function estimates and 

feature space 

Figure 22 along with the true damage levels indicated by vertical, dashed lines. Clearly, the 

Autofead solution and AR(5) parameters provide the most accurate and consistent estimates 

across the damage levels. Damage level 1 is an interesting case where bimodal behavior is 

observed for some of the solutions with one mode overlapping damage level 0. This result is 

most likely due to a mislabeling in the training data in cases where the gap width was set 

correctly to 0.20 mm but no actual impacts occurred within the measurement time. However, 

without an independent measure of impact counts, this hypothesis cannot be confirmed. If true, 

the Autofead solution significantly outperforms the other solutions in separating the instances 

from damage level 1 where impacts do and do not occur. 

Table 9 provides the RMS error for the five solutions with the two best solutions at each 

damage level shown in bold. The results for damage level 1 do not follow the trends of the other 

levels due to the previously discussed bimodal behavior issue. For all other levels, as well as on  
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(a) Autofead solution (3 features) (b) Natural frequencies (3 features) (c) Statistical moments (16 features) 

   

(d) AR(5) parameters (20 features) (e) AR(20) RMS error (4 features)  

Figure 22 – Damage extent estimation solution accuracies 

average, the Autofead solution provides the lowest or second-lowest error level. While the error 

is similar for the next best solution of AR(5) parameters, the dimension reduction provided by 

Autofead is significant using only 3 features compared to 20.  

 

 

Table 9 – Damage extent estimation solution RMS errors 

Damage level Autofead Natural frequencies Statistical moments AR(5) parameters AR(20) RMS error 

0 0.36 0.98 0.56 0.39 0.47 

1 0.45 0.24 0.44 0.48 0.45 

1.33 0.16 0.44 0.30 0.16 0.34 

1.54 0.15 0.58 0.24 0.16 0.30 

2 0.21 0.78 0.50 0.19 0.53 

4 0.14 1.41 0.30 0.23 0.52 

Average 0.25 0.74 0.39 0.27 0.44 
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This chapter experimentally demonstrates the Autofead method on a variety of SHM 

problems including binary damage detection, classification of damage type for rotating 

machinery, and multivariate regression of damage extent. Significant performance 

improvements over conventional features are realized utilizing only supervised examples. The 

results show Autofead as a promising method for SHM feature design in applications where 

sufficient training data can be acquired. 

A portion of this chapter has been published in Smart Materials and Structures, Dustin 

Harvey and Michael Todd, 2014. The title of this paper is “Structural Health Monitoring 

Feature Design by Genetic Programming”. The dissertation author was the primary investigator 

and author of this paper. 



70 

  Chapter 5

Benchmark Study 

5.1. Problem Set 

This chapter provides a direct comparison between Autofead and state-of-the-art TSC 

methods. Openly available data sets allow for evaluation and comparison of methods over a 

wide range of application areas. The largest repository is hosted at the UCR Time Series 

Classification/Clustering Page [54]. This database is used by many TSC researchers providing 

direct, unbiased comparison of results using the predefined training and testing splits in the data. 

For this study, 43 problems in the UCR database were supplemented with an additional 6 

problems provided by Bagnall et al. [12].  

5.1.1. Characterization 

The 49 problems selected for this study represent a wide range of data types and 

problem dimensions. Table 10 provides characteristics for each of the 49 problems studied 

including data type, data source, number of classes, instance counts, and the number of samples 

in the input data. 25 problems consist of time series measurements from a variety of sensors.  
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Table 10 – Benchmark study problem characteristics 

Data type Problem Source Number of classes Training instances Testing instances Time series length 

Sensor 

ChlorineConcentration [54] 3 467 3840 166 

CinC_ECG_torso [54] 4 40 1380 1639 

Cricket_X [54] 12 390 390 300 

Cricket_Y [54] 12 390 390 300 

Cricket_Z [54] 12 390 390 300 

Earthquakes [12] 2 322 139 512 

ECG200 [54] 2 100 100 96 

ECGFiveDays [54] 2 23 861 136 

ElectricDevices [12] 7 8953 7745 96 

FordA [12] 2 3571 1320 500 

FordB [12] 2 3601 810 500 

Gun-Point [54] 2 50 150 150 

InlineSkate [54] 7 100 550 1882 

ItalyPowerDemand [54] 2 67 1029 24 

Lightning2 [54] 2 60 61 637 

Lightning7 [54] 7 70 73 319 

Motes [54] 2 20 1252 84 

SonyAIBORobotSurface [54] 2 20 601 70 

SonyAIBORobotSurfaceII [54] 2 27 953 65 

StarLightCurves [54] 3 1000 8236 1024 

TwoLeadECG [54] 2 23 1139 82 

uWaveGestureLibrary_X [54] 8 896 3582 315 

uWaveGestureLibrary_Y [54] 8 896 3582 315 

uWaveGestureLibrary_Z [54] 8 896 3582 315 

Wafer [54] 2 1000 6174 152 

Shape 

representation 

50Words [54] 50 450 455 270 

Adiac [54] 37 390 391 176 

DiatomSizeReduction [54] 4 16 306 345 

FaceAll [54] 14 560 1690 131 

FaceFour [54] 4 24 88 350 

FacesUCR [54] 14 200 2050 131 

Fish [54] 7 175 175 463 

HandOutlines  [12] 2 1000 300 2709 

Haptics  [54] 5 155 308 1092 

OSULeaf  [54] 6 200 242 427 

SwedishLeaf  [54] 15 500 625 128 

Symbols  [54] 6 25 995 398 

WordsSynonyms  [54] 25 267 638 270 

Yoga  [54] 2 300 3000 426 

Synthetic 

ARSim  [12] 2 2000 2000 500 

CBF  [54] 3 30 900 128 

MALLAT  [54] 8 55 2345 1024 

Synthetic_Control  [54] 6 300 300 60 

Trace [54] 4 100 100 275 

Two_Patterns  [54] 4 1000 4000 128 

Spectral 

Beef  [54] 5 30 30 470 

Coffee [54] 2 28 28 286 

OliveOil  [54] 4 30 30 570 

Histogram MedicalImages  [54] 10 381 760 99 
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One-dimensional shape representations account for 14 problems. Six problems are synthetically 

generated to test specific aspects of TSC methods, and the last four contain spectral and 

histogram data. The authors note that the Motes data set is sometimes referred to as MoteStrain 

in other works. 

5.1.2. Problem Descriptions 

This section provides a brief explanation of the type of data and classes in each 

problem. In some cases, insufficient information was available to clearly state the nature of the 

data and classes. Problems are listed alphabetically with problem names emboldened.  

50Words: 50 handwritten words from shape profiles 

Adiac: 37 taxa of single-celled alga from curvatures extracted from binary images 

ARSim: 2 distinct AutoRegressive processes designed specifically to be difficult to separate in 

the time domain 

Beef: 5 degrees of contamination in beef from spectrographs 

CBF: 3 synthetic waveform shapes scaled, stretched, and shifted with random additive noise 

ChlorineConcentration: 3 classes related to the concentration of chlorine in a simulated water 

distribution system from time series of chlorine levels at pipe junctions 

CinC_ECG_torso: 4 patients from electrocardiogram measurements at various torso-surface 

sites 

Coffee: 2 classes of coffee (Arabica or Robusta) from spectrographs 

Cricket_X: 12 cricket umpire gestures from x-axis accelerometer measurements in a wristband 

Cricket_Y: 12 cricket umpire gestures from y-axis accelerometer measurements in a wristband 

Cricket_Z: 12 cricket umpire gestures from z-axis accelerometer measurements in a wristband 

DiatomSizeReduction: 4 taxa of single-celled alga from shape representations 
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Earthquakes: Binary prediction of impending major earthquake event in California from 

segments of one-hour averages of seismic activity 

ECG200: Binary abnormality detection in a single heartbeat of an electrocardiogram 

ECGFiveDays: 2 dates five days apart from single heartbeats of an electrocardiogram of a 67 

year old male 

ElectricDevices: 7 groups of household devices from electrical demand profiles 

FaceAll: Similar to FaceFour and FacesUCR 

FaceFour: 4 people from shape representations of head outlines from side 

FacesUCR: 14 people from shape representations of head outlines from side 

Fish: 7 species of fish from shape representations 

FordA: Binary detection of a symptom in an automotive subsystem from acoustic 

measurements of engine noise collected in typical operating conditions 

FordB: Binary detection of a symptom in an automotive subsystem from acoustic 

measurements of engine noise with training data collected in typical operating 

conditions and test data collected under noisy conditions 

Gun-Point: 2 distinct actions performed by actors from x-axis record of hand motion from 

video surveillance camera 

HandOutlines: Binary detection of hand segmentation accuracy in an image from shape 

representation 

Haptics: 5 shapes drawn on a touchscreen from trace of x-axis position alone 

InlineSkate: 7 speeds of professional inline speed skaters on a treadmill from angular 

measurement of ankle movement 

ItalyPowerDemand: 2 ranges of dates from power demand records in Italy 
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Lightning2: 2 categories of lightning strikes from power density profiles measured from 

satellite instruments 

Lightning7: 7 categories of lightning strikes from power density profiles measured from 

satellite instruments 

MALLAT: 8 synthetic waveforms with simulated faults 

MedicalImages: 10 different region of human body from histograms of pixel intensity in a 

medical image 

Motes: 2 sensors in a laboratory network of Berkeley Mote sensors 

OliveOil: 4 countries of origin from spectrographs of olive oil 

OSULeaf: 6 tree species from shape representations of leaves 

SonyAIBORobotSurface: 2 surfaces from x-axis accelerometer measurements of Sony AIBO 

robot motion 

SonyAIBORobotSurfaceII: 2 surfaces from y-axis accelerometer measurements of Sony 

AIBO robot motion 

StarLightCurves: 3 categories of stars from light intensity measurements 

SwedishLeaf: 15 tree species from shape representations of leaves 

Symbols: 6 classes representing 3 symbols drawn on a touchscreen using either x- or y-axis 

position traces 

Synthetic_Control: 6 common control chart patterns from synthetic waveforms 

Trace: 4 transient signal behaviors from synthetic waveforms 

Two_Patterns: 4 combinations of upward and downward steps in synthetic waveforms 

TwoLeadECG: 2 leads of electrocardiogram record 

uWaveGestureLibrary_X: 8 gestures from x-axis of handheld device acceleration 

measurement 
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uWaveGestureLibrary_Y: 8 gestures from y-axis of handheld device acceleration 

measurement 

uWaveGestureLibrary_Z: 8 gestures from z-axis of handheld device acceleration 

measurement 

Wafer: Binary abnormality detection from in-line process control measurement for silicon 

wafer processing 

WordsSynonyms: 50 handwritten words remapped to 25 classes from shape profiles 

Yoga: Gender identification from shape representations of images of yoga poses 

5.1.3. Autofead configuration 

The run configuration is identical for all problems in the benchmark study as shown in 

Table 11. 750,000 candidate solutions were generated for each problem over 25 runs from 

which the minimum fitness candidate is reported as the Autofead solution. The entire study 

required roughly six months of computing time on a dozen standard desktop workstations 

utilizing Intel Core i5-3470 quad-core, 3.2 GHz processors. 

5.2. Comparing TSC Methods 

For benchmarking, Autofead is evaluated in terms of accuracy, interpretability and 

computational cost on 49 data sets across a wide range of problem types and characteristics. To 

assess accuracy, Autofead solutions are directly compared with published state-of-the-art TSC 

methods. The interpretability of solutions and data mining potential is demonstrated through 

four examples in section 5.2.2. For computational cost, it was not considered worthwhile to 

perform direct comparisons at this stage of Autofead's implementation and development, but 

general conclusions are still possible in this regard. 
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Table 11 – Koza tableau for benchmark study run configuration 

Parameter Setting 

Objective Design optimal feature set for time series classification problems 

Solution structure Classifer selection and set of features consisting of a sequence of functions 

Function set 44 functions from function library; omitted convolve, select, and sorted select 

Pattern recognition Selection of Gaussian Naïve-Bayes, linear disciminant analysis, and logistic regression classifiers 

Fitness Minimize classification error bounded on [0,1] and break ties with quadratic loss 

Fitness case sampling    -fold repeated, stratified cross-validation 

Evolution strategy         with        ,        , and       

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters 

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters 

Selection Tournament, tournament size 2 

Genetic operators Crossover, 70%; mutate, 7%; reproduce, 3%; add feature, 10%; remove feature, 10% 

Termination  280 iterations; 30,000 individuals 

Run repetitions  25; 750,000 total individuals 

5.2.1. Accuracy 

Table 12 and Table 13 provide classification error on independent test data across all 

problems for the 11 methods included for comparison. The authors believe the methods 

presented represent the state-of-the-art for TSC accuracy at the time of writing. Table 12 

includes Autofead, time series forests, two variants of dynamic time warping, and a shapelet 

method using a support vector machine (SVM) classifier. The missing values indicate 

publications that did not provide results for all problems used in this study. Table 13 includes 

the feature database from Fulcher and Jones [18], a transformation-based ensemble [12], and 4 

standard classifiers implemented in the open-source machine learning package Weka applied 

directly to the time series [55]. The latter methods represent a simple approach to TSC of 

treating each sample in the time series as a feature and applying standard classification 

techniques.  

The result for the best method on each problem is given in bold text. Autofead and TSF 

account for over half of the best results across all problems with 13 each. The two DTW 

variants and the shapelet method each perform best on an additional 7 or 8 problems. The final  
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Table 12 – Benchmark study classification error for Autofead, TSF, DTW, and Shapelets  

Problem Autofead 
TSF entrance 

[16] 
1-NN DTW, best 

warping window [54] 
1-NN DTW, no warping 

window [54] 
SVM (linear) with 

shapelets [15] 

ChlorineConcentration  0.423 0.254 0.350 0.352 0.439 

CinC_ECG_torso  0.016 0.039 0.070 0.349 - 

Cricket_X  0.487 0.290 0.236 0.223 - 

Cricket_Y  0.390 0.200 0.197 0.208 - 

Cricket_Z  0.464 0.244 0.180 0.208 - 

Earthquakes  0.266 - - - - 

ECG200  0.000 0.080 0.120 0.230 - 

ECGFiveDays  0.002 0.056 0.203 0.232 0.011 

ElectricDevices  0.340 - - - - 

FordA  0.002 - - - - 

FordB  0.186 - - - - 

Gun-Point  0.040 0.047 0.087 0.093 0.000 

InlineSkate  0.729 0.682 0.613 0.616 - 

ItalyPowerDemand  0.133 0.030 0.045 0.050 0.079 

Lightning2  0.443 0.180 0.131 0.131 - 

Lightning7  0.288 0.260 0.288 0.274 0.301 

Motes  0.133 0.119 0.134 0.165 0.113 

SonyAIBORobotSurface  0.205 0.233 0.305 0.275 0.133 

SonyAIBORobotSurfaceII 0.282 0.187 0.141 0.169 - 

StarLightCurves  0.022 0.036 0.095 0.093 - 

TwoLeadECG  0.046 0.118 0.132 0.096 0.007 

uWaveGestureLibrary_X  0.264 0.210 0.227 0.273 - 

uWaveGestureLibrary_Y  0.351 0.288 0.301 0.366 - 

uWaveGestureLibrary_Z  0.298 0.262 0.322 0.342 - 

Wafer  0.000 0.005 0.005 0.020 - 

50Words  0.448 0.266 0.242 0.310 - 

Adiac  0.276 0.230 0.391 0.396 0.762 

DiatomSizeReduction  0.173 0.049 0.065 0.033 0.078 

FaceAll  0.366 0.233 0.192 0.192 - 

FaceFour  0.330 0.023 0.114 0.170 0.023 

FacesUCR  0.260 0.101 0.088 0.095 - 

Fish  0.251 0.154 0.160 0.167 - 

HandOutlines  0.097 - - - - 

Haptics  0.705 0.552 0.588 0.623 - 

OSULeaf  0.219 0.434 0.384 0.409 - 

SwedishLeaf  0.138 0.106 0.157 0.210 - 

Symbols  0.068 0.112 0.062 0.050 0.154 

WordsSynonyms  0.575 0.379 0.252 0.351 - 

Yoga  0.064 0.151 0.155 0.164 - 

ARSim  0.002 - - - - 

CBF  0.004 0.026 0.004 0.003 - 

MALLAT  0.208 0.045 0.086 0.066 - 

Synthetic_Control  0.010 0.027 0.017 0.007 0.127 

Trace  0.000 0.020 0.010 0.000 0.020 

Two_Patterns  0.000 0.054 0.002 0.000 - 

Beef  0.300 0.233 0.467 0.500 0.133 

Coffee  0.143 0.036 0.179 0.179 0.000 

OliveOil  0.267 0.067 0.167 0.133 - 

MedicalImages  0.387 0.224 0.253 0.263 0.475 

Win/Loss/Tie vs Autofead - 28/15/0 22/19/2 23/18/2 9/8/0 
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Table 13 – Benchmark study classification error for feature database, transformation ensemble, and Weka 

Problem 
Feature 

database [18] 
Ensemble with 

weighted votes [12] 
1-NN 

Euclidean [55] 
MLP 
[55] 

Random 
forest [55] 

SVM 
(LibSVM) [55] 

ChlorineConcentration - - 0.315 0.107 0.333 0.445 

CinC_ECG_torso - - 0.099 0.574 0.387 0.219 

Cricket_X - - 0.436 0.454 0.510 0.459 

Cricket_Y - - 0.351 0.374 0.441 0.372 

Cricket_Z - - 0.405 0.436 0.474 0.415 

Earthquakes - 0.124 0.288 0.281 0.230 0.252 

ECG200 0.010 0.110 0.110 0.160 0.180 0.140 

ECGFiveDays - - 0.194 0.030 0.333 0.390 

ElectricDevices - 0.378 0.401 0.720 0.359 0.673 

FordA - 0.152 0.320 0.154 0.232 0.484 

FordB - 0.265 0.410 0.285 0.388 0.505 

Gun-Point 0.073 0.047 0.080 0.067 0.127 0.233 

InlineSkate - - 0.669 0.711 0.682 0.784 

ItalyPowerDemand - - 0.043 0.047 0.061 0.044 

Lightning2 0.197 0.230 0.197 0.262 0.295 0.295 

Lightning7 0.438 0.301 0.370 0.356 0.370 0.438 

Motes - - 0.142 0.139 0.166 0.131 

SonyAIBORobotSurface - - 0.323 0.286 0.336 0.329 

SonyAIBORobotSurfaceII - - 0.136 0.185 0.239 0.185 

StarLightCurves - - 0.138 0.144 0.063 0.143 

TwoLeadECG - - 0.275 0.053 0.228 0.429 

uWaveGestureLibrary_X - - 0.262 0.255 0.276 0.240 

uWaveGestureLibrary_Y - - 0.338 0.327 0.343 0.327 

uWaveGestureLibrary_Z - - 0.346 0.318 0.333 0.308 

Wafer 0.000 0.004 0.006 0.037 0.007 0.007 

50Words 0.453 0.352 0.356 0.336 0.444 0.396 

Adiac 0.355 0.356 0.407 0.246 0.458 0.916 

DiatomSizeReduction - - 0.065 0.033 0.131 0.699 

FaceAll 0.292 0.294 0.314 0.165 0.405 0.196 

FaceFour 0.261 0.136 0.125 0.125 0.295 0.489 

FacesUCR - - 0.250 0.242 0.383 0.309 

Fish 0.171 0.217 0.217 0.160 0.280 0.549 

HandOutlines - 0.400 0.141 0.641 0.108 0.141 

Haptics - - 0.620 0.562 0.601 0.575 

OSULeaf 0.165 0.422 0.455 0.554 0.512 0.508 

SwedishLeaf 0.227 0.152 0.203 0.126 0.211 0.269 

Symbols - - 0.096 0.145 0.212 0.216 

WordsSynonyms - - 0.378 0.478 0.486 0.483 

Yoga 0.226 0.163 0.167 0.260 0.191 0.329 

ARSim  0.322 0.486 0.415 0.452 0.500 

CBF 0.289 0.172 0.150 0.147 0.182 0.114 

MALLAT - - 0.178 0.143 0.197 0.429 

Synthetic_Control 0.037 0.090 0.120 0.087 0.160 0.023 

Trace 0.010 0.190 0.180 0.230 0.160 0.490 

Two_Patterns 0.074 0.100 0.094 0.104 0.297 0.107 

Beef 0.433 0.179 0.400 0.267 0.433 0.500 

Coffee 0.000 0.200 0.250 0.036 0.286 0.107 

OliveOil 0.100 0.266 0.233 0.133 0.200 0.600 

MedicalImages - - 0.321 0.309 0.338 0.413 

Win/Loss/Tie vs Autofead 7/12/1 8/18/0 21/28/0 25/24/0 15/34/0 15/34/0 
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row in each table gives pairwise comparisons between Autofead and each of the other 10 

methods. The missing values make statistical comparisons difficult; however, these pairwise 

comparisons clearly show that Autofead is competitive with other state-of-the-art TSC methods.  

A closer look at Autofead's accuracy for each problem reveals indications of the 

problem characteristics that lead to poor solutions. Table 14 gives Autofead's ranking and 

percentile rank for each problem with a percentile rank of 100 indicating Autofead provided the 

best solution. Problems are divided by the type of data involved and key characteristics of the 

problem are given in the final two columns. Overall, Autofead performs very well on the sensor 

data and synthetic problems, but other methods appear better suited for the shape problems. 

This result is not surprising, as Autofead's strength is in finding transformations that improve 

the data representation which is unlikely to be the best approach for shape data. 

Additionally, a clear correlation is shown between large numbers of classes and poor 

Autofead performance. The authors hypothesize that the current configuration with a maximum 

of 5 features per solution and relatively short runs is insufficient to develop the complexity of 

features required for problems with 7 or more classes. Lastly, problems with very small training 

data sets pose an additional difficulty for Autofead to avoid overfitting.  

Comparison of accuracy based on testing data alone is insufficient to select between 

methods for application to new problems. A critical, often overlooked, factor is the ability to 

correctly determine which method will generalize best to test data based solely on training data. 

The plots shown in Figure 23 provide such analysis to compare Autofead with 1-NN Euclidean 

and 1-NN DTW. The expected and actual accuracy gains normalize Autofead's accuracy on the 

training and testing data, respectively, by accuracy of the compared method. In the shaded 

regions labeled TP for true-positive and TN for true-negative, Autofead's fitness measure  
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Table 14 – Autofead performance summary for benchmark study 

Data type 
Problem Rank / out of Percentile rank Number of classes Average instances per class 

Sensor 

ChlorineConcentration 7/9 25 3 156 

CinC_ECG_torso 1/8 100 4 10 

Cricket_X 7/8 14 12 33 

Cricket_Y 7/8 14 12 33 

Cricket_Z 7/8 14 12 33 

Earthquakes 4/6 40 2 161 

ECG200 1/10 100 2 50 

ECGFiveDays 1/9 100 2 12 

ElectricDevices 1/6 100 7 1279 

FordA 1/6 100 2 1786 

FordB 1/6 100 2 1801 

Gun-Point 2/11 90 2 25 

InlineSkate 7/8 14 7 14 

ItalyPowerDemand 9/9 0 2 34 

Lightning2 10/10 0 2 30 

Lightning7 3.5/11 80 7 10 

Motes 4/9 63 2 10 

SonyAIBORobotSurface 2/9 88 2 10 

SonyAIBORobotSurfaceII 8/8 0 2 14 

StarLightCurves 1/8 100 3 333 

TwoLeadECG 2/9 88 2 12 

uWaveGestureLibrary_X 6/8 29 8 112 

uWaveGestureLibrary_Y 7/8 14 8 112 

uWaveGestureLibrary_Z 2/8 86 8 112 

Wafer 1.5/10 100 2 500 

Shape representation 

50Words 9/10 11 50 9 

Adiac 3/11 80 37 11 

DiatomSizeReduction 8/9 13 4 4 

FaceAll 9/10 11 14 40 

FaceFour 10/11 10 4 6 

FacesUCR 6/8 29 14 14 

Fish 8/10 22 7 25 

HandOutlines 1/6 100 2 500 

Haptics 8/8 0 5 31 

OSULeaf 2/10 89 6 33 

SwedishLeaf 3/10 78 15 33 

Symbols 3/9 75 6 4 

WordsSynonyms 8/8 0 25 11 

Yoga 1/10 100 2 150 

Synthetic 

ARSim 1/6 100 2 1000 

CBF 2.5/10 89 3 10 

MALLAT 7/8 14 8 7 

Synthetic_Control 2/11 90 6 50 

Trace 1.5/11 100 4 25 

Two_Patterns 1.5/10 100 4 250 

Spectral 

Beef 5/11 60 5 6 

Coffee 6/11 50 2 14 

OliveOil 9/10 11 4 8 

Histogram MedicalImages 7/9 25 10 38 
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(a) Autofead versus 1-NN Euclidean 

 

(b) Autofead versus 1-NN DTW, no warping window 

 

Figure 23 – Comparison of expected (training data) and actual (testing data) accuracy gains from 

selecting Autofead over competing methods 
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correctly predicts whether or not Autofead will outperform the competing method. The false-

positive, FP, region in the lower-right of the figures indicates data sets where Autofead is 

incorrectly expected to be more accurate, possibly due to overfitting. The analysis shows 

sufficient evidence for considering Autofead versus 1-NN DTW and a strong preference for 

Autofead over 1-NN Euclidean. Based solely on accuracy, Autofead is clearly a method worthy 

of consideration for TSC problems, especially with a small number of classes and large training 

data sets. 

5.2.2. Data Mining 

Autofead is designed not only to be competitively accurate as a general TSC method 

but also to provide easily interpretable solutions making the approach valuable for data mining 

of time series databases. Although interpretability is difficult to quantify, the highlighted 

example solutions in this section provide a strong case for Autofead in this regard. The full 

solutions for all 49 problems can be found in section 5.3. 

The ARSim problem is composed of 2 classes of synthetic AutoRegressive (AR) 

processes with different AR coefficients. This data set is specifically designed to be very 

difficult to separate in the time domain but much easier through a frequency or auto-correlation 

representation [12]. Autofead's solution primarily relies on the single feature [difference, FFT 

magnitude, Hilbert magnitude, square root, normalize, slope fit]. The key steps in this feature 

are conversion to the frequency domain through FFT magnitude and the final function, slope fit. 

Hilbert magnitude, square root, and normalize have little effect on the feature's effectiveness. 

The feature can be interpreted as a measure of the relative distribution of energy between low- 

and high-frequency portions of the spectrum after computing first differences. This solution 

makes sense to separate the two classes, as the power spectral densities of the two processes are 

distinct despite the similarity in the time domain. 
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In FordB, the TSC task is to identify whether or not an automotive engine symptom is 

present from acoustics measurements. The critical feature in the Autofead solution is an 

averaged measure of energy for the frequency 0.273 rad/s. The feature is represented as [sliding 

windows (    ), FFT magnitude, square root, bisection select (   ), sum]. First, sliding 

windows divides the 500 sample time series into 21 overlapping subsequences of 46 samples 

each. Then, FFT magnitude is again used to convert to the frequency domain. The last two 

functions sum the fourth FFT bin from each subsequence. This algorithm is very similar to 

Welch's method for power spectral analysis. Without further knowledge of the data-generating 

system, it is impossible to speculate on the importance of the 0.273 rad/s frequency, but the 

feature clearly separates the two classes very well. 

Acceleration data from a robot is used in SonyAIBORobotSurface to determine whether 

the robot is walking on a concrete or carpeted surface. Autofead uses a very simple feature for 

its solution computed as [difference, square, sorted bisection select (68)]. The last function sorts 

the sequence and keeps the last index making the feature the maximum squared magnitude of 

first differences. The feature is larger for the robot walking on the harder concrete surface due 

to the higher energy and frequency of impacts during motion. 

Lastly, the CBF problem provides an example of a shape problem where Autofead 

performs very well. The synthetic data set includes three different shapes embedded at a random 

position in noise. The cylinder shape is a single square wave pulse with discontinuities at each 

end. The bell shape is a linear ramp up followed by a discontinuous step down, and the funnel is 

opposite with a step up then linear ramp back down. Autofead's solution utilizes the presence of 

strong discontinuities in each shape through [Hilbert imaginary, cube, sum]. The Hilbert 

transform generates a large impulse in the imaginary component inversely related to the 

discontinuities. Cubing the imaginary component further emphasizes these impulses prior to 
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summing. The bell and funnel shapes each produce a single impulse, positive and negative, 

respectively. The cylinder produces opposite but roughly equal impulses at either end of the 

square wave pulse producing a feature near zero. 

In each of the highlighted examples, Autofead's solution relies on a single, easily 

understood feature. In comparison to other feature-based TSC methods, the solution 

representation produced by Autofead is far more similar to human expert designed features. 

Other GP based approaches utilize large, complex tree or graph program structures that require 

extensive simplification before any attempt at interpretation. Shapelets and the temporal 

importance curves produced by TSF can provide useful information for certain classes of TSC 

problems but do not generalize well for data mining of time series which require a data 

transformation for optimal representation. 

5.2.3. Computational Expense 

The computational expense of traditional GP is immense for even moderately large 

problems. The addition of numerical optimization procedures and training of thousands of 

pattern recognition algorithms was unrealistic on desktop workstations as recently as a decade 

ago. On a single, modern desktop workstation utilizing four processor cores, a typical Autofead 

run time is measured on the order of hours. As with many GP methods, the search process can 

be heavily influenced by the random initialization of the first generation. Therefore, 10’s to 

100’s of runs are necessary to provide a measure of confidence that the best possible solution is 

found requiring days to a few weeks for multiple runs on large problems. 

Consequently, Autofead has a relatively large upfront computational expense. The 

majority of the computational time is spent on numerical optimization of function parameters. 

Relaxing parameter tolerances or removing features which require parameters greatly reduces 

run time. Although the computational requirements are high for Autofead runs, the final 
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solutions are trivial to compute relative to other TSC methods, especially distance-based 

methods, which use instance-based classifiers. For many applications, the high upfront expense 

is worthwhile to produce very fast TSC solutions suitable for embedded, real-time, and other 

resource-constrained systems. 

5.3. Detailed Autofead Solutions 

The final solution evolved by Autofead for each problem in the benchmark study is 

listed in this section. Each feature algorithm is listed in square brackets followed by the selected 

classifier. Parameter values and class mean sequences are given in parentheses where 

applicable. Index parameters are given using a 0-based index. Problems are listed alphabetically 

with problem names emboldened. 

50Words: [inverse, inverse, difference, element sum (class index 30), sorted bisection 

select (     )], [sliding windows (     ), absolute value, center, slope fit, sum], [FFT 

magnitude, sum], [keep end (     ), normalize, slope fit], [element product (class index 12), 

slope fit], Gaussian Naïve-Bayes 

Adiac: [absolute value, sum], [demean, cube, sigmoid, sum], [auto-correlation function, 

sum], [control chart ( 𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠              ), set minimum value ( 𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑙𝑑  

     ), Hilbert phase, demean, sorted bisection select (    )], [difference, FFT imaginary, 

absolute value, slope fit], Gaussian Naïve-Bayes 

ARSim: [FFT magnitude, wavelet (   ), bisection select (    )], [difference, FFT 

magnitude, Hilbert magnitude, square root, normalize, slope fit], [center, difference, auto-

correlation function, Hilbert phase, bisection select (   )], Gaussian Naïve-Bayes 
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Beef: [wavelet (   ), slope fit], [bisection select (    )], [FFT imaginary, sum], 

[sort order, element quotient (class index 3), center, absolute value, sum], linear discriminant 

analysis 

CBF: [sorted bisection select (    )], [Hilbert imaginary, cube, sum], Gaussian 

Naïve-Bayes 

ChlorineConcentration: [difference, sign, FFT magnitude, sum], [difference, log10, 

FFT real, slope fit], [Hilbert magnitude, FFT real, slope fit], Gaussian Naïve-Bayes 

CinC_ECG_torso: [difference, bisection select (     )], [FFT magnitude, sum], 

[FFT magnitude, difference, sigmoid, log10, slope fit], [element product (class index 1), FFT 

magnitude, sum], [element product (class index 3), absolute value, sum], Gaussian Naïve-Bayes 

Coffee: [square, cube, FFT magnitude, Hilbert phase, bisection select (    )], linear 

discriminant analysis 

Cricket_X: [difference, sorted bisection select (     )], [demean, element difference 

(class index 2), log10, sorted bisection select (     )], [difference, slope fit], [element 

product (class index 7), sum], [cube, sigmoid, difference, Hilbert magnitude, sum], linear 

discriminant analysis 

Cricket_Y: [keep beginning (      ), sum], [element product (class index 7), 

difference, FFT magnitude, sum], [slope fit], [element product (class index 4), sum], [difference, 

low-pass filter (       ), center and scale, absolute value, sum], Gaussian Naïve-Bayes 

Cricket_Z: [element product (class index 7), sliding windows (     ), sorted 

bisection select (   ), sum], [sorted bisection select (     )], [FFT imaginary, cube, 

log10, sum], [element product (class index 8), slope fit], [element product (class index 2), keep 

beginning (     ), difference, log10, sorted bisection select (    )], linear discriminant 

analysis 
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DiatomSizeReduction: [FFT real, center, FFT phase, slope fit], Gaussian Naïve-Bayes 

Earthquakes: [set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑       ), element product (class index 

1), sorted bisection select (     )], [auto-correlation function, element sum (class index 0), 

set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑     ), difference, slope fit], [element product (class index 1), 

sorted bisection select (     )], [FFT phase, element product (class index 1), sum], [set 

minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑      ), sorted bisection select (     )], linear discriminant 

analysis 

ECG200: [FFT real, log10, sorted bisection select (    )], linear discriminant 

analysis 

ECGFiveDays: [FFT magnitude, normalize, bisection select (   )], Gaussian Naïve-

Bayes 

ElectricDevices: [Hilbert phase, keep end (    ), sum], [slope fit], [sigmoid, high-

pass filter (       ), FFT real, sorted bisection select (   )], [log10, difference, sorted 

bisection select (   )], [keep end (   ), low-pass filter (       ), square root, demean, 

sorted bisection select (    )], Gaussian Naïve-Bayes 

FaceAll: [square, slope fit], [square root, keep beginning (    ), sigmoid, slope fit], 

[bisection select (   )], [keep end (     ), Hanning window, sum], [Hilbert magnitude, 

low-pass filter (       ), cross-correlate (class index 4), set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑  

   ), exponential, sum], Gaussian Naïve-Bayes 

FaceFour: [cross-correlate (class index 1), slope fit], [element product (class index 2), 

sum], [inverse, sigmoid, element product (class index 3), sum], [Hilbert phase, Hilbert phase, 

element product (class index 1), auto-correlation function, sum], linear discriminant analysis 

FacesUCR: [slope fit], [Hilbert magnitude, slope fit], [cross-correlate (class index 12), 

bisection select (     )], [Hilbert magnitude, auto-correlation function, sum], [auto-
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correlation function, normalize, element difference (class index 9), Hanning window, demean, 

slope fit], Gaussian Naïve-Bayes 

Fish: [set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑      ), sorted bisection select (     )], 

[Hanning window, sorted bisection select (     )], [Hilbert phase, sum], [difference, sign, 

slope fit], [high-pass filter (       ), sliding windows (    ), element product (class index 

1), sum, sum], Gaussian Naïve-Bayes 

FordA: [sliding windows (   ), normalize, sigmoid, sorted bisection select (   ), 

sorted bisection select (     )], [log10, difference, sign, sigmoid, sorted bisection select 

(   )], [absolute value, cumulative summation, sigmoid, sorted bisection select (     )], 

[demean, difference, sign, square, sum], linear discriminant analysis 

FordB: [sorted bisection select (     )], [sorted bisection select (    )], [sliding 

windows (    ), FFT magnitude, square root, bisection select (   ), sum], [Hilbert 

magnitude, sliding windows (     ), auto-correlation function, normalize, bisection select 

(   ), sum], logistic regression 

Gun_Point: [sigmoid, Hilbert imaginary, center and scale, sigmoid, sorted bisection 

select (     )], [cube, auto-correlation function, center and scale, log10, difference, sorted 

bisection select (    )], [sorted bisection select (    )], [sigmoid, Hilbert magnitude, 

bisection select (    )], [inverse, square, log10, sorted bisection select (     )], linear 

discriminant analysis 

HandOutlines: [sorted bisection select (      )], [exponential, FFT magnitude, 

slope fit], [bisection select (      )], [sorted bisection select (       )], [transpose 

windows, Hilbert imaginary, bisection select (     )], logistic regression 

Haptics: [bisection select (      )], [inverse, FFT phase, transpose windows, 

element product (class index 4), sum], [cumulative summation, FFT magnitude, sigmoid, keep 
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end (     ), sum], [inverse, FFT phase, transpose windows, element product (class index 3), 

sum], [inverse, FFT phase, transpose windows, element product (class index 1), sum], logistic 

regression 

InlineSkate: [difference, sort order, element quotient (class index 2), sum], [cross-

correlate (class index 4), high-pass filter (       ), absolute value, sum], [difference, sort 

order, element quotient (class index 4), sum], [difference, sort order, element quotient (class 

index 3), sum], [slope fit], linear discriminant analysis 

ItalyPowerDemand: [bisection select (     )], [bisection select (    )], [set 

minimum value (       ), keep end (   ), FFT phase, set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑  

    ), bisection select (   )], [control chart ( 𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠              ), keep end 

(   ), FFT phase, bisection select (   )], Gaussian Naïve-Bayes 

Lightning2: [square, cube, element quotient (class index 1), sorted bisection select 

(     )], [log10, square, cube, element quotient (class index 1), sorted bisection select 

(     )], Gaussian Naïve-Bayes 

Lightning7: [sigmoid, demean, slope fit], [center, square, low-pass filter (       ), 

absolute value, sum], [keep beginning (    ), sorted bisection select (     )], [sigmoid, 

exponential, Hilbert imaginary, sorted bisection select (   )], [Hilbert imaginary, element 

difference (class index 4), sorted bisection select (     )], Gaussian Naïve-Bayes 

MALLAT: [difference, Hilbert magnitude, slope fit], [high-pass filter (       ), 

absolute value, Hanning window, element quotient (class index 4), Hanning window, sum], 

[element product (class index 6), transpose windows, exponential, sorted bisection select 

(     )], [Hanning window, slope fit], [element product (class index 3), low-pass filter 

(       ), sum], Gaussian Naïve-Bayes 
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MedicalImages: [difference, FFT imaginary, Hilbert magnitude, sum], [Hilbert 

imaginary, slope fit], [sign, slope fit], [sigmoid, FFT phase, sum], [FFT magnitude, absolute 

value, high-pass filter (       ), sorted bisection select (    )], Gaussian Naïve-Bayes 

Motes: [sort order, difference, sorted bisection select (    )], Gaussian Naïve-Bayes 

OliveOil: [sorted bisection select (     )], [keep end (     ), sum)], [sum], 

[bisection select (     )], [FFT magnitude, Hilbert imaginary, sort order, FFT imaginary, 

bisection select (    )], linear discriminant analysis 

OSULeaf: [FFT magnitude, bisection select (    )], [high-pass filter (       ), 

element sum (class index 4), sorted bisection select (     )], [FFT magnitude], [cross-

correlate (class index 5), square, sum], [FFT magnitude, sigmoid, auto-correlation function, 

sorted bisection select (    )], linear discriminant analysis 

SonyAIBORobotSurface: [bisection select (     )], [difference, square, sorted 

bisection select (    )], linear discriminant analysis 

SonyAIBORobotSurfaceII: [difference, difference, sign, Hanning window, bisection 

select (   )], linear discriminant analysis 

StarLightCurves: [sigmoid, auto-correlation function, slope fit], [auto-correlation 

function, normalize, sigmoid, slope fit], [set minimum value ( 𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑        ), FFT 

magnitude, square root, slope fit], [difference, square root, FFT magnitude, slope fit], logistic 

regression 

SwedishLeaf: [sliding windows (    ), sum, sum], [FFT magnitude, sum], [cross-

correlate (class index 7), sum], [difference, FFT magnitude, sigmoid, Hanning window, sum], 

[difference, FFT magnitude, center and scale, slope fit], linear discriminant analysis 

Symbols: [difference, Hilbert magnitude, sum], [auto-correlation function, sum], 

Gaussian Naïve-Bayes 
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Synthetic_control: [difference, center and scale, FFT magnitude, sum], [FFT 

magnitude, absolute value, sum], [cube, slope fit], [square, auto-correlation function, FFT 

magnitude, cube, slope fit], [cube, slope fit], Gaussian Naïve-Bayes 

Trace: [Hilbert imaginary, slope fit], [Hilbert magnitude, sigmoid, FFT magnitude], 

linear discriminant analysis 

Two_Patterns: [Hilbert imaginary, control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠            ), slope 

fit], [demean, wavelet (    ), Hanning window, bisection select (     )], [Hilbert 

imaginary, normalize, control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠            ), sum], [Hilbert phase, sum], 

Gaussian Naïve-Bayes 

TwoLeadECG: [sorted bisection select (   )], [FFT magnitude, FFT real, Hilbert 

phase, bisection select (   )], linear discriminant analysis 

uWaveGestureLibrary_X: [difference, element product (class index 2), log10, sum], 

[cumulative summation, element product (class index 1), sum], [demean, auto-correlation 

function, square, slope fit], [element product (class index 4), sliding windows (     ), sum, 

sum], [absolute value, Hanning window, square root, cube, slope fit], linear discriminant 

analysis 

uWaveGestureLibrary_Y: [slope fit], [FFT imaginary, slope fit], [Hilbert imaginary, 

slope fit], [sliding windows (     ), Hanning window, center, slope fit, keep end (   ), 

low-pass filter (       ), FFT real, slope fit], [difference, element difference (class index 3), 

log10, sum], linear discriminant analysis 

uWaveGestureLibrary_Z: [cross-correlate (class index 6), slope fit], [Hilbert phase, 

sum], [cross-correlate (class index 2), sum], [slope fit], [difference, log10, Hilbert magnitude, 

sum], Gaussian Naïve-Bayes 

Wafer: [difference, difference, sorted bisection select (    )], Gaussian Naïve-Bayes 
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WordsSynonyms: [log10, Hilbert imaginary, slope fit], [Hanning window, sum], [keep 

beginning (     ), absolute value, difference, exponential, sum], [Hanning window, sigmoid, 

absolute value, normalize, slope fit], [FFT magnitude, Hilbert phase, slope fit], Gaussian Naïve-

Bayes 

Yoga: [high-pass filter (       ), sorted bisection select (    )], [sorted bisection 

select (     )], [sigmoid, slope fit], [set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑        ), sliding 

windows (     ), sum, sum], [difference, log10, sigmoid, FFT imaginary, sum], logistic 

regression 

5.4. Conclusions from Benchmark Study 

In this study, the accuracy of Autofead solutions is directly compared to state-of-the-art 

TSC methods on 49 openly available data sets. The accuracy is shown to be competitive with 

other general, state-of-the-art TSC methods, and in 13 cases the evolved solution provided the 

best accuracy among all methods compared. Additionally, Autofead is shown to produce highly 

interpretable features in many cases making the method viable as a data mining tool for time 

series databases. Computational cost for the evolutionary system is relatively high to perform 

the search for solutions; however, the computational expense for classifying new time series is 

very low making Autofead suitable for embedded and real-time systems. 

A portion of this chapter has been submitted for publication in Data Mining and 

Knowledge Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is 

“Automated Feature Design for Time Series Classification”. The dissertation author was the 

primary investigator and author of this paper. 
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  Chapter 6

Method Evaluation 

6.1. Solution Space 

The Autofead solution space consists of multiple features constructed from functions in 

the function library and selection of a classifier. Figure 24 summarizes the usage frequency of 

all functions and classifiers averaged over all runs and problems in the benchmark study. 

Dimension-reduction functions are represented on a separate scale, as every feature algorithm 

must include at least one of these four functions. It is important to note that the usage is uniform 

across all functions and classifiers at the start of each run. Most functions and classifiers have 

fairly similar usage with the exceptions of FFT magnitude and difference as slight outliers. It is 

not surprising that these two functions would be important as they are very common operations 

in digital signal processing and time series analysis. Similarly, Gaussian Naïve-Bayes is a very 

popular method and accounts for roughly half of the classifier selections. 

The error bars in Figure 24 for each feature and classifier show the minimum and 

maximum usage for a single problem out of the 49. These values indicate that even though  
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Figure 24 – Function and classifier usage analysis for benchmark study 

some functions are used somewhat less on average, they are still important for certain problems. 

For the classifiers, although Gaussian Naïve-Bayes is used most often, linear discriminant 

analysis and logistic regression are the majority classifier on some problems.  

Another interesting aspect of the solution space is the average size of Autofead 

solutions. All GP systems are subject to bloat whereby good solutions protect critical portions 

of code in the evolutionary process by adding sacrificial code [23]. Bloat is evident within 

Autofead solutions, as they tend to always contain the maximum number of features even 

though only a few are actually important for classification. The extra features reduce the 

probability of important features being modified in the breeding process. Within feature 

algorithms, solutions rarely use more than 5 or 6 functions even though the constraint is set 
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much higher. The authors hypothesize that Autofead's highly-constrained solution structure 

does not permit many opportunities for inconsequential code sections, thereby reducing the 

effects of bloat. This quality helps make Autofead solutions compact and interpretable. 

6.2. Search Method 

The goal of the search process described in section 2.3 is to evolve an initial randomly 

generated solution population in the direction of optimal fitness. Table 15 provides strong 

evidence that the search process is performing well. For each problem, the first two columns 

show a large decrease in mean fitness between the initial random population and the final 

population over all 25 runs. The last three columns give the minimum fitness individual for the 

initial population of all runs, final population of all runs, and final population in the worst 

performing run. Although very low fitness individuals are generated for some problems in the 

initial population alone, the search process is clearly further improving the fitness of the final 

solution. The last column indicates that performing a single run on each problem instead of 25 

runs would lead to some decrease in accuracy, but overall run consistency is good. 

6.2.1. Genetic Programming 

The benchmark study provides an excellent opportunity to perform directed analysis on 

specific elements of the genetic programming aspect of the Autofead search. Although function 

and classifier usage vary widely between problems as discussed in section 6.1, runs on the same 

problem are found to be much more consistent in the distributions of functions and classifiers in 

the final population. The function set in particular is quickly reduced within an Autofead run to 

a much smaller set. Although the population begins with 44 equally used  
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Table 15 – Population fitness analysis for benchmark study 

Problem 
Initial population 

mean 
Final population 

mean 
Best initial 
individual 

Best run, best 
individual 

Worst run, best 
individual 

ChlorineConcentration 0.445 0.393 0.375 0.364 0.385 

CinC_ECG_torso 0.663 0.050 0.090 0.000 0.000 

Cricket_X 0.822 0.468 0.539 0.379 0.412 

Cricket_Y 0.839 0.521 0.596 0.412 0.471 

Cricket_Z 0.855 0.527 0.608 0.414 0.459 

Earthquakes 0.190 0.053 0.056 0.022 0.037 

ECG200 0.265 0.000 0.000 0.000 0.000 

ECGFiveDays 0.320 0.000 0.000 0.000 0.000 

ElectricDevices 0.657 0.332 0.355 0.240 0.291 

FordA 0.446 0.050 0.059 0.000 0.034 

FordB 0.380 0.077 0.078 0.047 0.068 

Gun-Point 0.397 0.000 0.000 0.000 0.000 

InlineSkate 0.811 0.490 0.517 0.162 0.416 

ItalyPowerDemand 0.241 0.019 0.000 0.000 0.015 

Lightning2 0.301 0.061 0.050 0.000 0.050 

Lightning7 0.596 0.197 0.213 0.059 0.122 

Motes 0.331 0.000 0.000 0.000 0.000 

SonyAIBORobotSurface 0.275 0.000 0.000 0.000 0.000 

SonyAIBORobotSurfaceII 0.265 0.000 0.000 0.000 0.000 

StarLightCurves 0.413 0.055 0.062 0.023 0.035 

TwoLeadECG 0.300 0.000 0.000 0.000 0.000 

uWaveGestureLibrary_X 0.730 0.354 0.423 0.259 0.312 

uWaveGestureLibrary_Y 0.696 0.384 0.444 0.318 0.351 

uWaveGestureLibrary_Z 0.686 0.346 0.355 0.253 0.328 

Wafer 0.193 0.000 0.000 0.000 0.000 

50Words 0.857 0.366 0.469 0.266 0.314 

Adiac 0.825 0.349 0.432 0.243 0.296 

DiatomSizeReduction 0.304 0.000 0.000 0.000 0.000 

FaceAll 0.807 0.306 0.429 0.192 0.235 

FaceFour 0.590 0.014 0.033 0.000 0.000 

FacesUCR 0.743 0.284 0.356 0.155 0.223 

Fish 0.711 0.267 0.333 0.171 0.223 

HandOutlines 0.340 0.152 0.139 0.105 0.128 

Haptics 0.692 0.447 0.464 0.140 0.421 

OSULeaf 0.713 0.223 0.337 0.109 0.146 

SwedishLeaf 0.779 0.219 0.307 0.135 0.169 

Symbols 0.403 0.000 0.000 0.000 0.000 

WordsSynonyms 0.808 0.504 0.587 0.386 0.439 

Yoga 0.442 0.104 0.090 0.035 0.087 

ARSim 0.427 0.000 0.000 0.000 0.000 

CBF 0.474 0.000 0.000 0.000 0.000 

MALLAT 0.588 0.014 0.010 0.000 0.000 

Synthetic_Control 0.588 0.002 0.007 0.000 0.000 

Trace 0.463 0.000 0.000 0.000 0.000 

Two_Patterns 0.639 0.021 0.129 0.000 0.010 

Beef 0.542 0.142 0.160 0.000 0.050 

Coffee 0.330 0.000 0.000 0.000 0.000 

OliveOil 0.497 0.034 0.020 0.000 0.020 

MedicalImages 0.504 0.374 0.364 0.313 0.337 
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functions, the distribution tends to converge to a reduced set of primarily 5-7 functions within 

only about five generations.  

Additional analysis of the best individuals’ evolution trees in the benchmark study 

indicates the importance of the novel genetic operators used in Autofead. Across all runs, the 

usage of genetic operators is fixed with the following probabilities: “crossover”, 70%; “mutate”, 

7%; “reproduce”, 3%; “add feature”, 10%; “remove feature”, 10%. However, if only the 

individuals which comprise the evolution trees of the best individual from each of the 1,225 

runs are considered, the frequency of genetic operators which lead to the best solutions is 64.8% 

“crossover”, 6.6% “mutate”, 3.5% “reproduce”, 19.7% “add feature”, and 5.4% “remove 

feature”. The large increase for the “add feature” operator suggests that the feature selection 

component of the search addressed by this operator is significant for these problems. Full run 

parameter studies, while computationally expensive, would provide additional opportunities to 

evaluate the design of the evolutionary search process. 

6.2.2. Parameter Optimization 

In Autofead, feature evaluations required during parameter optimizations account for 

80-90% of the necessary computational effort in a run. This section provides evidence of the 

benefit of inclusion of parameter optimization in the search process despite the apparent 

computational cost. Thirty runs of signal detection problem 1 from section 3.2 are performed 

with and without parameter optimization. For the unoptimized runs, the optimization module 

was replaced with a random number generator using a uniform distribution over the parameter 

bounds, and the runs were carried out to 50 generations per the rule-of-thumb for traditional GP. 

In each generation of each run, the fitness of the best individual was saved for analysis. 
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(b) Solution performance 

 
(c) Search effectiveness 

 
(a) Run convergence (d) Computational expense 

Figure 25 – Analysis of parameter optimization benefit on signal detection problem 1 

Figure 25 presents results from the parameter optimization study. In Figure 25(a), the 

optimized runs converge in far fewer generations than the unoptimized runs and reach a higher 

median and best run fitness. Figure 25(b) and Figure 25(c) confirm that the inclusion of 

parameter optimization results in improved solutions found in fewer generations. The 

convergence rate in terms of generations is admittedly misleading as optimized runs require far 

more computational effort and run time per generation. By sampling from the distributions in 

Figure 25(c) and the measured run times, the distributions of run time to reach best fitness are 

estimated and presented in Figure 25(d). From these results, it is clear that the inclusion of 

parameter optimization in Autofead results in better, more consistent solutions with a slight 

reduction in overall run time. 

Many design decisions were made in development of the Autofead parameter 

optimization scheme based on observation of parameter behaviors and fitness surfaces for 

various features, as described in section 2.3.2. Figure 26 shows example parameter surfaces for 
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the features from signal detection problem 1 presented in Figure 8. Three of the features end 

with a sorted select function whose parameter has been omitted for visualization purposes. The 

behavior of sorted select in these cases is always to select the maximum value. Each parameter 

surface is shown for the entire bounded parameter range. Features A and D in Figure 26(a) and 

Figure 26(b), respectively, contain an invalid parameter region shown as 0.5 fitness in black.  

In general, the parameter surfaces for Autofead features tend to be smooth and 

unimodal or bimodal in a single region containing the optimal point. Outside this region, the 

surface contains a rough landscape full of local minima. These observations provide 

 

 

Fitness 

  

(a) Feature A (c) Feature C 

  

(b) Feature B (d) Feature D 

Figure 26 – Parameter surfaces for signal detection problem 1 solutions from Figure 8 
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justification for the choice of global optimization instead of a local method. The initial grid 

search locates the smooth fitness region around the optimal parameters then local optimization 

is initiated to reach optimal fitness. For all four features shown in Figure 26, the parameter 

optimization scheme found the true, global optimum in less than a hundred feature evaluations. 

Furthermore, the surfaces indicate a wide range of solution fitness is possible with small 

changes to algorithm parameters. This observation supports the assertion in section 2.2.3 that 

good algorithms may be easily overlooked during feature design with poor parameter choices. 

6.3. Fitness Quality 

The fitness measure is an estimate of the expected classification error on new time 

series. Autofead uses a sophisticated fitness measure and sampling procedure covered in section 

2.3.3, but the large number of degrees-of-freedom makes the method very susceptible to 

overfitting especially for small training data sets. The importance of including quadratic loss as 

a tiebreaker in the fitness measure is evident in Table 15 as zero classification error solutions 

are produced for nearly half the problems on the training data. In these cases, the combined 

fitness measure uses quadratic loss to select the zero classification error solution that best 

separates the classes to provide high confidence classifications. 

Although the search process is correctly minimizing fitness, if fitness is not 

representative of solution accuracy then the search will not proceed in the correct direction or 

select the highest accuracy individual as the final solution. Figure 27 provides an example 

problem where the estimated fitness is strongly correlated with classification error on the test 

data. The grayscale image represents the distribution of all 750,000 candidate solutions 

produced for the StarLightCurves problem. The red circle and green x symbols indicate the 
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Figure 27 – Fitness quality assessment for StarLightCurves problem from benchmark study 

location of the minimum fitness and highest accuracy individuals. Here, the selected minimum 

fitness individual is nearly the most accurate on the test data. 

In Figure 28, the indications of fitness quality for the Lightning2 problem are much 

poorer. The Lightning2 data set only includes 60 and 61 instances, respectively, for training and 

testing. The vertical and horizontal banding in the figure are artifacts of the small data sets. 

 

 
Figure 28 – Fitness quality assessment for Lightning2 problem from benchmark study 
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Although some highly accurate solutions are evolved with test data classification error below 

10%, many more zero fitness solutions exist with poorer accuracy. This problem represents a 

clear case of overfitting. With 637 samples in the time series and only 30 training instances in 

each of the two classes, there are many opportunities to produce features with perfect separation 

of the training data though many are unlikely to generalize for new time series. 

Table 16 compares the minimum fitness and highest accuracy individual for each 

problem. Only for 5 of 49 problems are these two individuals the same, and for half of the 

problems the minimum fitness individual has at least 5% worse classification error than the 

highest accuracy individual. If the highest accuracy individual had minimum fitness for each 

problem, Autofead would provide the best solution on 32 of the 49 problems. Figure 29 

provides a visual comparison between the minimum fitness and highest accuracy individuals.  

 

 
Figure 29 – Comparison of expected (training data) and actual (testing data) accuracy gains from 

selecting minimum fitness solutions over highest accuracy solutions in benchmark study 
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Table 16 – Fitness quality summary for benchmark study 

 Minimum fitness individual Highest accuracy individual  

Problem Fitness Classification error Fitness Classification error Spearman rank-order correlation 

ChlorineConcentration 0.364 0.423 0.390 0.407 0.402 

CinC_ECG_torso 0.000 0.016 0.000 0.001 0.905 

Cricket_X 0.379 0.487 0.442 0.397 0.922 

Cricket_Y 0.412 0.390 0.422 0.356 0.950 

Cricket_Z 0.414 0.464 0.484 0.372 0.958 

Earthquakes 0.022 0.266 0.133 0.180 0.001 

ECG200 0.000 0.000 0.010 0.000 0.594 

ECGFiveDays 0.000 0.078 0.000 0.000 0.797 

ElectricDevices 0.240 0.340 0.283 0.256 0.846 

FordA 0.000 0.002 0.000 0.000 0.912 

FordB 0.047 0.186 0.089 0.131 0.805 

Gun-Point 0.000 0.020 0.050 0.000 0.748 

InlineSkate 0.162 0.729 0.443 0.495 0.336 

ItalyPowerDemand 0.000 0.133 0.015 0.022 0.468 

Lightning2 0.000 0.459 0.078 0.033 -0.079 

Lightning7 0.059 0.356 0.266 0.123 0.483 

Motes 0.000 0.133 0.100 0.029 0.610 

SonyAIBORobotSurface 0.000 0.218 0.000 0.017 0.486 

SonyAIBORobotSurfaceII 0.000 0.303 0.000 0.021 0.612 

StarLightCurves 0.023 0.022 0.027 0.020 0.883 

TwoLeadECG 0.000 0.076 0.000 0.000 0.722 

uWaveGestureLibrary_X 0.259 0.264 0.289 0.244 0.981 

uWaveGestureLibrary_Y 0.318 0.351 0.326 0.342 0.967 

uWaveGestureLibrary_Z 0.253 0.298 0.287 0.284 0.976 

Wafer 0.000 0.000 0.003 0.000 0.458 

50Words 0.266 0.448 0.322 0.376 0.943 

Adiac 0.243 0.276 0.284 0.246 0.975 

DiatomSizeReduction 0.000 0.078 0.000 0.000 0.637 

FaceAll 0.192 0.366 0.240 0.233 0.887 

FaceFour 0.000 0.364 0.116 0.034 0.257 

FacesUCR 0.155 0.260 0.198 0.239 0.962 

Fish 0.171 0.251 0.272 0.166 0.782 

HandOutlines 0.105 0.097 0.173 0.070 0.518 

Haptics 0.140 0.705 0.447 0.503 0.484 

OSULeaf 0.109 0.219 0.144 0.136 0.685 

SwedishLeaf 0.135 0.138 0.154 0.114 0.978 

Symbols 0.000 0.124 0.000 0.023 0.801 

WordsSynonyms 0.386 0.575 0.477 0.505 0.835 

Yoga 0.035 0.064 0.059 0.042 0.843 

ARSim 0.000 0.001 0.000 0.000 0.918 

CBF 0.000 0.182 0.000 0.000 0.929 

MALLAT 0.000 0.159 0.000 0.019 0.827 

Synthetic_Control 0.000 0.007 0.001 0.000 0.925 

Trace 0.000 0.000 0.000 0.000 0.540 

Two_Patterns 0.000 0.000 0.000 0.000 0.980 

Beef 0.000 0.300 0.170 0.067 0.229 

Coffee 0.000 0.000 0.000 0.000 0.467 

OliveOil 0.000 0.267 0.178 0.033 0.313 

MedicalImages 0.313 0.387 0.351 0.314 0.383 
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By definition, the gains between these two individuals must place all data points in the false-

positive region. Gains further from unity indicate data sets with poor fitness quality leading to 

poor solution choice. Clearly, improvement of the fitness measure or sampling procedure could 

greatly benefit the method. 

Additionally, when the quality of the fitness measure is poor, the search is misdirected 

and unlikely to discover optimal solutions anywhere within the population. The Spearman rank-

order correlation in the last column of Table 16 represents how well the relationship between 

fitness and test data classification error for the entire solution population can be modeled as a 

monotonic relationship [56]. Low correlation values below 0.5 indicate that the fitness measure 

is not driving the search toward accurate solutions for 14 problems. 

This chapter discusses various aspects of Autofead’s design in light of evidence from 

analysis of the method’s behavior on the signal detection and benchmarking problems. Many 

positive aspects of the solution space and search method are apparent; however, the search can 

only be as effective as the fitness measure. Quality of the fitness estimate, likely due to 

overfitting, is clearly the primary factor degrading Autofead's accuracy. 

Portions of this chapter have been published in IEEE Transactions on Evolutionary 

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional 

portions of this chapter have been submitted for publication in Data Mining and Knowledge 

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated 

Feature Design for Time Series Classification”. The dissertation author was the primary 

investigator and author of these papers. 
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  Chapter 7

TSC Solution Robustness 

7.1. Robustness Measures 

A quantitative measure of expected performance is required to select the best TSC 

method for a specific problem. Within methods such as Autofead, this metric further drives the 

selection of features, parameter values, classifier choices, and other aspects of the solution. 

While sampling methods and other best practices from machine learning are necessary to make 

best use of finite data, they are frequently insufficient to provide an accurate estimate of the 

performance of a real-world system from small training data sets. Additionally, training data is 

often not fully representative of the conditions experienced by the final system such as varying 

noise environments. Therefore, development of robust measures to evaluate relative 

performance of TSC solutions is of great benefit to the Autofead method, TSC, and machine 

learning as a whole. 

Conventionally, the field of classification has relied on simple classification accuracy to 

measure performance or perhaps a receiver operating characteristic (ROC) analysis as suggested 

by Provost, Fawcett, and Kohavi [57]. Alternative fitness measures such as quadratic loss, 
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attempt to make use of the additional performance information contained in class posterior 

probabilities. Autofead uses a combined fitness measure described in section 2.3.3 where 

quadratic loss is used as a tiebreaker for classification error on small data sets. While this 

approach improves on classification error alone, it is insufficient to fully address previously 

discussed issues of overfitting and solution robustness. 

 This chapter proposes a method to robustly evaluate time series classifiers in the 

presence of multiple unknown sources of uncertainty that may affect real-life system 

deployments. Consideration of TSC solutions under uncertainty has the additional benefit of 

effectively increasing the size of training data, which may mitigate the issue of overfitting. 

Traditional methods for uncertainty analysis propagate probabilistic models applied to inputs 

through a given model or solution to establish confidence bounds on the outputs. Probabilistic 

methods are poorly suited for the task of evaluating TSC solutions as they require specification 

of an appropriate probabilistic uncertainty model and repeated sampling to obtain good 

estimates of performance probabilities. General TSC methods such as Autofead are specifically 

intended to address problems with limited domain knowledge that would drive the development 

of a probabilistic model. 

7.2. Non-Probabilistic Uncertainty Analysis 

Non-probabilistic uncertainty analysis methods address the question of what possible 

outputs can occur given a set of possible inputs. Therefore, non-probabilistic methods are 

suitable for determining best-case and worst-case scenarios. Info-gap decision theory (IGDT) 

provides a non-probabilistic framework to quantitatively evaluate the robustness and 

opportunity of making distinct choices in the presence of uncertainty [58]. Pierce, Ben-Haim, 

Worden, and Manson applied IGDT to the training of neural networks for classification and 



107 

 

proposed an interval arithmetic implementation of IGDT for machine learning applications to 

avoid sampling from the uncertainty model [59, 60]. In the area of SHM, Stull, Hemez, and 

Farrar recently proposed the use of IGDT to account for the uncertainties in many aspects of 

SHM system design [61].  

7.2.1. Application to TSC Solutions 

To apply IGDT analysis to TSC algorithms, decisions must be made as to what point to 

introduce uncertainty into the solution design process and data flow and an appropriate 

uncertainty model. The uncertainty model could be applied either to the original input data, 

measured feature spaces for feature-based methods, or to distance measures for instance-based 

methods. The latter two options raise scaling issues for making fair comparisons between 

solutions while applying uncertainty directly to the inputs is equivalent for both feature-based 

and distance-based TSC methods. Additionally, uncertainty can be introduced within the 

training data used to design solutions, or final solutions can be evaluated on a test data set with 

uncertainty to select the most robust solutions. Application of uncertainty to training data 

introduces an additional complication of training classifiers under uncertainty. 

The uncertainty model proposed in this chapter is a simple instantaneous energy-bound 

model applied to inputs of an independent test data set [58]. The specific choice of model 

supports a very fast implementation scheme described in section 7.2.2. The model consists of a 

variable but equal-width interval applied to each time series sample in the test data. The interval 

radius,  , is dependent on the variable uncertainty level, α, and normalized by the standard 

deviation of the test dataset,  , such that 

      (2) 
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The uncertainty model states that each nominal sample,   , may occur anywhere within 

                . 

7.2.2. Interval Arithmetic Implementation 

The selection of an envelope-bound info-gap model allows for the time series intervals 

to be efficiently propagated through feature algorithms using interval arithmetic. Interval 

arithmetic represents each value as a range of possible values for bounding of errors in 

mathematic computations. The Autofead function library was implemented in MATLAB using 

the interval arithmetic package INTLAB to compute feature intervals from the envelope-bound 

time series info-gap model for increasing uncertainty levels [62].  

Next, feature intervals must be propagated through trained classifiers to determine all 

possible class labels. The direct approach involves development of an interval implementation 

for the forward method of each classifier. An alternative approach demonstrated here is suitable 

for low-dimension feature spaces. In two-dimensions, and without loss of generality, feature 

vectors with interval uncertainty represent rectangular feature interval boxes. Boxes that reside 

in a single decision region must result in a single class prediction whereas boxes that intersect 

one or more decision boundaries produce multiple class prediction possibilities. This approach 

is equivalent in many cases to the threshold-based analysis of class posteriors applied by Pierce, 

et al. [59, 60]. However, the structure of certain types of classifiers such as decision trees is 

unsuitable for the latter approach while decision boundaries may be estimated for any classifier, 

and directly solved for in many cases. Once class prediction probabilities are found for test data 

set instances, a simple worst-case, best-case analysis is performed to determine the 

classification error interval under each level of uncertainty.  
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7.3. Rotating Machinery Case Study 

The rotating machinery experiment described in section 4.4 is used here to demonstrate 

the proposed TSC solution robustness analysis. First, Autofead is applied to the training data to 

generate candidate solutions. Table 17 summarizes the configuration used for this study. For 

ease of visualization and implementation, solutions were restricted to two features and a limited 

function library. Some functions, such as those involving the FFT or Hilbert transform, are 

omitted since no interval arithmetic implementations are currently available for these functions.  

The minimum fitness solution from the Autofead runs, here named solution A, uses a 

Gaussian Naïve-Bayes classifier. Figure 30 depicts the feature space and decision boundaries 

for solution A. Feature A1 uses the algorithm [set maximum value (      ), sigmoid, 

difference, square, sum] to separate the outer race fault class. The algorithm for feature A2 is 

[set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑      ), difference, difference, normalize, difference, absolute 

value, sum] which tends to produce a smaller feature value for the ball spalling condition than 

the other classes. From Figure 30, it is evident that the two features together provide a well- 

 

Table 17 – Koza tableau for restricted rotating machinery run configuration 

Parameter Setting 

Objective Design optimal feature set to detect presence of damaged bearings 

Solution structure Two features consisting of a sequence of functions, omitted class mean signals 

Function set 

26 functions from function library including absolute value, center, center and scale, control chart, 

cube, cumulative summation, demean, difference, exponential, Hanning window, inverse, keep 

beginning, keep end, log10, normalize, select, set maximum value, set minimum value, sigmoid, sliding 
windows, slope fit, sort order, sorted bisection select, square, sum, and transpose windows 

Pattern recognition 
Selection of Gaussian Naïve-Bayes, linear disciminant analysis, logistic regression and CART 
decision tree classifiers 

Fitness Minimize quadratic loss bounded on [0,1] 

Fitness case sampling  -fold cross-validation 

Evolution strategy         with        ,        , and       

Solution size Two features each limited to 15 functions and 8 parameters 

Population initialization Two features ramped to initial maximum size of 5 functions and 3 parameters 

Selection Tournament, tournament size 2 

Genetic operators Crossover, 75%; mutate, 10%; reproduce, 5%; add feature, 5%; remove feature, 5% 

Termination  180 iterations; 20,000 individuals 

Run repetitions  475; 9.5 million total individuals 
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Figure 30 – Restricted rotating machinery solution A feature space 

separated feature space with only a few misclassifications. 

Although solution A appears to perform very well, nine and a half million candidate 

solutions are generated by Autofead, of which more than thirty solutions have less than 1% 

worse fitness than solution A. A better estimate of the generalization performance is found by 

computing classification error on an independent data set from the training data used within 

Autofead. Figure 31 compares fitness and classification error on the test dataset for the 100 

minimum fitness solutions. The correlation between the two performance measures is only 0.45 

within these 100 solutions; although in this case the minimum fitness solution A, highlighted in 

red, also has the minimum classification error on the test data set. These measures indicate 

selection of solution A as the final Autofead solution; however, the data is collected from a very 

limited set of operating conditions such as shaft speeds, examples of damage specimens, 

temperatures, etc. which could affect performance of a real-world system. 
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Figure 31 – Restricted rotating machinery performance comparison for 100 minimum fitness solutions 

Therefore, the robustness analysis proposed in section 7.2 is carried out on the 100 

minimum fitness solutions to identify worse-case performance scenarios in the presence of 

small changes to the test data. Figure 32 shows the first 50 samples of a single time series under 

no uncertainty, very small uncertainty, and a noticeable amount of uncertainty. Although the 

uncertainty levels appear relatively small, the dimensionality of the uncertainty model is very 

large containing thousands of instances and hundreds of samples in each instance. 

Figure 33 depicts the resulting feature intervals for two candidate solutions with the 

same uncertainty level,        . The dot inside each feature interval box depicts the feature  

 

   

(a) No uncertainty,     (b) Low uncertainty,         (c) Medium uncertainty,         

Figure 32 – TSC robustness envelope-bound uncertainty model 
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(a) Solution A,         (b) Solution B,         

Figure 33 – Restricted rotating machinery solution A and B feature spaces under uncertainty 

value under no uncertainty. For solution A, every feature interval overlaps at least one decision 

boundary at the level of uncertainty shown resulting in 0% worst-case classification accuracy. 

In contrast, the features in solution B show significantly reduced sensitivity to uncertainty 

relative to the separation of the classes. Consequently, the worst-case error of solution B is only 

increased to 14.5% from a nominal level of 8.2% with no uncertainty on the test data. Solution 

B’s feature algorithms are [center and scale, sliding windows (    ), sorted bisection select 

(   ), sum] for B1 and [difference, difference, difference, difference, sorted bisection select 

(     )] for B2. Interestingly, feature B1 divides the time series into 8.20 millisecond 

segments using sliding windows. The segment length is on the order of the characteristic 

vibration periods for the bearing geometry and shaft speed, and longer segment lengths degrade 

the performance significantly. Therefore, the algorithm may be exploiting the relative vibration 

frequency characteristics for the ball spalling and outer race defects to separate the two damage 

classes.  
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After propagating the time series info-gap uncertainty model through to the feature 

space and class prediction possibilities, robustness and opportunity curves are generated by 

considering the worst-case and best-case class prediction scenarios for increasing levels of 

uncertainty. Robustness of a candidate solution is measured as the largest uncertainty level 

which, in the worst case, meets a specific minimum classification accuracy requirement. 

Opportunity represents the smallest level of uncertainty that could produce windfall of 

improved classification accuracy. Windfall, here, describes the possibility of achieving better-

than-nominal performance as uncertainty increases. Robustness and opportunity curves for the 

one-hundred minimum fitness Autofead solutions are depicted in Figure 34. Minimum fitness 

solution A has poor robustness but good opportunity, while solution B is the most robust but 

provides the worst opportunity. This analysis indicates that selection of solution B as 

Autofead’s final solution will provide a more reliable solution if real-world operating conditions 

deviate from those under which training and testing data are collected. 

 

 

  

(a) Robustness (b) Opportunity 

Figure 34 – Restricted rotating machinery solution robustness and opportunity 
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This chapter proposes and demonstrates experimental results for an info-gap decision 

theory based robustness analysis of time series classification algorithms. An envelope-bound 

info-gap uncertainty model is applied directly to the time series in the test data set then 

propagated through feature measurement and classification to generate class prediction 

possibilities under increasing uncertainty levels. The interval arithmetic implementation 

provides a fast, quantitative robustness measure to select among candidate solutions in the 

presence of uncertainty and guarantee worst-case performance. In comparison to the fitness 

measure currently utilized by Autofead or simple classification accuracy estimated on 

independent data, the proposed robustness measure should provide an improved evaluation 

criterion to estimate performance of real-world systems. Future studies are needed to determine 

the effects of employing uncertainty analysis in solution evaluation with attention to the issue of 

overfitting small data sets. 

A portion of this chapter has been submitted for publication in Proceedings of SPIE 

Smart Structures/NDE conference, Dustin Harvey, Keith Worden, and Michael Todd, 2014. The 

title of this paper is “Robust Evaluation of Time Series Classification Algorithms for Structural 

Health Monitoring”. The dissertation author was the primary investigator and author of this 

paper. 
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  Chapter 8

Conclusions and Future Work 

8.1. Conclusions 

This dissertation encompasses all research to date on the automated feature design 

method for time series classification called Autofead. The method uses a hybrid genetic 

programming and numerical optimization process with a novel solution space design to search 

for highly-informative features within accurate solutions. In many cases, Autofead is shown to 

produce far more humanly-interpretable algorithms than other general time series classification 

methods. For this reason, Autofead can serve as a powerful tool for time series data mining and 

knowledge discovery tasks. Additionally, the method transfers directly to time series regression 

and forecasting problems. Although the search is computationally intensive, the resulting 

solutions are compact and easily-computed making them well-suited for embedded systems and 

other resource-constrained environments. 

The experimental studies performed provide extensive evidence of the method’s 

capabilities, effectiveness, and pitfalls. Validation experiments on synthetic problems with 

known optimal solutions show the ability of Autofead to design optimal and near-optimal 



116 

 

features in a variety of situations. A suite of structural health monitoring related experiments 

demonstrated the flexibility of the method to address complex problems including multi-class 

classification and multivariate regression for dynamic system state identification. Lastly, an 

extensive study on real-world TSC data sets was carried out to benchmark Autofead against 

state-of-the-art TSC methods. The presented results verify the accuracy of Autofead solutions, 

at minimum, as competitive with competing methods and human expert designed features. 

8.2. Future Work  

Future studies related to the presented work could follow numerous beneficial research 

directions. The largest issue affecting solution accuracy is quality of the estimation of fitness or 

generalization error. In particular, Autofead is highly susceptible to overfitting for small training 

data sets leading to overly optimistic performance estimates. This issue is prevalent throughout 

the machine learning field and any improvements in related techniques such as cross-validation 

procedures would greatly benefit the Autofead method. Uncertainty analysis provides another 

possible path for improving fitness quality on small data sets. Further work is necessary to 

determine the benefit of robustness-based fitness measures such as the non-probabilistic 

robustness assessment presented in Chapter 7 of this dissertation. 

Many implementation improvements are possible to reduce the computational cost of 

Autofead search runs. In particular, early abandon techniques could be employed during 

intensive calculations, for instance in the parameter optimization process. In such an approach, 

continuous evaluation of the value of a candidate solution within the population is performed to 

abort computations unlikely to produce fitness improvements. 

Furthermore, a fully automated post-processing module would be beneficial to perform 

tasks of analyzing final populations, comparing top solutions, and further refining solutions 
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through automatic improvement of estimation algorithms. For example, many design decisions 

within the Autofead function library which constrain the solution space could be relaxed to 

achieve incremental improvement of final solutions. Examples of relevant solution space 

constraints include filter design in the filtering functions, selection of wavelet family for the 

wavelet function, and optimization of the parameters of the sliding windows operation. 

Further investigation of the univariate, binary classifier discussed in section 2.3.2 is 

required to determine the methods accuracy and limitations. The classifier is employed as part 

of the objective function for Autofead when applied to binary classification problems due to its 

low computational cost. Additional validation and comparison to standard methods is necessary 

to determine usability as a general purpose classification method. 

Lastly, directed studies in application areas should investigate methods for 

incorporating domain knowledge to tailor Autofead for specific tasks. Possible approaches 

include providing pre-transformed data representations as inputs, customization of the function 

library, and seeding the initial population with feature algorithms from conventional solutions to 

related problems. Autofead may perform best in an iterative process where knowledge gained 

from previous search runs as well as expert analysis is incorporated into future runs until 

performance goals are realized. 
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