

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Automated Feature Design for Time Series Classification by Genetic Programming

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Structural Engineering

by

Dustin Yewell Harvey

Committee in charge:

Professor Michael Todd, Chair

Professor Sanjoy Dasgupta

Professor Charles Farrar

Professor Tara Javidi

Professor Hyonny Kim

2014

Copyright

Dustin Yewell Harvey, 2014

All rights reserved.

iii

The Dissertation of Dustin Yewell Harvey is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2014

iv

TABLE OF CONTENTS

Signature Page ... iii

Table of Contents .. iv

List of Abbreviations .. vii

List of Symbols ... viii

List of Figures ... ix

List of Tables ... xi

Acknowledgements .. xii

Vita .. xiv

Abstract of the Dissertation ... xvi

 Introduction ... 1 Chapter 1

1.1. Time Series in Structural Engineering .. 1

1.2. Machine Learning ... 2

1.2.1. Classifiers and Learners .. 3
1.2.2. Evaluating Accuracy ... 4
1.2.3. Feature Sets ... 5
1.2.4. Higher Dimension Inputs .. 5

1.3. Time Series Classification .. 7

1.3.1. Applications ... 8
1.3.2. Objectives .. 9
1.3.3. Distance-Based Methods ... 9
1.3.4. Feature-Based Methods ... 10

1.4. Genetic Programming ... 13

1.4.1. Solution Space Design ... 14
1.4.2. Search Method ... 15
1.4.3. Classifier Induction by GP .. 16
1.4.4. Feature Design by GP .. 16

1.5. Contributions of the Dissertation Work .. 17

1.6. Outline of the Dissertation .. 19

 Autofead Method .. 21 Chapter 2

2.1. Overview .. 21

2.2. Solution Space .. 23

2.2.1. Program Structure .. 23

v

2.2.2. Function Library .. 25
2.2.3. Function Parameters .. 27
2.2.4. Classifiers .. 28

2.3. Search Method .. 29

2.3.1. Population Initialization .. 30
2.3.2. Parameter Optimization ... 30
2.3.3. Fitness Evaluation ... 34
2.3.4. Evolution Strategy ... 35
2.3.5. Selection and Breeding .. 36

2.4. Problem Configuration ... 38

2.5. Development History .. 39

 Experimental Validation ... 40 Chapter 3

3.1. Detecting Dynamics, Stationarity, and Distributions ... 40

3.2. Signal Detection Problems ... 46

 Application to Structural Health Monitoring .. 51 Chapter 4

4.1. Introduction to Structural Health Monitoring ... 51

4.2. SHM Feature Extraction ... 52

4.3. Ultrasonic Damage Detection ... 53

4.4. Damage Type Identification for Rotating Machinery .. 57

4.5. Vibration-Based Damage Extent Estimation .. 62

 Benchmark Study .. 70 Chapter 5

5.1. Problem Set .. 70

5.1.1. Characterization ... 70
5.1.2. Problem Descriptions .. 72
5.1.3. Autofead configuration .. 75

5.2. Comparing TSC Methods ... 75

5.2.1. Accuracy .. 76
5.2.2. Data Mining ... 82
5.2.3. Computational Expense ... 84

5.3. Detailed Autofead Solutions ... 85

5.4. Conclusions from Benchmark Study .. 92

 Method Evaluation .. 93 Chapter 6

6.1. Solution Space .. 93

6.2. Search Method .. 95

6.2.1. Genetic Programming .. 95
6.2.2. Parameter Optimization ... 97

vi

6.3. Fitness Quality .. 100

 TSC Solution Robustness ... 105 Chapter 7

7.1. Robustness Measures .. 105

7.2. Non-Probabilistic Uncertainty Analysis ... 106

7.2.1. Application to TSC Solutions .. 107
7.2.2. Interval Arithmetic Implementation .. 108

7.3. Rotating Machinery Case Study ... 109

 Conclusions and Future Work .. 115 Chapter 8

8.1. Conclusions .. 115

8.2. Future Work.. 116

References ... 118

vii

LIST OF ABBREVIATIONS

1-NN 1-Nearest Neighbor

AR AutoRegressive

DSD Dynamics, Stationarity, and Distribution validation problem

DTW Dynamic Time Warping

FFT Fast Fourier Transform

FN False Negative

FP False Positive

GP Genetic Programming

IGDT Info-Gap Decision Theory

MLP Multi-Layer Perceptron

PDF Probability Density Function

ROC Receiver Operating Characteristic

RMS Root Mean Square

SHM Structural Health Monitoring

SVM Support Vector Machine

TN True Negative

TP True Positive

TSC Time Series Classification

TSF Time Series Forest

UCR University of California, Riverside

WGN White, Gaussian Noise

viii

LIST OF SYMBOLS

 Time series sample

 Index reserved for time series

 Fitness

 Classification error

 Quadratic loss

 Fitness component weighting factor

 Number of instances in training data

 Number of instances in smallest class in training data

 Number of instances in largest class in training data

 Number of folds in cross-validation procedure

 Number of repetitions in cross-validation procedure

 Population size

 Number of individuals in parent pool

 Number of individuals in offspring

 Function parameter

 Standard deviation

 Uncertainty level parameter

 Radius of uncertainty model

ix

LIST OF FIGURES

Figure 1 – Feature-based TSC workflow .. 11

Figure 2 – Wrapper approach workflow for TSC ... 22

Figure 3 – Example Autofead solution structure ... 23

Figure 4 – Autofead search process flowchart .. 29

Figure 5 – Parameter optimization scheme flowchart ... 33

Figure 6 – DSD solution processing steps ... 44

Figure 7 – DSD solution features’ probability density function estimates 45

Figure 8 – Signal detection problem 1 solution feature algorithms .. 47

Figure 9 – Signal detection problem 2 solution feature algorithms .. 49

Figure 10 – Ultrasonic damage detection experiment ... 54

Figure 11 – Ultrasonic damage detection solution processing steps ... 55

Figure 12 – Ultrasonic damage detection solutions’ feature probability density function

estimates .. 56

Figure 13 – Ultrasonic damage detection receiver operating characteristic (ROC) curves 57

Figure 14 – Rotating machinery experiment photos ... 58

Figure 15 – Rotating machinery example time series ... 58

Figure 16 – Rotating machinery solution processing steps ... 60

Figure 17 – Rotating machinery solution parameter spaces .. 61

Figure 18 – Rotating machinery solution feature space .. 62

Figure 19 – Damage extent estimation experiment photos ... 63

Figure 20 – Damage extent estimation solution processing steps ... 66

Figure 21 – Damage extent estimation solution features’ probability density function

estimates and feature space ... 67

Figure 22 – Damage extent estimation solution accuracies .. 68

x

Figure 23 – Comparison of expected (training data) and actual (testing data) accuracy

gains from selecting Autofead over competing methods .. 81

Figure 24 – Function and classifier usage analysis for benchmark study 94

Figure 25 – Analysis of parameter optimization benefit on signal detection problem 1 98

Figure 26 – Parameter surfaces for signal detection problem 1 solutions from Figure 8 99

Figure 27 – Fitness quality assessment for StarLightCurves problem from benchmark

study .. 101

Figure 28 – Fitness quality assessment for Lightning2 problem from benchmark study 101

Figure 29 – Comparison of expected (training data) and actual (testing data) accuracy

gains from selecting minimum fitness solutions over highest accuracy

solutions in benchmark study .. 102

Figure 30 – Restricted rotating machinery solution A feature space... 110

Figure 31 – Restricted rotating machinery performance comparison for 100 minimum

fitness solutions ... 111

Figure 32 – TSC robustness envelope-bound uncertainty model .. 111

Figure 33 – Restricted rotating machinery solution A and B feature spaces under

uncertainty ... 112

Figure 34 – Restricted rotating machinery solution robustness and opportunity 113

xi

LIST OF TABLES

Table 1 – Comparison of genetic programming methods for feature-based TSC 17

Table 2 – Autofead function library .. 26

Table 3 – Autofead Koza tableau example .. 38

Table 4 – Koza tableau for DSD run configuration... 41

Table 5 – Koza tableau for signal detection run configuration ... 46

Table 6 – Koza tableau for ultrasonic damage detection run configuration 55

Table 7 – Koza tableau for rotating machinery run configuration .. 59

Table 8 – Koza tableau for damage extent estimation run configuration 64

Table 9 – Damage extent estimation solution RMS errors .. 68

Table 10 – Benchmark study problem characteristics ... 71

Table 11 – Koza tableau for benchmark study run configuration ... 76

Table 12 – Benchmark study classification error for Autofead, TSF, DTW, and Shapelets 77

Table 13 – Benchmark study classification error for feature database, transformation

ensemble, and Weka.. 78

Table 14 – Autofead performance summary for benchmark study ... 80

Table 15 – Population fitness analysis for benchmark study .. 96

Table 16 – Fitness quality summary for benchmark study .. 103

Table 17 – Koza tableau for restricted rotating machinery run configuration 109

xii

ACKNOWLEDGEMENTS

I would like to take this opportunity to formally thank the many people who have guided

and supported me in my academic, professional, and personal life. First and foremost, I would

like to acknowledge my professor and advisor, Dr. Michael Todd. I could not have asked for a

more beneficial or enjoyable four years in graduate school and attribute the majority of credit for

the experience to the engaging environment fostered by Dr. Todd.

I would further like to acknowledge Dr. Todd and the other members of my dissertation

committee: Dr. Farrar, Dr. Kim, Dr. Dasgupta, and Dr. Javidi. Your time and valuable input both

in preparation of this manuscript and throughout my research are greatly appreciated.

I would like to acknowledge all of the students I have interacted with through the UCSD

SHM research group. In particular, thanks goes to Scott Ouellette, Colin Haynes, Eric Flynn, and

Stuart Taylor for always taking the time to provide a sounding board for my ideas. Your support

and friendship are greatly appreciated.

Special thanks to my many mentors over the past decade that have led me on a

wonderful journey to this point. Dr. Patricia Brackin and Dr. Phillip Cornwell from Rose-

Hulman Institute of Technology and Dr. Charles Farrar from the Engineering Institute at Los

Alamos National Laboratory, each of you has counseled me through a critical transition in my

life, and I am very grateful for your guidance. Dr. Keith Worden from University of Sheffield

also deserves special recognition for many enlightening research discussions and his

contributions as my co-author.

I would like to acknowledge my wonderful family and friends without whom I would

never have reached this point. To my parents, Dale and Janet, I can never hope to repay your

unwavering support nor express the depth and breadth of my gratitude. To my sister, Jessica,

never underestimate the worth of the solace you have provided in my most difficult moments.

xiii

Last but not least, to my wife, Jennie, thank you for your patience, support, and sacrifice over the

last three years. I am so excited to see what the future brings and share it with you.

Portions of Chapters 1, 2, 3, and 6 have been published in IEEE Transactions on

Evolutionary Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is

“Automated Feature Design for Numeric Sequence Classification by Genetic Programming”.

The dissertation author was the primary investigator and author of this paper.

Portions of Chapters 1, 2, 5, and 6 have been submitted for publication in Data Mining

and Knowledge Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is

“Automated Feature Design for Time Series Classification”. The dissertation author was the

primary investigator and author of this paper.

A portion of Chapter 4 has been published in Smart Materials and Structures, Dustin

Harvey and Michael Todd, 2014. The title of this paper is “Structural Health Monitoring Feature

Design by Genetic Programming”. The dissertation author was the primary investigator and

author of this paper.

A portion of Chapter 7 has been published in Proceedings of SPIE Smart

Structures/NDE conference, Dustin Harvey, Keith Worden, and Michael Todd, 2014. The title of

this paper is “Robust Evaluation of Time Series Classification Algorithms for Structural Health

Monitoring”. The dissertation author was the primary investigator and author of this paper.

This work was supported by the Department of Defense (DoD) through the National

Defense Science and Engineering Graduate Fellowship (NDSEG) Program.

xiv

VITA

2009 B.S. in Mechanical Engineering, Rose-Hulman Institute of Technology

2012 M.S. in Structural Engineering, University of California, San Diego

2014 Ph.D. in Structural Engineering, University of California, San Diego

PUBLICATIONS

*Work that has been incorporated into this dissertation

Peer Reviewed Journal Articles

*D.Y. Harvey, M.D. Todd, Automated feature design for time series classification, Data Mining

and Knowledge Discovery, in review. 2014.

*D.Y. Harvey, M.D. Todd, Structural health monitoring feature design by genetic programming,

Smart Materials and Structures, 23, 9. 2014, 095002.

*D.Y. Harvey, M.D. Todd, Automated feature design for numeric sequence classification by

genetic programming, Evolutionary Computation, IEEE Transaction on, pre-print. 2014,

doi:10.1109/TEVC.2014.2341451.

Selected Conference Proceedings

*D.Y. Harvey, K. Worden, M.D. Todd, Robust evaluation of time series classification algorithms

for structural health monitoring, Proc. SPIE Smart Structures and Materials +

Nondestructive Evaluation and Health Monitoring, San Diego, California. 2014, 90640K.

D.Y. Harvey, M.D. Todd, Automated near-optimal feature extraction using genetic programming

with application to structural health monitoring problems, Proc. Proceedings of

International Workshop on Structural Health Monitoring, Palo Alto, California. 2013.

D.Y. Harvey, M.D. Todd, Automated extraction of damage features through genetic

programming, Proc. SPIE Smart Structures and Materials + Nondestructive Evaluation and

Health Monitoring, San Diego, California. 2013, 86950J.

xv

D.Y. Harvey, M.D. Todd, Automated selection of damage detection features by genetic

programming, Proc. International Modal Analysis Conference XXXI, Garden Grove,

California. 2013.

M. Todd, D. Harvey, D. Gregg, B. Fladung, P. Blelloch, K. Napolitano, “Structural system

Testing and model correlation”: an industry-university collaborative course in structural

dynamics, Proc. International Modal Analysis Conference XXXI, Garden Grove,

California. 2013.

D.Y. Harvey, M.D. Todd, Cointegration as a data normalization tool for structural health

monitoring applications, Proc. SPIE Smart Structures and Materials + Nondestructive

Evaluation and Health Monitoring, San Diego, California. 2012, 834810.

D. Harvey, M. Todd, Symbolic dynamics-based structural health monitoring, Proc. International

Modal Analysis Conference XXX, Jacksonville, Florida. 2012.

E.B. Flynn, S. Kpotufe, D. Harvey, E. Figueiredo, S. Taylor, D. Dondi, et al., SHMTools: a new

embeddable software package for SHM applications, Proc. SPIE Smart Structures and

Materials + Nondestructive Evaluation and Health Monitoring, San Diego, California.

2010, 764717.

FIELDS OF STUDY

Major Field: Structural Engineering

Studies in Structural Dynamics

Professor Michael Todd

Studies in Advanced Structural Behavior

Professor Charles Farrar

Studies in Digital Signal Processing

Professor William Hodgkiss

Studies in Statistical Pattern Recognition

xvi

ABSTRACT OF THE DISSERTATION

Automated Feature Design for Time Series Classification by Genetic Programming

by

Dustin Yewell Harvey

Doctor of Philosophy in Structural Engineering

University of California, San Diego, 2014

Professor Michael Todd, Chair

Time series classification (TSC) methods discover and exploit patterns in time series and

other one-dimensional signals. Although many accurate, robust classifiers exist for multivariate

feature sets, general approaches are needed to extend machine learning techniques to make use

of signal inputs. Numerous applications of TSC can be found in structural engineering,

especially in the areas of structural health monitoring and non-destructive evaluation.

Additionally, the fields of process control, medicine, data analytics, econometrics, image and

facial recognition, and robotics include TSC problems.

This dissertation details, demonstrates, and evaluates Autofead, a novel approach to

automated feature design for TSC. In Autofead, a genetic programming variant evolves a

xvii

population of candidate solutions to optimize performance for the TSC or time series regression

task based on training data. Solutions consist of features built from a library of mathematical and

digital signal processing functions. Numerical optimization methods, included through a hybrid

search approach, ensure that the fitness of candidate feature algorithms is measured using

optimal parameter values. Experimental validation and evaluation of the method is carried out on

a wide range of synthetic, laboratory, and real-world data sets with direct comparison to

conventional solutions and state-of-the-art TSC methods. Autofead is shown to be competitively

accurate as well as producing highly interpretable solutions that are desirable for data mining and

knowledge discovery tasks. Computational cost of the search is relatively high in the learning

stage to design solutions; however, the computational expense for classifying new time series is

very low making Autofead solutions suitable for embedded and real-time systems.

Autofead represents a powerful, general tool for TSC and time series data mining

researchers as well as industry practitioners. Potential applications are numerous including the

monitoring of electrocardiogram signals for indications of heart failure, network traffic analysis

for intrusion detection systems, vibration measurement for bearing condition determination in

rotating machinery, and credit card activity for fraud detection. In addition to the development of

the overall method, this dissertation provides contributions in the areas of evolutionary

computation, numerical optimization, digital signal processing, and uncertainty analysis for

evaluating solution robustness.

1

 Chapter 1

Introduction

1.1. Time Series in Structural Engineering

Time series measurements are employed throughout structural engineering to

characterize and quantify structure behavior. Structural response data typically consists of time

histories of kinetic and kinematic quantities under various loading and operational conditions.

Such measurements are conventionally used for fitting, updating, and validating structural

models, often through conversion to the frequency domain. Design certification, risk

assessment, and other tasks rely on accurate models; however, highly complex structures may

not admit reliable physical modeling in which case direct methods to utilize time series data are

required. In the areas of non-destructive evaluation and structural health monitoring, data-based

approaches are increasingly common for determining local thickness, joint integrity, bond

condition, and other structural health information. Many of these problems can be addressed

using techniques from the more general areas of machine learning and time series classification.

2

1.2. Machine Learning

The field of machine learning encompasses methods and techniques for discovering,

describing, and utilizing patterns in data. Machine learning is further divided based on input and

output characteristics into classification, clustering, and regression. Regression methods

produce numeric output, while classification and clustering deal with nominal or categorical

output, i.e. classes. Furthermore, classification methods are applied to supervised learning

problems where the input data includes corresponding class labels. When class information is

unavailable, the problem is categorized as unsupervised learning, as in clustering.

Machine learning methods find application in a variety of fields including search

engines, marketing and advertising, process control, econometrics, and medical diagnosis. As an

example, a medical researcher may apply a variety of techniques to patient records with

confirmed diagnoses of a specific disease in an effort to develop new diagnostic tools. The input

data consists of categorical and numeric attributes, or features, of each patient such as age,

weight, and results of various diagnostic tests. This example is representative of a classification

problem since known examples, or instances, are available from each class of interest. The

objectives of such studies are to develop or select a method that generalizes with maximum

accuracy to unseen instances.

Together with data mining, the two fields constitute the more general area of pattern

recognition. Whereas the primary objective in machine learning is accuracy, data mining

employs many of the same tools in an effort to discover knowledge about the data-generating

system. Jain, Duin, and Mao provide a summary of pattern recognition methods, issues, and

examples [1]. Additional background can be found in books by Bishop [2] and Hastie,

Tibshirani, and Friedman [3].

3

1.2.1. Classifiers and Learners

Machine learning for multivariate scalar features is a near-mature field in pattern

recognition. Learning algorithms, or learners, build and fit classification models using training

data. A classifier describes the assumptions, structure, and representation of a specific class of

models that may be created from a variety of different learning algorithms. Many learners and

associated classifiers are available that make certain assumptions about the classes leading to

tradeoffs in accuracy, complexity, and computational cost. The assumptions are a form of bias

in the classifier selection process. Low-bias methods make minimal assumptions allowing for a

more flexible model, but requiring more instances for the training process to converge.

Conversely, high-bias methods are more robust to variance in the training data and therefore

often generalize better to new data provided the assumptions made are correct or reasonable for

the problem at hand. For example, the common assumptions of feature independence and

Gaussian feature distributions together create the popular Gaussian Naïve-Bayes classifier. This

high-bias model works well on a wide variety of data sets and has very low computational costs,

but it may perform poorly with features that are highly-correlated or far from Gaussian.

Typically, designers select an appropriate algorithm after basic statistical analysis of the feature

set through a trial-and-error process.

Other types of classifiers include instance-based methods, decision trees, ensemble

methods, neural networks, support vector machines, and various other statistical models such as

linear discriminant analysis. Instance-based, or lazy learning, classifiers have no associated

learning stage; instead, a distance measure is computed between new data and all training

instances then the new instance is labeled with the class containing the most similar (minimum

distance) training instance. Decision trees use a hierarchical structure where each step in the

labeling process involves thresholding of a single feature. Ensemble methods, or meta-

4

algorithms, employ multiple realizations of a classifier or different classifiers in conjunction

with a voting scheme to combine results from the set of classifiers. Boosting and bagging are

examples of ensemble schemes [3].

1.2.2. Evaluating Accuracy

A common issue in machine learning arises due to the finite size of data sets for training

and evaluating solutions. Most learners require large instance counts to reach convergence of

the classifier model. Additionally, accurate error rate estimation requires large instance counts,

and the two steps of training and testing classifiers must be performed on mutually exclusive

data sets to avoid overly optimistic in-sample error estimates. While accurate classifiers are

always desirable, the ability to truthfully estimate error is equally important. Poor error

estimates on training data in the solution design stage lead to loss of performance on test data

through non-optimal selection of classifiers and parameters.

The most basic percentage split, or holdout, method separates available data into a

training set and testing set to perform out-of-sample error estimation. More advanced

procedures such as -fold cross-validation, leave-one-out, and bootstrapping improve on the

holdout method by generating multiple pairs of testing and training splits to better utilize finite

data. Even with such sampling methods, estimation of generalization error from limited data is

still a challenging task. Overfitting of training data is a common issue wherein a learner is able

to effectively model the noise within a small training data set leading to solutions that do not

generalize to new instances. The interested reader is directed to Japkowicz and Shah for more

detailed discussion of the evaluation process and related issues [4].

5

1.2.3. Feature Sets

The input data for standard machine learning tasks is represented as feature, or attribute,

sets. Each instance contains a feature vector that can include nominal, ordinal, and numeric

features. The terms feature selection, construction, transformation, and extraction all refer to an

intermediate step of creating an improved, often reduced size, feature set from the original data.

Feature selection simply identifies a subset of the original features that minimizes information

loss. Feature construction, transformation, and extraction attempt to recombine the original

features linearly or non-linearly into new features. Principal component analysis, factor

analysis, and neural networks are popular techniques in the area of feature construction [1]. The

optimal, minimal-basis feature set retains all the information present in the original data that is

relevant to the classification problem within an orthogonal feature space.

1.2.4. Higher Dimension Inputs

Increasingly, researchers and analysts find themselves inundated with high-dimensional

data for use in classification tasks. Here, dimensionality refers to the number of independent

variables required to represent sampled data. Time series and spectra are one-dimensional

signals while images require two spatial dimensions. As such, feature vectors are considered

zero-dimensional but multivariate in the case of multiple features. Example applications

involving one-dimensional signals include the monitoring of electrocardiogram signals for

indications of heart failure, network traffic analysis for intrusion detection systems, vibration

measurement for bearing condition determination in rotating machinery, and credit card activity

for fraud detection. In such applications, domain knowledge primarily drives the selection and

design of pre-processing steps, features, models, and learning algorithms that constitute a

pattern recognition system for high-dimensional data. Ever-decreasing costs of sensing, data

6

acquisition, and data storage hardware have led to many applications where such data is

abundantly available, but domain knowledge is very limited.

Feature-based methods for high-dimensional data require an additional step of feature

design. Feature design is a challenging task, especially in the absence of sufficient domain

knowledge, since one-dimensional signals have no explicit features and one cannot enumerate

all possible features [5]. Here, we differentiate between feature design and methods for feature

construction, feature extraction, or feature transformation based on the presence of order-

dependent operations. To clarify, an automated, evolutionary feature construction process with a

one-dimensional signal input is described by Guo, Jack, and Nandi [6]. In this work, the input

contains 33 ordered Fast Fourier Transform (FFT) bins that may contain relevant, dynamic

information within their structure. However, no order-based operations are used to construct

new features; therefore, each FFT bin is treated independently making the system more

indicative of standard feature construction than feature design. Other high-level approaches

exist that directly classify high-dimensional data without a separate step of measuring features,

for example instance-based approaches that compute distance measures on the original input

signals.

As an example, consider a critical machine in a manufacturing process that undergoes

periodic maintenance but still experiences occasional bearing failures causing expensive

downtime. If maintenance were performed as needed, downtime would be minimized compared

to a time- or usage-based maintenance schedule or run-to-failure approach. A damage

monitoring system based on pattern recognition would allow for such a condition-based

maintenance approach. Traditionally, an expert in condition monitoring for rotating machinery

would be consulted to design a damage monitoring system based on available literature and past

experience with similar machines. An automated machine learning approach would allow an

7

unfamiliar engineer or technician to design a similar system from example data alone. First, the

user would instrument the machine with a vibration sensor and periodically record time series.

For supervised learning, records are then labeled as either from the healthy state or just prior to

known failures. Finally, an automated feature design approach is applied to design optimal pre-

processing steps and features for the specific machine and failure mode from the time series

data set. The latter approach represents significant potential savings in development time and

expense, improved performance of the damage monitoring system, and relaxation of the need

for an expert.

1.3. Time Series Classification

Time series classification (TSC) methods discover and exploit patterns in time series

and other numeric sequence data for a variety of applications. The field has developed rapidly

over the last decade with dozens of new techniques and a wide variety of problems. With the

ever-increasing deployment of sensors in industrial, defense, and civilian arenas, powerful

automated tools are needed to maximize the utility of these rich data sets. TSC is an extension

of standard classification of attributes and features to handle one-dimensional signals such as

time series, spectra, and one-dimensional representations of shape and image data. Applications

of TSC can be found in the areas of process control, medicine, structural health monitoring, data

analytics, econometrics, and robotics as well as image, shape, and facial recognition from one-

dimensional representations. In a review on the related topic of time series data mining, Fu

notes that “the fundamental problem is how to represent the time series data,” either through a

transformation to an improved data space, computation of a feature vector, or in another form

[7]. Xing, Pei, and Keogh provide an overview of the general field of sequence classification for

both numeric and symbolic data [5]. In comparison to standard classification tasks, Xing et al.

8

cite the difficulty of sequence data as a lack of explicit features, high-dimensionality, and

additional complexity of building interpretable classifiers. Further review of time series

representations, distance and similarity measures, indexing, classification, and clustering is

found in the work of Esling and Agon [8].

Xing et al. categorize the various approaches to sequence classification as either model-

based, distance-based, or feature-based [5]. Model-based approaches consist of building

generative models then applying pattern recognition techniques to the model parameters or

predictive errors. These approaches are found infrequently in the literature and are not

appropriate for problems where the relevant information is not well represented in the global

sequence behavior captured by a generative model. Distance- (or similarity-) based approaches

discussed in section 1.3.3 typically employ an instance-based classifier such as nearest

neighbors directly to the time series data in conjunction with an appropriate distance measure.

Feature-based methods that apply standard classifiers to feature vectors computed from the time

series are described in section 1.3.4.

1.3.1. Applications

Potential applications for TSC methods are numerous including the following:

 Diagnosing indications of heart failure from electrocardiogram signals

 Monitoring automotive sensors for early failure detection

 Detecting fraud from credit card activity

 Analyzing network traffic for intrusion detection systems

 Developing financial models based on econometric data

 Identifying manufacturing defects in industrial processes

9

 Determining bearing condition in rotating machinery from vibration measurement

1.3.2. Objectives

The goals of TSC research include improved accuracy, solution interpretability, and

reduced computational expense. Accuracy is estimated as the expected generalization error

when applying a given solution to unseen data. Standard evaluation methods as discussed in

section 1.2.2 are directly applicable to TSC. The interpretability of solutions is particularly

important for data mining applications and knowledge discovery. Easily understood algorithms

and models provide the possibility to develop a physical interpretation of solutions leading to

improved understanding of the data-generating system. Lastly, minimal computational expense

is critical for many applications such as embedded systems. The computational cost of a method

should be considered both in the learning or solution design stage as well as in the application

stage where new instances are classified. For a specific application, the computational expense

in one or both stages may be relevant to the method selection process.

1.3.3. Distance-Based Methods

Distance-based TSC employs traditional instance-based classifiers with a variety of

specialized time series distance or similarity measures. The 1-nearest neighbor classifier with

Euclidean distance between time series is the simplest approach. A variety of specialized

distance measures have been proposed to correct for global and local shifts and scaling of the

samples in the time domain. Wang et al. review and experimentally compare a variety of

distance measures both as representation methods and for their accuracy as classifiers [9]. The

study showed the very popular dynamic-time warping (DTW) measure to be at least as accurate

as other measures. Dynamic-time warping corrects local time shifts by finding the optimal

10

many-to-many monotonic mapping of samples between two time series and has long been

employed as the benchmark method for TSC [10].

More recent developments have proposed alternatives to the approach of elastic

distance measures. Class-specific, Mahalanobis distances were shown to outperform simple

Euclidean distance [11]. Additionally, Bagnall, Davis, Hills, and Lines proposed an ensemble of

distance-based classifiers utilizing various data transformations including the original input

data, auto-power spectrum, auto-correlation function, and principal components [12]. This study

concluded that the correct data representation may provide competitive accuracy and improved

interpretability when compared to complex classifiers and distance measures. In general,

distance-based TSC tends to be well-suited for certain classes of problems such as recognition

of one-dimensional shape representations; however, as in standard instance-based learning, the

computational cost to classify new time series is relatively large, especially due to the high

dimensionality of the data. Also, distance-based TSC provides limited insight for data mining

tasks, as there is no reduction of dimensionality.

1.3.4. Feature-Based Methods

Feature-based TSC methods infer features from training data then apply standard

machine learning methods to classify the resulting feature vectors. Here, we define a feature

algorithm as a sequence of operations to transform one or more time series inputs to a single,

scalar feature. Possible operations include, but are not limited to, digital filtering; thresholding;

transformations among time, frequency, phase space, or hybrid domains; correlation analysis;

principal component analysis; and many more. The algorithm must include a dimension

reduction step to produce a scalar feature from the input signal. Feature algorithms can be

considered as complex dimension reduction processes with the goal of optimally representing

11

Figure 1 – Feature-based TSC workflow

information relevant to a decision process as opposed to the traditional dimension reduction

goal of faithfully representing data in a lower dimensional space. In other words, feature

algorithm design is a dimension reduction process with a performance objective other than self-

representation. Figure 1 depicts the workflow for feature-based TSC in both the application and

learning stages to show how these methods extend standard classification to time series data.

Traditionally, feature design has been performed by domain experts on an ad-hoc basis.

While this approach generates very interpretable solutions, accuracy is rarely optimal except in

cases of near complete domain knowledge. A generalized approach to optimal feature design

that is able to produce low-dimensional, interpretable feature vectors would be highly valuable

both for TSC applications and data mining and knowledge discovery from time series databases.

Compared to distance-based TSC, feature-based methods are usually more interpretable

depending on the complexity of the feature algorithms. Additionally, the computational cost is

generally lower for classifying new time series although the learning stage is often

computationally intensive. Another benefit of the feature-based approach is that the classifier

can be replaced with a regression algorithm to perform time series regression and forecasting

tasks using the same basic methods. A number of recent developments in feature-based TSC

show promise as methods with competitive accuracy to distance-based techniques and various

levels of interpretability.

12

Ye and Keogh proposed the concept of shapelets, which have been used to develop a

variety of TSC methods [13]. A shapelet is a time series subsequence that is maximally

representative of a single class or of the difference between classes. A shapelet feature is

computed as the minimal distance between any subsequence in a time series and the shapelet.

The originally proposed shapelet algorithm learned a decision tree by searching for the most

informative shapelet at each node [14]. Later, shapelets were shown be more accurate when

used to construct feature vectors for use with standard classifiers [15]. Shapelets are more

interpretable than distance-based TSC, as the shapelet identifies critical time series behavior for

the classification task.

Two recent works demonstrated approaches for generating large feature sets requiring

advanced classifiers or an intermediate dimension reduction step using standard feature

selection and construction methods. The time series forest (TSF) method randomly generates

simple statistical features over thousands of random subsequences of the time series [16]. The

features were then used to build a random forest resulting in one of the most accurate methods

to date. Although the ensemble classifier and large feature set is difficult to interpret, Deng,

Runger, Tuv, and Vladimir also produced temporal importance curves from the classifiers

providing indication of the most informative regions of the time series.

A very different, pragmatic approach was taken by Fulcher, Little, and Jones to

generate interpretable features. An extensive review of scientific literature was carried out to

catalog thousands of features used in many disparate application areas [17]. To perform

classification, the authors demonstrated a greedy, forward feature selection approach to reduce

the feature database then application of a simple, linear classifier [18]. As all of the features

included in the database are well understood by the scientific community, this approach

produces perhaps the most interpretable solutions available. Interestingly, the accuracy achieved

13

utilizing thousands of expert designed features appears to be outperformed by the random

feature set generated by the TSF approach, although the feature sets were utilized differently in

the two methods making direct comparison of the features difficult.

Another approach is to search in the program space for feature algorithms from their

constituent operations. In this space, solutions are composed of functions and arguments where

the functions consist of any operations that may be part of a feature algorithm. Whereas

treatment of feature design as a program search has certain advantages, the program space is

infinite, making a brute force approach impossible. Some deterministic program search

strategies exist such as Levin search [19], Hutter search [20], and the optimal ordered problem

solver [21], which provide performance guarantees under certain conditions but can be

computationally impractical for even moderately complex problems. Additionally, a random

search over an infinite space is unlikely to be efficient. However, evolutionary computation

provides a practical, proven search heuristic in the form of genetic programming (GP) formally

introduced in [22]. GP methods for feature-based TSC are discussed in section 1.4.3.

1.4. Genetic Programming

GP is a search heuristic originally developed to automate computer programming [22].

Since its introduction, the idea has been adapted to a wide-range of problems including

controller design, robotic programming, analog circuit design, and many more [23]. The search

process evolves a population of candidate solutions where each individual represents a

computer program built from a pre-defined set of inputs and operations. GP is unique as a

search technique because the final size of the solution is not pre-determined. Interested readers

are directed to [23] for a thorough introduction on the field.

14

Standard implementations are not directly applicable to the feature design problem, but

the concept has been successfully adapted to a wide range of problems including feature design

for image processing tasks such as edge detection and object recognition [24, 25]. In particular,

GP-based methods have demonstrated success on problems with the following characteristics

all of which apply to the field of TSC [23]:

• Minimal knowledge and understanding exists for problem domain.

• Size and structure of desired solution are unknown.

• Large amounts of digital data are available.

• Good solutions are easily tested but not directly obtained.

• Analytical solutions are unavailable.

• Optimal solutions are desired but approximations are acceptable.

• Incremental improvements are considered worthwhile.

1.4.1. Solution Space Design

 The solution space for GP consists of a solution structure and the terminal and function

sets that serve as building blocks for the programs. The terminal set consists of input data for

the problem and often a set of pre-defined constants. Standard GP methods rely on the search

process to evolve optimal constants within the solutions from this base set of constant values.

The function set consists of all operations available within a solution. Typical function sets are

on the order of 5-15 functions and can be as simple as basic mathematical operations of add,

subtract, multiply, and divide.

The most common solution structure uses a tree-based program representation with

functions serving as nodes connected by branches to the input data at the terminal leaves. The

root of the tree generates the final output of the program. Other possible structures include

stacks, graphs, recursive structures, and multi-program solutions. Careful design of the program

15

structure, function set, and terminal set is critical to create an effective solution space resulting

in an efficient search process and high accuracy solutions.

1.4.2. Search Method

The search objective is to find the best combination of terminals and functions within

the selected solution structure and size constraints to maximize, or minimize, a fitness measure.

Fitness measures are highly problem-specific and often defined within a GP interpreter, which

takes a candidate solution as input, executes the program, and returns the solution fitness. The

search process uses standard evolutionary computation techniques with genetic operations

specific to GP. First, an initial population is randomly generated and evaluated for fitness.

Parent solutions are chosen from the population through standard selection methods such as

tournament or roulette wheel selection. Next, the breeding process applies genetic operators to

pairs of parents to produce offspring solutions. The offspring replace solutions in the population

with poor fitness then the search continues until a desired fitness value or count of individuals is

reached.

Genetic programming methods rely on the persistence and recombination of beneficial

code segments in the population to find optimal-fitness solutions. The mechanism for this

process is the preferential selection of solutions with better fitness as parents and utilization of

appropriate genetic operators. Common GP operators include mutation and crossover. Mutation

acts on a single parent to replace a section of code with a new, randomly generated section.

Crossover transfers a section of code between parents. For tree-based structures, crossover

selects a random subtree in one parent to replace the subtree at a randomly selected node in the

second parent. Many varieties of crossover and mutation exist to improve search effectiveness

or tailor the operators for a specific solution structure. GP operators are unique as they allow the

16

size of the offspring to vary from that of the parents removing the requirement in most

evolutionary computation methods for a fixed, user-specified solution size.

1.4.3. Classifier Induction by GP

Genetic programming has been employed as a learner to infer classification algorithms

for standard machine learning problems from supervised training data. Espejo, Ventura, and

Herrera provide a thorough review on the use of GP for classifier induction [26]. Such methods

can evolve decision trees, rule-based systems, discriminant functions, neural networks, and

other structures with some advantages over standard learning algorithms. Classification

accuracy of evolved systems is often equivalent or slightly better than traditional algorithms.

However, the computational cost to evolve a problem-specific algorithm is significantly higher

than using standard methods from machine learning, and the evolved classifiers are often very

difficult to interpret or are “black box” in nature [26].

1.4.4. Feature Design by GP

As with traditional classification algorithms, standard GP methods accept multivariate

scalar input but cannot take advantage of additional information within sampled signals. The

literature includes a handful of adaptations for TSC and related problems. The scanning

approach is the simplest adaptation wherein standard trees operate on a time series in a

recursive manner to breed non-linear digital filters [27]. The Zeus system evolves feature

vectors as a forest of strongly-typed trees with each tree producing a single feature [28, 29].

Two systems, genetic programming environment for FIFTH (GPE5) [30, 31] and parallel

algorithm discovery and orchestration (PADO) [32, 33], circumvent the need for a strongly-

typed system by using a single data stack and “smart” functions designed to handle all possible

17

Table 1 – Comparison of genetic programming methods for feature-based TSC

Method,
Year

Solution structure Search method Classification Comments

Scanning/

recursive
trees, 1995

[27]

Single tree evaluated

recursively while
scanning along time

series. Solutions act as

non-linear digital
filters.

Standard tree-based

genetic programming
with simulated

annealing to optimize

numeric parameters

Single feature output requires

classification to be performed
simultaneously with feature

design during algorithm search.

Solution structure does not

naturally lend itself to many
common features, but use of

numerical optimization within

GP search proved beneficial.

PADO,

1995 [32,
33]

Separate program

computes confidence
for each class.

Programs consist of

nested graph structures
acting on single data

stack

Custom genetic

operators evolve
graphs with function

parameters evolved as

values on the data
stack.

Feature selection performed

through adjustment of weights
in voting procedure to

determine program output.

Classification simplified to
selecting class based on

confidence levels.

Structure and functions designed

such that many input types can
be handled including sequences,

images/matrices, and video data.

Zeus, 2002

[28, 29]

Forest of strongly-

typed trees where each

tree computes one
feature in feature

vector

Standard tree-based

genetic programming

and evolved constants

Feature design and selection

performed through custom

genetic operators with
classification of feature vectors

by SVM classifier.

Proposes and advocates use of

wrapper approach wherein

evolved front-end feature
algorithms are combined with

standard back-end classifiers.

FIFTH/
GPE5,

2007 [30,

31]

Linear series of
“smart” functions with

single data stack

written in custom
signal processing

language

Standard genetic
operators with

crossover constrained

to compatible
sequences and evolved

constants

Single feature output requires
classification to be performed

simultaneously with feature

design during algorithm search.

Uses high-level functions such as
the FFT which are efficiently

calculated from standard

optimized libraries and are
unlikely to be evolved from basic

mathematical operations

input data types. Table 1 compares the solution structure and search method for these systems

and discusses how each system accomplishes the TSC task. Standard evaluation methods are

usually employed to compute metrics such as classification accuracy to serve as the fitness

measure for the GP search.

1.5. Contributions of the Dissertation Work

The contributions of this dissertation work are motivated by the need for improved time

series tools in structural engineering applications such as structural health monitoring and non-

destructive evaluation. Development of these tools necessitated integration of techniques from

signal processing, machine learning, numerical optimization, and evolutionary computation as

well as novel advancements in each of these areas. The significant contributions are

summarized as follows:

18

1. Autofead method performs automated feature design for time series classification

including numerous novel developments in the areas of time series analysis,

evolutionary computation, and numerical optimization

a. Autofead yields a compact, interpretable solution space design for discovery of

TSC solutions in form of expert designed systems

b. A comprehensive, flexible library of functions for digital signal processing and

time series analysis is generated and exploited in the design.

c. A hybrid numerical optimization and genetic programming search method with

novel genetic operators is developed for implementation.

d. A sequential global optimization scheme with a weighted evaluation framework

for decoupling of parameter sets in complex optimization scenarios is presented.

e. A fast, non-parametric, binary classification procedure to estimate univariate

decision boundaries.

2. Experimental validation of Autofead method is performed and a comprehensive

benchmark study with comparison to state-of-the-art time series classification methods

is presented.

3. The data mining potential of Autofead method is demonstrated through numerous case

studies including a variety of structural health monitoring applications.

4. A fast implementation of non-probabilistic uncertainty analysis for feature-based time

series classification algorithms to evaluate solution robustness is presented.

19

1.6. Outline of the Dissertation

The remainder of this dissertation details, demonstrates, and evaluates the Autofead

method for TSC and expounds on various related topics. Chapter 2 presents Autofead in-depth

including the development process and history of the method. Chapter 3 experimentally

validates the approach on two categories of synthetic TSC problems referred to as the dynamics,

stationarity, and distributions (DSD) problem and signal detection problems. These problems

are valuable for validation purposes as optimal analytic solutions are known and require a wide

range of evolved solution behaviors. Chapter 4 presents results on three laboratory experiments

related to the field of structural health monitoring. The selected experiments include binary

classification, multi-class classification, and multivariate time series regression. A

comprehensive benchmarking study on 49 openly-available, real-world datasets is described in

Chapter 5 with direct comparison of Autofead to state-of-the-art TSC methods. Further

evaluation of the Autofead method is discussed in Chapter 6 with targeted analysis carried out

on experiments from the previous chapters. Chapter 7 proposes a non-probabilistic uncertainty

analysis technique for evaluating the robustness of TSC solutions. The robustness analysis is

intended to alleviate some of the issues of the Autofead method described in Chapter 6 but is

applicable to other TSC methods as well. Lastly, conclusions and recommendations for future

work are presented in Chapter 8.

Portions of this chapter have been published in IEEE Transactions on Evolutionary

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional

portions of this chapter have been submitted for publication in Data Mining and Knowledge

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

20

Feature Design for Time Series Classification”. The dissertation author was the primary

investigator and author of these papers.

21

 Chapter 2

Autofead Method

2.1. Overview

This dissertation presents a novel TSC method for automated feature design called

Autofead. The overall goal of this work is to develop a general learner that can infer from time

series examples an optimal, minimum-basis feature set for a given supervised training data set.

Additionally, a method that produces interpretable features algorithms in a compact

representation is desirable for time series data mining. Therefore, Autofead is designed

according to the eight following principles:

1. Support multivariate, one-dimensional signal input

2. Perform mutli-class classification and regression

3. Generate feature algorithms substantially similar in form to human-designed features

4. Minimize required user input and assumptions on input data

5. Use standard pattern recognition methods to evaluate candidate feature sets

6. Employ numerical optimization methods appropriately and efficiently

22

7. Avoid black box solutions and strive for easy interpretation of features

8. Promote independence of features to minimize information redundancy

This work represents the first automated feature design system for numeric sequences to

leverage the power and efficiency of both numerical optimization and standard pattern

recognition algorithms. Autofead uses a GP variant to evolve features for input to standard

pattern recognition algorithms through a wrapper approach as depicted in Figure 2. The unique

solution space is specifically designed to generate compact, interpretable solutions while also

allowing flexibility of the method to produce a wide array of feature behaviors. Unlike

traditional GP, the solution structure has no constants in the terminal set; instead, a hybrid

search is employed where parameters within feature algorithms are numerically optimized prior

to fitness evaluation. Feature selection is performed concurrently with feature design by

intelligent genetic operators. Fitness of candidate solutions, i.e. feature vectors, is measured by

the classification accuracy of the selected classifier applied to the measured features through

standard sampling procedures.

Figure 2 – Wrapper approach workflow for TSC

23

2.2. Solution Space

The Autofead solution structure is highly-constrained and simplified compared to other

genetic programming systems developed for feature-based TSC such as Zeus [28, 29], FIFTH

[30, 31], and PADO [32, 33], see section 1.4.4. A restricted structure was chosen primarily for

two reasons. First, most conventional, human-designed algorithms are linear in structure and

operate on one or two signals, i.e., not tree or graph structures; second, the restricted solution

structure allows inclusion of high-level operations within a large function library without

creating an unfeasibly large search space. The Autofead solution space includes the program

structure, function library, function parameters, and classifier selections.

2.2.1. Program Structure

Autofead solutions consist of a set of one or more features each computed through a

series of sequence-handling functions operating on one or two time series inputs. For example, a

feature that computes energy would use the two-function algorithm [square, sum]. Each feature

algorithm ends with a dimension-reduction function such as sum to ensure scalar feature output.

Relatively short algorithms of 2-5 functions are typical facilitating easy analysis and

interpretation of solutions. Figure 3 diagrams a single solution individual. The example shown

Figure 3 – Example Autofead solution structure

24

includes three features of increasing complexity through the inclusion of a merging function in

feature 2 and the sliding windows function in feature 3.

Merging functions allow a feature to operate on two input time series of the same

length. Cross-correlate is an example of a merging function. Each input to the feature algorithm

is processed identically through functions prior to the merging function.

The sliding windows function transforms the input sequence to a matrix of

subsequences. Subsequent functions operate on each subsequence individually until a

dimension-reduction function returns the data flow to a single sequence. A second dimension-

reduction function is then required to compute a scalar feature. This function is inspired by the

segmentation process used in power spectral estimation via Welch’s method [34].

Terminal sets in Autofead are greatly simplified, as there is no notion of constants. The

terminal set simply consists of one or more time series inputs in the training data instances. For

multivariate problems, each feature has an associated input index to select which time series the

algorithm uses as input, or two inputs in the case of merging functions. While the method is

intended for direct input of raw measurement data such as time series, domain knowledge may

indicate that alternative representations are beneficial for a specific application. In this case,

transformed input data can be used instead of or in addition to the raw time series.

Class mean signals allow for additional interesting feature behaviors. A class mean

signal is generated by merging functions as the mean of all signals in the training data from a

single class. The merging function then utilizes the computed class mean signal as the second

input sequence. For example, the feature [element difference (class 0), square, sum] computes

the square of the Euclidean distance between the input time series and the mean signal for class

0. The first input index must always be non-negative to select an input time series. When a

25

merging function is present and class mean signals are enabled, the implementation adds a

selection for each class mean signal as a possible second input index.

2.2.2. Function Library

The function library is designed to allow creation of a wide range of feature behaviors

from relatively short feature algorithms with minimal function redundancy. The functions are

selected to admit features derived from the distributions, dynamics, and transient behaviors of

time series. In many cases, functions were formed by decomposing common signal processing

algorithms into their individual operations and then reducing redundancy within the overall

function set [34]. Although the current library has demonstrated success on a wide range of

problems, design of the optimal, minimal-basis function set for time series analysis remains an

open research topic. The current set of 47 functions and their parameters is described in Table 2.

Each function, with the exception of sliding windows and merging functions, takes a single

sequence as input and outputs a modified sequence. Dimension-reduction functions reduce the

output sequence length to a single sample.

The sliding windows function is of particular interest as it provides the primary

mechanism for analysis of transients or non-stationarity in a sequence. The input sequence is

expanded to a matrix of subsequences by extracting consecutive overlapped windows. To

constrain the function to a single parameter and limit growth of data sizes within algorithms, the

number of windows constructed and number of overlapping samples in sequential windows is

internally determined based on the ratio of the window length parameter to the input sequence

length. The total data size of the output subsequence matrix is limited to between 1.5 and 2

times the size of the input sequence.

26

Table 2 – Autofead function library

Function Output Parameter (*integer type)

Element operations

Absolute value Absolute value of input values -

Cube Cube of input values -

Exponential Exponential function of input values -

Inverse Reciprocal of input values -

Log10 Base-10 logarithm of absolute value of input values -

Sigmoid for input values, , bounded on [-1,1] -

Sign Sign of input values, -1 or 1 -

Square root Square root of absolute value of input values -

Square Square of input values -

Distribution-altering functions (sample order independent)

Center Input values with mean of all training data removed -

Center and
scale

Standard deviations from mean of all training data for input values -

Control chart
Input with central values of data range set to center of range

Percentage of range kept
(0-1)

Demean Input values with mean of individual sequence removed -

Normalize Standard deviations from mean of individual sequence for input values -

Set minimum

value
Input with values below threshold raised to threshold

Data range threshold (0-1)

Set maximum

value
Input with values above threshold lowered to threshold

Data range threshold (0-1)

Order-dependent functions

Auto-

correlation
function

Biased estimate of input sequence auto-correlation function for positive lags -

Convolve Convolution of input sequence with pre-specified sequence -

Cumulative

summation
Cumulative summation of input sequence -

Difference First differences of input sequence -

FFT magnitude Magnitude of FFT of input sequence, [0,π] rad/s bin range -

FFT phase Phase of FFT of input sequence, [0,π] rad/s bin range -

FFT real Real part of FFT of input sequence, [0,π] rad/s bin range -

FFT imaginary Imaginary part of FFT of input sequence, [0,π] rad/s bin range -

Hanning

window
Input sequence with Hanning window applied -

Hilbert

magnitude
Magnitude of Hilbert transform of input sequence -

Hilbert phase Phase of Hilbert transform of input sequence -

Hilbert
imaginary

Imaginary part of Hilbert transform of input sequence -

High-pass filter
High-pass filtered input sequence, zero-phase digital filtering by 3rd order

Butterworth filter

Normalized cutoff

frequency (0-1, upper

bound = π rad/s)

Low-pass filter
Low-pass filtered input sequence, zero-phase digital filtering by 3rd order

Butterworth filter

Normalized cutoff
frequency (0-1, upper

bound = π rad/s)

Sort order Indices of values in sorted input sequence, ascending order -

Wavelet Detail coefficients of discrete-wavelet transform using pre-specified wavelet

family, parameter value of 0 produces approximation coefficients at the
maximum useful level of decomposition

*Wavelet detail level

27

Table 2 – Autofead function library (continued)

Function Output Parameter (*integer type)

Index-altering functions

Keep beginning Input sequence with samples removed from end *Samples to remove

Keep end Input sequence with samples removed from beginning *Samples to remove

Sliding

windows

Subsequences extracted from sliding a window along input sequence, number of

windows and overlapping samples between adjacent windows determined
internally, no change to already windowed input

*Window length

Transpose
windows

Swaps window indices and sample indices -

Merging functions

Cross-correlate Cross-correlation of two input sequences, output is same length as inputs -

Element sum Element-wise sum of two input sequences -

Element
difference

Element-wise difference of two input sequences -

Element

product
Element-wise product of two input sequences -

Element

quotient
Element-wise quotient of two input sequences -

Dimension-reduction functions

Select Sample at index of input sequence; internal brute force index search to optimize

performance of output as single feature solution; for windowed input, each
subsequence is treated as a separate fitness case for index selection

*Internal index selection

Bisection select Same as select function but using bisection index search *Internal index selection

Sorted select Same as select function but with input sequence sorted *Internal index selection

Sorted bisection
select

Same as sorted select function but using bisection index search
*Internal index selection

Slope fit Slope of best linear fit to each input sequence -

Sum Sum of all input values, occurs implicitly at end of every feature -

2.2.3. Function Parameters

In the feature algorithm design process, optimal features may be overlooked because of

poor parameter choices. For example, in a filtering operation, proper filter design parameters

maximize signal-to-noise whereas poor parameter choices can completely obscure the useful

information. Numerical optimization techniques are well understood and designed specifically

to handle this task; however, standard GP uses pre-defined or random constants that are evolved

within the program. This approach does not provide for an efficient numerical search. Some

previous work has adopted a hybrid approach including a numerical optimization step prior to

fitness evaluation resulting in improved solutions with faster convergence [35].

28

The hybrid approach is adopted by Autofead to perform optimization of the parameters

listed for the functions in Table 2. The function parameters are divided into continuous type

(normalized between 0 and 1) and integer type, which are handled separately within the

parameter optimization process. Continuous parameters include filter cutoff frequency for

filtering functions and threshold values for thresholding functions. Keep beginning and keep end

require an integer type parameter that specifies the number of samples to remove from the input.

Additionally, wavelet, sliding windows, and the four select function variants all use integer type

parameters.

2.2.4. Classifiers

Bagnall et al. take the position that the largest performance gains in the area of

sequence classification can be achieved through optimal transformation and representation of

input data as opposed to development and use of complex classifiers [12]. Therefore, Autofead

uses the wrapper approach with the idea that a simple classification algorithm is sufficient to

determine relative performance of features during the feature algorithm design process.

Classifiers for Autofead solutions are selected through the evolution process from a set of pre-

selected standard algorithms. Once the final feature set is formed, more complex classifiers

could be applied to further improve solution accuracy. Because the Autofead solution space has

many degrees-of-freedom with multiple features, many functions, and selection of parameter

values, the method is susceptible to overfitting with small data sets. For this reason, it is

important to select simple, high-bias classifiers to reduce the possibility of overfitting.

Recommended classifiers include Gaussian Naïve-Bayes, Linear Discriminant Analysis, and

Logistic Regression. These three classifiers were implemented using the machine learning

package scikit-learn from Pedregosa et al. [36].

29

2.3. Search Method

Designing an Autofead solution consists of selecting a classifier and the number of

features then specifying for each feature the input indices, functions in the algorithm, and the

functions' parameter values. The solution space is far too large for a brute force approach, and

too complex (including potentially highly discontinuous) for standard optimization methods;

however, the hybrid GP and numerical optimization process depicted in Figure 4 has shown to

be very effective in navigating the space efficiently and consistently. To configure an Autofead

search run, the user defines the training instances, or fitness cases, and sets any problem-

Figure 4 – Autofead search process flowchart

30

specific run parameters. The search begins with a randomly-generated initial population. Then

the search proceeds through four modules of parameter optimization, fitness evaluation,

evolution strategy, and breeding. The run continues until termination conditions are met such as

a desired fitness level or a maximum number of individuals.

2.3.1. Population Initialization

The initial population of an Autofead run is generated through a ramped initialization to

create solutions of varying size. The number of features, the function count within the feature

algorithms, and the number of allowed parameters within the feature algorithms are uniformly

distributed throughout the initial population up to the selected maximum initial solution size

constraints. The number of allowed parameters is constrained in addition to function count

within a feature algorithm to manage computational cost as most of the computational effort of

a run is directed toward parameter optimization. Additionally, the initialization process enforces

uniform usage of classifiers and functions within the population.

For multivariate problems, each feature algorithm requires the additional specification

of an input index to select which time series the algorithm will use as input(s). The first input

index for each feature in the initial population is distributed uniformly between the available

inputs. For features containing a merging function, the second input index is chosen randomly

from the set of remaining inputs and class mean signals, if enabled.

2.3.2. Parameter Optimization

Before solutions are evaluated for fitness, the parameter values within the feature

algorithms must be selected. A single individual can contain multiple features each containing

multiple parameters. Due to the nature of the parameter surfaces, a global optimization strategy

is required; however, global optimization of all parameters within an individual during each

31

iteration of the search process is prohibitively expensive computationally. Additionally, the goal

of the parameter optimization scheme within the Autofead search process is not necessarily to

find the true optimal parameters with high accuracy but rather to assist the overall search by

ensuring that good feature algorithms are not overlooked due to poor parameter choices. The

parameters of the final solution’s features can be re-optimized post-search by standard global

optimization methods before implementation in real systems.

Accounting for these considerations, a sequential global optimization strategy is

employed including a number of parameter independence assumptions. Assumption of

independence both between features in an individual and between parameters in a feature

algorithm greatly reduces the computational requirements for optimization. First, a parameter

grid is built and evaluated for each new feature in the population. Grid evaluations are stored for

subsequent optimizations to reduce repeated computations. Then, parameters are locally

optimized starting from the best grid point on a randomly selected subset of the fitness cases.

Within a single individual, each feature is locally optimized independently to avoid the

computational cost of training and evaluating multivariate classifiers to compute the objective

function. Independent optimizations, however, may lead to high correlation between features if

no method is used to promote orthogonality in the optimization process. For example, in an

individual containing two identical algorithms that estimate location of a spectral peak in a

parameterized frequency band, performance will improve if the two features operate in separate

frequency bands to reduce redundant information. Therefore, a fitness case-weighting scheme is

employed within the local optimization stage. Error-based weights for the fitness cases are

adjusted after local optimization of each feature. For classification, the solution is reduced to

only the features with finalized parameter values then predictions are made for the fitness case

subset. The error for each fitness case is computed by the overall search fitness function. Next,

32

the errors are normalized to the relative error ranks across the fitness cases before updating the

weights. New weights are computed as the average of previous weights and the error ranks.

Therefore, subsequent features’ parameters are optimized with emphasis on the fitness cases

which produce largest error using previously optimized features in the individual.

The objective function for parameter optimization can be computed as classification

error for any high-bias classifier or a standard divergence or information measure. For binary

classification, Autofead uses a direct threshold estimation routine to determine decision

boundaries for classification from a single feature. First, a low-order polynomial is fit to the

difference between the normalized, empirical cumulative density functions for the two classes.

Thresholds are computed as the extrema of the polynomial fit, effectively estimating zero-

crossings of the difference in class probability density functions. Use of a polynomial of 3
rd

 or

4
th
 order ensures a small number of decision boundaries. This procedure produces a very fast,

reasonably-accurate, univariate, binary classifier. For multi-class problems, Autofead uses

linear discriminant analysis as the classifier in the objective function.

To further reduce computational expense, the optimization of the set of integer

parameters is performed independently from each continuous parameter in a given feature. The

continuous parameters in the filtering and thresholding operations tend to have strong effects on

feature performance without altering the overall feature behavior. Additionally, all of the

continuous parameters have a natural default value that results in minimal or no change to the

input. For instance, a high cutoff frequency parameter in the low-pass filter function causes

minimal filtering effects. In contrast, the integer parameters tend to have coupled relationships

leading to a wide range of possible behaviors. For example, the sliding windows function

followed by the select function creates a decimation behavior where the window length

parameter controls the new data rate and the index selection parameter varies the first index

33

retained in decimation. For a feature containing integer parameters and continuous

parameters, this decoupling leads to a single, -dimension optimization followed by , single

parameter optimizations instead of a single, -dimension optimization. Figure 5

diagrams the parameterization scheme for a single solution individual containing both integer

and continuous type parameters.

For the integer parameter set, the initial grid search is performed using an adaptive grid

density determined by variance-based total effect sensitivity indices [37]. Default values for the

continuous parameters are used while building the integer parameter grid. The grid search for

subsequent continuous parameters assumes the best parameter values from previous grid

searches. Local optimization of the integer parameter set is performed through a bisection

Figure 5 – Parameter optimization scheme flowchart

34

search with initial step sizes calculated from the adaptive grid density in each dimension. Then,

the continuous parameters are optimized via Brent’s method [38].

As noted in Table 2, the family of four select functions has internally-optimized index

parameters. Because these functions occur at the end of a feature, the feature output can be

evaluated for different index selections without reevaluating the entire feature from the

beginning. Two unsorted and sorted variants of the select function are included in the library

employing either a brute force or bisection search. The index parameter for the unsorted select

function tends to have high sensitivity and a sparse optimization surface. These characteristics

suggest a brute force search, which would be prohibitively computationally expensive if

reevaluating long features for each index but is tractable through the internal index selection.

For the sorted select function, the index parameter surface tends to be much smoother, thus

admitting a bisection search. Hence, it is recommended the select and sorted bisection select

functions be used in the function set with bisection select and sorted select omitted.

2.3.3. Fitness Evaluation

Fitness of candidate individuals is based on performance of the selected pattern

recognition algorithm applied to the individuals’ feature vector. In the case of regression, linear

regression algorithms and RMS error are standard tools and work well for Autofead’s wrapper

approach. For classification problems, the fitness function, , is calculated as

 , (1)

where and are classification error and quadratic loss, respectively. The value of is

selected to be small such that the only role of is to break ties in . The inclusion of quadratic

loss as a tiebreaker is especially important in cases of small data sets where many candidate

solutions may have zero classification error on the training data. It is important to note that

35

fitness here is defined as a metric to be minimized contrary to convention in most evolutionary

optimization processes.

Fitness is estimated by an adaptive, repeated, stratified -fold cross-validation

procedure. In each data split, -1 folds are used for training with a single fold held out for

testing. The number of folds and repetitions is determined adaptively and designed to

exhaustively sample small classes, provide accurate estimates for medium-sized classes, and

reduce computations for very large classes. Number of repetitions, , and number of folds, ,

are computed based on the number of instances in the smallest and largest classes, and

 , respectively. Fold count is restricted to the interval [5, 10] and varies linearly with

 such that when , creating a leave-one-out procedure for the smallest

class. At , k is reduced to the minimum value of 5 folds. Furthermore, folds are

restricted to a maximum of 50 instances per class to reduce computations. This means classes

with more than 250 instances do not use all available data within a single cross-validation

procedure. Therefore, the number of repetitions varies with the largest class as

with a maximum value of 5 to make better use of very large classes. At the beginning of a single

search, or run, a fixed set of training and testing splits is generated for use throughout the run.

Individual runs on the same problem create a new set of splits with the same number of total

repetitions and folds.

2.3.4. Evolution Strategy

The evolution strategy determines how the population is controlled and allowed to

evolve. A generational approach is the simplest strategy where the entire population is replaced

with an equal number of offspring during each iteration of the search process. An issue with the

generational approach arises when the search moves in a detrimental random direction such that

the offspring generation has lower fitness than the parents. Introducing elitism is one method to

36

alleviate this problem. Autofead adopts a more advanced ⁄ strategy that maintains a

large diverse population of individuals based on methods in Bäck [39]. In each iteration of the

search, the population is truncated to a parent pool of the best individuals from which

offspring are generated. Finally, an updated population is selected from the best offspring and

parents such that the search only moves in the direction of the offspring if they outperform the

parents. Figure 4 depicts the ⁄ strategy in the context of the overall Autofead search

process.

2.3.5. Selection and Breeding

The GP portion of the search involves selection of parent pairs from the truncated

parent pool and breeding of offspring solutions through genetic operators. This part of the

search selects the most useful functions in the function set, designs the feature algorithms, and

performs feature selection to combine features into an individual forming full solutions.

Classifier selection is also performed through the GP component of the hybrid search.

Parent selection within Autofead can be performed by any standard selection

mechanism such as roulette wheel, a.k.a. fitness proportional, selection or reward-based

selection. Tournament selection provides certain benefits in terms of search efficiency including

allowing back chaining [40]. In back chaining, fitness of individuals is only evaluated on an as-

needed basis, often allowing many evaluations to be skipped without impacting the search.

Additionally, hypothesis testing can be implemented within a tournament to reduce evaluations

to the minimal amount required to select the preferred parent with statistical significance. In

Autofead, all individuals are initially evaluated on a small number of cross-validation data splits

to determine the ranking required for parent pool truncation. Within a tournament, further

evaluations are carried out on remaining data splits in order, as needed, until the tournament is

won by an individual according to the corrected, resampled t-test with 90% confidence [41]. All

37

evaluations performed within a tournament are stored to improve the individuals’ fitness

estimates and to avoid repeated computation in future tournaments. Individuals that reach the

final population in an Autofead run are fully evaluated on remaining data splits.

The Autofead genetic operators are simplifications of the standard “crossover”,

“mutate”, and “reproduce” operators in tree-based GP supplemented with operators that

intelligently perform feature selection. The usage frequency of each operator is controlled

through assigned genetic operator probabilities. “Crossover” and “mutate” modify a single

feature algorithm within the first parent. “Crossover”, the most often used operator, replaces a

random segment of functions within one feature algorithm with a random algorithm segment

from one of the second parent’s features. The mutation operator randomly removes, inserts, or

swaps out a single function in a feature algorithm or changes the feature’s associated input

index for multivariate problems. “Mutate” can also modify the solution’s pattern recognition

algorithm section. Mutation helps maintain function diversity within the population as it

converges and enacts small changes to locally search the solution space. “Reproduce” clones a

single parent with no modification of the features. Although the feature algorithms are identical

for the clone, parameters may change as optimization is performed on a new fitness case subset

in the subsequent search iteration.

Feature selection is performed through the “remove feature” and “add feature”

operators inspired by the architecture-altering operations by Koza [42]. The objective function

from the parameter optimization process is used to identify the relative value of adding features

to or removing features from an individual. The “remove feature” operator deletes the worst

feature from a single parent according to the unweighted objective function. “Add feature”

begins by generating fitness case weights using all features from the first parent by the same

method used in parameter optimization. Then, the features from the second parent are evaluated

38

using the weighted objective function to determine which feature is most beneficial to transfer

to the first parent.

2.4. Problem Configuration

As in any evolutionary search process, Autofead requires specification of the many

parameters that control the size of the population, population initialization, frequency of genetic

operators, and other components of the method. For each experiment performed as part of this

dissertation, the run configuration is summarized in a Koza tableau as shown in the example of

Table 3. The example table describes the primary run parameters that may be varied to best suit

specific problems. Choices related to the function set, parameter optimization process,

population size, and termination conditions have significant impact on the computation expense

of the run and are therefore often necessitated by the available computing environment and

available time. Run parameters used in the following studies are based on common practice

with similar GP systems and the authors’ engineering judgment.

Table 3 – Autofead Koza tableau example

Parameter Parameter description

Objective Problem specific objective related to the desirable features for Autofead to design

Solution structure One or more features conforming to Autofead structure and selection of pattern recognition algorithm

Function set Count of functions from function library in Table 2 and any omissions

Pattern recognition Specification of classifier, regressor, or list of available selections

Fitness Fitness measure, bounds, and direction of optimality

Fitness case sampling Sampling procedure selected

Evolution strategy Population and breeding configuration

Solution size Individual solution size constraints

Population initialization Initialization approach and initial individual solution size constraints

Selection Parent selection method and related parameters

Genetic operators List of genetic operators and corresponding genetic operator selection possibilities

Termination Termination conditions such as fitness level, search iterations, or total individual count

Run repetitions Number of runs performed on problem

39

2.5. Development History

The three-year development of Autofead began in the application area of feature

extraction for structural health monitoring systems described further in Chapter 4. The authors

soon broadened the research to address the more general area of time series classification. The

versions of Autofead presented during early development were significantly similar to the

current method but lacked certain minor components and some major implementation

improvements [43, 44]. Important modifications present in later studies include improvement of

the evolution strategy, fitness estimation, and function library as well as the addition of merging

functions, class mean signals, and evolved pattern recognition algorithm selection [45]. The

authors’ believe the Autofead implementation presented in this dissertation represents a

substantially mature method; however, the potential for further refinement is acknowledged

under the recommendations for future work in section 8.2.

Portions of this chapter have been published in IEEE Transactions on Evolutionary

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional

portions of this chapter have been submitted for publication in Data Mining and Knowledge

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Time Series Classification”. The dissertation author was the primary

investigator and author of these papers.

40

 Chapter 3

Experimental Validation

3.1. Detecting Dynamics, Stationarity, and Distributions

The first validation experiment requires Autofead to generate three simple but very

different features and perform feature selection to combine the three features in a single

individual. The three required features measure information related to signal dynamics,

stationarity, and distributions, here referred to as the DSD problem. It is important to note that

derivation of the optimal, analytic solutions requires complete knowledge of the signal

generation process. Autofead is designed to discover optimal and near-optimal solutions with

minimal knowledge represented by training data alone. No application-specific information is

provided to the system in any of the validation experiments in this chapter that would benefit

the method.

The DSD problem involves separating a zero-mean, unit-variance, white, Gaussian

noise (WGN) process in class 0 with one of three equally-likely subclasses within class 1.

Subclass 1a is generated by passing WGN through a weighted, 2-sample moving average filter.

41

Table 4 – Koza tableau for DSD run configuration

Parameter Setting

Objective Derive features to separate class 0 from each subclass of class 1

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals

Function set
35 functions from function library plus separate function, sum windows; omitted center, center and
scale, convolve, cross-correlate, element difference, element product, element quotient, element sum,

inverse, sigmoid, slope fit, and wavelet

Pattern recognition Kernel-based Naïve-Bayes classifier

Fitness Minimize classification error bounded on [0,1]

Fitness case sampling 96% testing percentage split for each generation

Evolution strategy Generational, population size of 500, no elitism

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters

Selection Tournament, tournament size 4

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 20 generations; 10,000 individuals

Run repetitions 30; 300,000 total individuals

Subclass 1b has a slight variance increase halfway through the signal, and a white, uniform-

distribution noise process produces subclass 1c. Each subclass involves a slight modification to

the WGN process of class 0, but the expected mean values and signal energies are unaltered. All

signals consist of 100 samples with index 0 to 99. Table 4 summarizes the Autofead

configuration for the DSD problem. The best Autofead solution from a single run contained five

features. Two features were redundant and have been removed with no loss of fitness. The

remaining three features each target detection of a specific subclass of class 1.

Subclass 1a has altered dynamics from a moving average filter with weights √ and

√ for the 0 and 1 sample lags, respectively. The optimal feature to detect this change is the

value of the auto-correlation function at 1 sample lag. The Autofead feature took a different

approach by calculating an energy measure for the high-frequency band of the signal. The

feature algorithm is [high-pass filter (), cube, absolute value, sum]. Because the

moving average filter is a low-pass filter, class 0 contains higher energy than subclass 1a in the

high-frequency band. The sequence [cube, absolute value, sum] computes an energy measure

using the third power instead of the second power.

42

Subclass 1b is non-stationary with a variance change from √ to √ at sample 50.

The global dynamics and distribution of subclass 1b are identical to a WGN process requiring

the optimal feature to detect a non-stationary change in the signal. The difference in the

variance of the two signal halves provides the optimal discriminator between class 0 and

subclass 1b. Autofead accomplishes the task through the feature algorithm [cube, absolute

value, cumulative summation, select ()]. Again, the sequence [cube, absolute value, sum]

from the cumulative summation computes an energy measure. By taking a cumulative

summation and selecting index 46 as the feature value, only samples from the low variance

section of the signal are included in the feature. Here, the optimal parameter choice is index 49

to capture the entire first half of the signal, but index 46 was selected as optimal for the

particular subset of training fitness cases used during optimization with minimal performance

loss.

Lastly, a white, uniformly-distributed noise process is used to generate subclass 1c.

Bounds of -√ to √ for the uniform distribution are selected to produce zero-mean, unit-

variance signals. For this subclass, the optimal feature simply detects the presence of any values

outside the bounds of the uniform distribution. Consequently, the associated feature in the

Autofead solution finds the largest magnitude sample using the algorithm [absolute value,

sorted select ()]. The sorted select function, using index 99, selects the maximum value.

Figure 6 illustrates how class 0 and each subclass are separated by the associated 3

features in the Autofead solution. Each column provides a series of images corresponding to the

processing steps in a single feature algorithm. For each image, the horizontal axis indicates

samples of the sequences at the given processing step and is supplemented with the sum of the

current sequences on the right end. The vertical axis represents the entire data range for

individual sequence indices. At each sequence index, the values from all fitness cases are sorted

43

and replaced by their known class labels. Then, the background images are generated by

assigning a color or gray-level value to each class. In the foreground, median values and

quartiles at each sample across all sequences are shown by black and white lines, respectively.

This visualization technique provides a number of advantages for feature algorithm

analysis and design in conjunction with Autofead. Although absolute values and distribution

shapes are admittedly obscured, class separability is only dependent on the relative distribution

of the classes over the value range, which is explicitly presented by the visualization. For

example, Figure 6(a) shows a completely heterogeneous image indicating that the two class

distributions are highly overlapped across the entire sequence. In terms of feature design, a fully

heterogeneous image dictates application of an order-dependent function as any element

operations or distribution-altering, index-altering, or dimension-reduction functions would act

equally on both classes.

In contrast, the final image for each feature shows clear regions of homogeneity

indicating a difference between classes that can be exploited as a feature. After the absolute

value operation in feature 1, Figure 6 (d) shows the largest values across the sequence belong to

class 0 and the smallest values fall in subclass 1a. The sum column on the right clearly shows

that summing the sequences at this point generates a feature with excellent class separability.

Features 2 and 3 end with different dimension-reduction functions than feature 1

corresponding to specific characteristics apparent in the processing images. Figure 6(h) contains

columns in the middle of the sequence with large class separability even though the sum column

only shows small class differences. Consequently, feature 2 ends by selecting index 46 as the

feature output. Lastly, Figure 6(j) shows that the largest values across all indices belong

unanimously to class 0. The presence of a percentile level (row in the image) composed of

44

Autofead feature 1 Autofead feature 2 Legend

(a) Input (class 0 and subclass 1a) (e) Input (class 0 and subclass 1b) Autofead feature 3

(b) 1. High-pass filter (p=0.700) (f) 1. Cube (i) Input (class 0 and subclass 1c)

(c) 2. Cube (g) 2. Absolute value (j) 1. Absolute value

(d) 3. Absolute value (h) 3. Cumulative summation (k) 2. Sort (from sorted select)

4. Sum 4. Select () 3. Sorted select ()

Figure 6 – DSD solution processing steps

45

largely a single class suggests terminating the feature through the sorted select function. The

image in Figure 6(k) after the sort operation alone clearly shows excellent class separation for

the largest indices corresponding to the maximum values in the unsorted sequences.

The feature distributions for the optimal solution and Autofead solution are given in

Figure 7 conditioned on class 0 and the three subclasses of class 1. The arrows in Figure 7(c)

and Figure 7(f) indicate impulse or near-impulse distributions. For each feature, one, and only

one, subclass shows large separation from class 0 verifying that the problem requires at least

three features to construct a near-optimal solution. In this case, the accuracy of the discovered

solution is identical to the optimal solution to within 0.1%. The results for the DSD problem

demonstrate that Autofead can design simple features and perform feature selection within its

population.

(a) Autofead feature 1 (b) Autofead feature 2 (c) Autofead feature 3

(d) Optimal feature for subclass 1a (e) Optimal feature for subclass 1b (f) Optimal feature for subclass 1c

Figure 7 – DSD solution features’ probability density function estimates

46

3.2. Signal Detection Problems

The second set of validation experiments employs two classic problems from detection

theory, involving determining the presence of a sinusoidal signal obscured by WGN. The run

configuration for these problems is provided by Table 5. Solutions were limited to a single

feature in these experiments to reduce computational expense as the optimal solutions were

known to only require a single feature.

For signal detection problem 1, class 0 contains noise alone, and class 1 includes a -10

dB signal-to-noise ratio sinusoid with random phase and frequency. The phase is uniformly

distributed over – to radians, and the frequency is uniformly distributed between and

 rad/s. With 100 sample input signals, the frequency range endpoints correspond to the bin

centers of FFT bins 10 and 20.

The optimal feature for signal detection problem 1 is the maximum magnitude of the

FFT from bins 10 through 20. Four separate behaviors are necessary to compute the optimal

feature. Low- and high-frequency content outside the signal frequency range must be removed.

Table 5 – Koza tableau for signal detection run configuration

Parameter Setting

Objective Derive optimal single feature for signal detection

Solution structure Single feature consisting of a sequence of functions, omitted class mean signals

Function set

35 functions from function library plus separate function, sum windows; omitted center, center and

scale, convolve, cross-correlate, element difference, element product, element quotient, element sum,

inverse, sigmoid, slope fit, and wavelet

Pattern recognition Kernel-based Naïve-Bayes classifier

Fitness Minimize classification error bounded on [0,1]

Fitness case sampling 96% testing percentage split for each generation

Evolution strategy Generational, population size of 500, no elitism

Solution size Single feature limited to 15 functions and 8 parameters

Population initialization Single feature ramped to initial maximum size of 5 functions and 3 parameters

Selection Tournament, tournament size 4

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 20 generations; 10,000 individuals

Run repetitions 30; 300,000 total individuals

47

Next, the amount of sinusoidal energy present at each frequency is measured. Finally, the

maximum energy level is selected as the feature. Figure 8 depicts four solutions found by

Autofead that perform these behaviors in different ways. Feature A is the true optimal feature in

minimal form. Feature B uses simple filtering operations to control the frequency content with a

slight reduction in fitness due to the filter roll-off characteristics in the filtering functions.

Function C utilizes an interesting pattern to select the maximum over the first 20 FFT bins with

the low-frequency content removed by high-pass filtering. Lastly, feature D extracts FFT bins

10 to 20 using the sliding windows function resulting in optimal fitness. Here, the construction

of the third of 9, 11-sample subsequence windows corresponding exactly with indices 10

through 20 is purely coincidental. With a different range of signal frequencies, the same feature

would have suffered a small performance loss by missing useful, or retaining unneeded, FFT

bins.

Figure 8 – Signal detection problem 1 solution feature algorithms

48

Signal detection problem 1 represents a significantly more challenging feature

algorithm design problem than the DSD problem. Here, the optimal solution requires at least

four functions including three parameters. Autofead again performed excellently finding a

variety of optimal and near-optimal features. Furthermore, the search discovered

unconventional function patterns to effectively perform needed behaviors such as in feature C.

For all of these features, the optimized parameter values selected in the optimization scheme

represented the true, global optimal values.

Signal detection problem 2 adds an additional level of complexity to the previous

experiment by obscuring the sinusoidal signal in a longer WGN sequence with a random signal

arrival time. Each signal contains 500 samples with class 1 including a 100-sample long

sinusoid with starting index uniformly distributed over sample range 0 to 399. The optimal

solution requires calculation of the optimal feature from signal detection problem 1 for every

100-sample subsequence in the time series then selecting the maximum value. The sliding

windows function is designed to permit this type of behavior; however, the restrictions on

number of windows and overlap between sequential windows make the optimal solution

unrealizable in the solution space. The best Autofead solution as-found is shown in Figure 9

along with the optimal solution utilizing an all sliding windows function not present in the

function library. The classification accuracy of the as-found solution is 85.8% compared to the

optimal level of 90.8%, and the solution is accomplished with only three parameters as opposed

to five in the optimal feature.

Although Autofead did not find an optimal-fitness solution, the as-found feature is

sufficient as a starting point for manual refinements to reach the optimal feature. Figure 9 shows

three refinement steps based on understanding of the behaviors within the as-found feature.

49

Figure 9 – Signal detection problem 2 solution feature algorithms

First, the auto-correlation function prior to an FFT operation is removed as it only acts as a

triangular windowing process due to the biased estimation process. For refinement 2, it is

recognized that the Hanning window and keep beginning functions act together to weight a

range of sequence indices in the summation. Replacing Hanning window with keep end creates

a rectangular window sized by the parameter optimization process. Lastly, repeated power

functions and exponentials before a summation tend to emphasize the largest values, so we

replace the three square functions with sorted select resulting in the final and optimal feature.

Therefore, the Autofead as-found solution, while useful on its own, is best treated as a starting

point for a post-search refinement and improvement process. Currently, such refinement must

be performed manually but could be automated.

Through the DSD and signal detection experiments, Autofead is shown to produce

optimal and near-optimal solutions in substantially similar form to the known analytical

solutions. Only training instances are provided to the method to achieve these results whereas

derivation of the optimal solution requires complete system knowledge. These experiments

validate the basic solution space design and hybrid search method utilized by Autofead.

50

A portion of this chapter has been published in IEEE Transactions on Evolutionary

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Numeric Sequence Classification by Genetic Programming”. The

dissertation author was the primary investigator and author of this paper.

51

 Chapter 4

Application to Structural Health Monitoring

4.1. Introduction to Structural Health Monitoring

Structural health monitoring (SHM) systems provide in-situ damage and performance

information for civil, aerospace, and other high-capital value or safety-critical structures. The

conventional processing flow for data-driven SHM systems begins with acquisition of time

series structural response measurements. After pre-processing, a set of one or more damage-

sensitive features is calculated in a feature extraction process that is then input to a pattern

recognition algorithm to perform the desired task. The classification or regression analysis

forms the basis for decision-making under the uncertainty and noise that typically affect the

SHM process. Summary reviews on the field are provided in Doebling, Farrar, and Prime [46]

and Farrar, Doebling, and Nix [47]. For the interested reader, Farrar and Worden provide a

more comprehensive treatment of the field of SHM in their recent work [48].

Typical structural response measurements used by SHM systems consist of time series

or spectral measurements of acceleration, velocity, force, or strain. The desired output includes

binary detection of damage, classification of damage type, and estimation of damage location

52

and extent. As such, the field can be viewed as a specialized application of time series

classification. In conventional model-based SHM, knowledge of the structure, loading, and

operating conditions drives the development and verification of a model, which can be data-

based or physics-based [48]. Parameters of the model or error measures within the modeling

and prediction processes are used as features. Feature-based approaches are also common for

SHM with feature algorithm design based on engineering judgment and domain knowledge.

Little work has applied general time series classification methods that rely on training data

alone to SHM problems.

4.2. SHM Feature Extraction

Development of effective features for a specific SHM system presents two key

difficulties. First, the features must be sensitive to the damage states of interest in the system

such that statistically detectable changes occur when the system undergoes damage. Second, the

features must be insensitive to the varying operational or environmental conditions the system

may experience in use. SHM axiom IVb states that “without intelligent feature extraction, the

more sensitive a measurement is to damage, the more sensitive it is to changing operational and

environmental conditions” [49]. The design of robust, damage-sensitive features for a specific

application can be an expensive and time-consuming task requiring extensive system

knowledge and domain expertise or, absent that, substantial trial-and-error.

The objectives of a fully data-driven approach to SHM feature design are thus two-fold.

First, the question is posed “How should we process response measurements to extract damage

information when minimal system and domain knowledge is available?” An automated, data-

driven approach to feature design directly infers from a training database of response

measurements a feature set specific to the problem at hand. Such an automated approach

53

provides the additional benefit of significantly reduced time and effort for the overall SHM

system design process. Second, the additional goal of designing robust features may be met

directly by including examples of the expected operational and environmental variability within

the training data. Thus, the fundamental assumption in this approach is that data are available

that are known to span the desired classification or regression spaces of the SHM system.

Autofead provides a feature-based time series classification solution with no required

knowledge of the data-generating system. This approach is widely applicable to SHM problems

involving complex structures or failure modes that are difficult to model or to reduce the

required development time and effort for an SHM system. The remainder of this chapter

demonstrates direct application of Autofead to three SHM-related laboratory experiments.

4.3. Ultrasonic Damage Detection

For the first experiment, the goal is to determine the presence of damage in a steel beam

simulated by a magnet using a single pitch-catch measurement from a pair of piezoelectric

elements. The experimental structure is shown in Figure 10. The training data contains 500

undamaged instances with no magnet and 500 damaged instances with the magnet located at 40

different locations on the same side of the beam as the actuator and sensor. Recorded signals

include 750 samples collected at 2 MHz as seen in the examples in Figure 10. The actuation

signal is a 200 kHz Gaussian-modulated sine wave with 0.6 normalized bandwidth.

Conventional pre-processing operations for this task include matched filtering, envelope

analysis, and baseline subtraction. The convolve function is configured here to perform

convolution with the actuation signal for matched filtering. An envelope analysis can be carried

54

(a) Experiment photos

(b) Undamaged (without magnet) example time series (c) Damaged (with magnet) example time series

Figure 10 – Ultrasonic damage detection experiment

out by the Hilbert magnitude function. Additionally, the undamaged measurements are

averaged to provide a healthy baseline input. By including a baseline, it is possible for Autofead

to construct features including a baseline subtraction component through the element difference

merging function. The use of the actuation signal for convolution and inclusion of an average

baseline channel represent examples of how domain knowledge can be incorporated into

Autofead to tailor the method for a specific problem.

For comparison solutions, waveforms are pre-processed by matched filtering and

envelope analysis; then total energy and peak amplitude features with and without baseline

subtraction are computed. Interested readers are directed to Farrar and Worden [48], Raghavan

and Cesnik [50], and Flynn, Todd, Wilcox, Drinkwater, and Croxford [51] for an introduction to

the use of ultrasonics and guided-waves in SHM. The Autofead solution was found using the

configuration in Table 6.

55

Table 6 – Koza tableau for ultrasonic damage detection run configuration

Parameter Setting

Objective Design optimal feature set to detect presence of simulate damage by magnet

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals

Function set 44 functions from function library; omitted bisection select, convolve, and sorted select

Pattern recognition Kernel-based Naïve-Bayes classifier

Fitness Minimize classification error bounded on [0,1]

Fitness case sampling -fold cross-validation

Evolution strategy with , , and

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters

Selection Tournament, tournament size 2

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 980 iterations; 50,000 individuals

Run repetitions 50; 2.5 million total individuals

The Autofead solution contains a single feature based on a cross-correlation between

the measured waveform and average baseline. Figure 11 characterizes the original input data

and how the data progresses through each processing step in the Autofead feature. See section

3.1 for a detailed interpretation of the solution processing images.

(a) Input signals (d) 3. Control chart modifies values on [-0.38,0.42]

(b) 1. Cross-correlate (with averaged baseline) (e) 4. Low-pass filter ()

(c) 2. Sigmoid (f) 5. FFT imaginary

 6. Sum

Figure 11 – Ultrasonic damage detection solution processing steps

56

Figure 12 shows class-conditioned histograms and probability density function (PDF)

estimates for the Autofead feature and four conventional features. From the distributions, the

Autofead feature clearly provides greater separation of the undamaged and damaged classes.

The unusual distributions for the damaged class are primarily due to the inclusion of 40

different magnet locations with varying levels of detection difficulty. For example, if only a

single damage location was included, one would expect peak amplitude without baseline

subtraction to either be consistently smaller, larger, or identical with damage to the undamaged

class. The receiver operating characteristics (ROC) curves in Figure 13 show the trade-off

between false positives and correct detections using each feature from Figure 12. The ROC

curves confirm that the Autofead feature outperforms the conventional solutions with nearly

 (b) Total energy (d) Peak amplitude

(a) Autofead feature (c) Total energy after baseline
subtraction

(e) Peak amplitude after baseline
subtraction

Figure 12 – Ultrasonic damage detection solutions’ feature probability density function estimates

57

Figure 13 – Ultrasonic damage detection receiver operating characteristic (ROC) curves

perfect classification accuracy at 99.9%. However, it is important to note that the Autofead

solution is designed to be specific to the training data. In this case, the experiment only includes

a single beam, sensor pair, and damage type in a controlled laboratory environment. The

comparison solutions may generalize better to variation of the conditions of the experiment as

well as other ultrasonic structural interrogation applications. To design a general feature for

these applications, any expected structural, operational, and environmental variability would

need to be included in the training data input to Autofead.

4.4. Damage Type Identification for Rotating Machinery

The second experiment involves identifying three bearing health states in the

Machinery Fault Simulator from Spectraquest, Inc. depicted in Figure 14. The motor drives a

gearbox through a set of drive belts and a 91.4 cm shaft supported by three Rexnord ER12K ball

bearings. Damage is introduced to the bearing farthest from the motor by replacing the healthy

58

Figure 14 – Rotating machinery experiment photos

bearing with a pre-damaged specimen. The damage cases include a bearing with ball spalling

and a bearing with an outer race fault.

Time series response measurements are collected from the accelerometer located on top

of the housing of the bearing of interest. Each response measurement consists of 540 samples

collected at a sampling rate of 2.56 kHz. All responses are collected at a steady-state shaft speed

of 1,000 rpm (16.7 Hz). Figure 15 shows example measurements for each class.

(a) Healthy (b) Ball spalling (c) Outer race fault

Figure 15 – Rotating machinery example time series

59

Table 7 – Koza tableau for rotating machinery run configuration

Parameter Setting

Objective Design optimal feature set to detect presence of damaged bearings

Solution structure Set of features consisting of a sequence of functions, omitted class mean signals

Function set 45 functions from function library; omitted bisection select and sorted select

Pattern recognition Kernel-based Naïve-Bayes classifier

Fitness Minimize classification error bounded on [0,1]

Fitness case sampling -fold cross-validation

Evolution strategy with , , and

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters

Selection Tournament, tournament size 2

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 980 iterations; 50,000 individuals

Run repetitions 50; 2.5 million total individuals

The loading of the gearbox through the drive belts and the presence of an outer race

fault on one bearing specimen produce an asymmetry to the system along the shaft axis.

Therefore, the system is disassembled and reassembled 8 times per bearing specimen to mitigate

experimental errors. 5,120 instances are collected for each of the three damage conditions.

Autofead’s training data includes twenty-five percent of the instances with the rest held out for

independent solution testing. The selected run parameters are listed in Table 7.

Conventional solutions for comparison are selected from ten metrics presented in the

review of vibration analysis methods for rotating machinery by Lebold, McClintic, Campbell,

Byington, and Maynard [52]. Calculation of many of the metrics requires knowledge of the

internal geometry of components such as bearings and gearboxes to identify fundamental

frequencies for various filtering operations. Of the ten metrics, FM4 and RMS provide the best

performing pair of features for use with the classifier used by Autofead solutions.

Figure 16 shows the signal processing flow for the two features in the Autofead

solution. The first feature is approximately the median value after pre-processing by a non-

linear scaling operation, high-pass filtering, and lastly an envelope analysis. This feature is

difficult to interpret due to the untraditional pre-processing sequence. Feature 2 is simply the

60

energy within a narrow frequency band after the sigmoid operation, which primarily reduces the

effect of outliers. Both features contain parameters that are optimized to remove lower-

frequency components of the response.

(a) Input signals

Feature 1 Feature 2

(b) 1. Exponential (g) 1. Sigmoid

(c) 2. Normalize (h) 2. FFT magnitude

(d) 3. High-pass filter () (i) 3. Keep end ()

(e) 4. Hilbert magnitude (j) 4. Keep beginning ()

(f) 5. Sorted select (index 599) (k) 5. Set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑)

 6. Sum

Figure 16 – Rotating machinery solution processing steps

61

(a) Feature 1 parameters (b) Feature 2 integer type parameters

Fitness

 (c) Feature 2 continuous parameter

Figure 17 – Rotating machinery solution parameter spaces

Figure 17 presents the parameter spaces for the two parameters in feature 1 and three

parameters in feature 2. In each image, fitness levels are computed with all other parameters in

the individual held to their final optimized values indicated by the black circles. These surfaces

show some of the complexity and variety of parameter optimization problems encountered

within the Autofead solution space. The parameter space for feature 1 is fairly smooth and

unimodal, while the space for the integer parameters in feature 2 is dominated by a large low-

fitness region. The small region of higher fitness is fairly rough containing many local extrema.

Finally, the surface for the set minimum value parameter in feature 2 includes a significant

discontinuity around . In each case, Autofead’s parameter optimization scheme

provides results near the global optimum.

62

(a) Autofead solution (b) Conventional solution

Figure 18 – Rotating machinery solution feature space

The two-dimensional feature spaces for the Autofead solution and conventional metrics

are given in Figure 18 including decision boundaries from the Naïve-Bayes classifier. The

conventional solution relies primarily on the RMS metric to separate the classes and achieve

classification accuracy of 78%. In comparison, the two features in the Autofead solution

complement each other to provide excellent separation between all three classes resulting in

99% classification accuracy.

4.5. Vibration-Based Damage Extent Estimation

The final experiment uses the bolted, aluminum bookshelf structure in Figure 19 with

the goal of estimating damage extent from vibration-based response measurements. The

structure is composed of four, 2.5 cm thick aluminum plates measuring 30.5 cm wide by 30.5

cm deep. The plates are supported by rectangular columns at each corner for a total structure

height of 53.1 cm. The entire structure is mounted on a rail system to constrain the motion to a

63

Figure 19 – Damage extent estimation experiment photos

single primary direction. An electrodynamic shaker provides excitation along the midline of the

bottom floor though a stinger and load cell. Responses are measured by accelerometers mounted

to the midlines of each floor in the primary direction of motion.

Damage is introduced by changing the width of the gap in a bumper and column system

mounted on the second and third floors, respectively. Relative motion of the two floors causes

impacts between the bumper and column. When the width of the gap is small, more impacts

occur for a given excitation representing a higher level of damage. Six damage levels are

included in the training data with the task of estimating the damage level using linear regression

from the four response measurements and the input measurement from the load cell. Damage

level 0 represents the healthy state with a wide enough gap such that no impacts occur. Damage

levels 1, 1.33, 1.54, 2, and 4 are proportional to their respective gap widths of 0.20, 0.15, 0.13,

0.10, and 0.05 mm.

64

Table 8 – Koza tableau for damage extent estimation run configuration

Parameter Setting

Objective Design optimal feature set to estimate extent of simulated damage from bumper impacts with column

Solution structure Set of features consisting of a sequence of functions

Function set 44 functions from function library; omitted bisection select, convole, and sorted select

Pattern recognition Linear regression

Fitness Minimize RMS error [0,1]

Fitness case sampling -fold cross-validation

Evolution strategy with , , and

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters

Selection Tournament, tournament size 2

Genetic operators Crossover, 80%; mutate, 5%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 980 iterations; 50,000 individuals

Run repetitions 50; 2.5 million total individuals

The structure is excited by band-limited white noise from 20-150 Hz to include the first

three natural frequencies and avoid low-frequency, rigid-body modes. Response measurements

are collected at 320 Hz for 3.2 seconds (1,024 samples). Two hundred fitness cases are included

in the training data from each of the six damage levels. Full details of the structure, data

acquisition system, and test plan are found in Figueiredo, Park, Figueiras, Farrar, and Worden

[53]. The Autofead configuration for this multivariate regression task is given by Table 8.

A multitude of possible solutions exist in the literature for vibration-based damage

detection and localization such as those in Farrar and Worden [48]. For this example,

conventional solutions were selected from the methods compared in Figueiredo et al. [53]. The

statistical moments solution includes the mean, variance, skewness, and kurtosis for each of the

four response channels for a total of 16 features. Skewness is a particularly useful feature for

this problem as the simulated damage case adds asymmetry to an initially symmetric system.

The natural frequencies solution includes estimates of the first three natural frequencies of the

structure through the frequency response and complex mode indicator functions. Two solutions

are based on autoregressive (AR) time series modeling. The AR(5) parameters solution uses the

parameters from a fifth-order model as features. A separate model is fit for each response

65

channel to generate 20 features. Lastly, AR(20) RMS error includes the root mean square error

level for each response channel using a 20-order model fit to responses from damage level 0.

For this solution, the RMS error is expected to increase as the damage level increases creating a

system progressively less similar to the healthy state.

The Autofead solution uses three features as depicted in Figure 20. For visualization

purposes, the processing images are displayed with only damage levels 0, 1, and 4. Features 1

and 2 use the second floor response while feature 3 uses a cross-correlation between the top two

floors. While these features are difficult to fully interpret due to highly non-linear behavior of

some of the element operations, certain characteristics of the data are clear. For instance, the

higher damage levels contain more high-frequency content. Unsurprisingly, all three features

utilize the response measurements from the floors where the bumper and column are mounted.

Investigation of the three-dimensional feature space formed by the Autofead solution

reveals the complementary nature of the three features. Figure 21 depicts a three-dimensional

scatter plot with PDF estimates along each feature axis conditioned to the six damage levels.

Features 1 and 3 both increase monotonically with the damage level but cannot separate damage

levels 0 and 1; however, feature 2 provides the additional information needed to separate the

lowest two damage levels. Although the classes are fairly well-separated in the feature space, it

is clear that a linear regression model is insufficient to fully utilize the information in the

Autofead solution. This is an example where the simple pattern recognition algorithm is

sufficient within Autofead to perform feature design, but the final solution would benefit from

selection of a more advanced regressor.

To evaluate the relative performance of the Autofead solution and four comparison

solutions, distributions of the damage level estimates using linear regression are shown in

66

 Feature 2 (floor 2 input) Feature 3 (floor 2 and 3 inputs)

(a) Floor 2 input (f) 1. High-pass filter () (l) 1. Normalize

(b) Floor 3 input (g) 2. Absolute value (m) 2. High-pass filter ()

Feature 1 (floor 2 input) (h) 3. Normalize (n) 3. Cross-correlate

(c) 1. Cube (i) 4. Log10 (o) 4. Log10

(d) 2. FFT magnitude (j) 5. Log10 (p) 5. Square root

(e) 3. FFT real (k) 6. Sorted select (index 642) (q) 6. Sorted select (index 868)

4. Sum

Figure 20 – Damage extent estimation solution processing steps

67

Figure 21 – Damage extent estimation solution features’ probability density function estimates and

feature space

Figure 22 along with the true damage levels indicated by vertical, dashed lines. Clearly, the

Autofead solution and AR(5) parameters provide the most accurate and consistent estimates

across the damage levels. Damage level 1 is an interesting case where bimodal behavior is

observed for some of the solutions with one mode overlapping damage level 0. This result is

most likely due to a mislabeling in the training data in cases where the gap width was set

correctly to 0.20 mm but no actual impacts occurred within the measurement time. However,

without an independent measure of impact counts, this hypothesis cannot be confirmed. If true,

the Autofead solution significantly outperforms the other solutions in separating the instances

from damage level 1 where impacts do and do not occur.

Table 9 provides the RMS error for the five solutions with the two best solutions at each

damage level shown in bold. The results for damage level 1 do not follow the trends of the other

levels due to the previously discussed bimodal behavior issue. For all other levels, as well as on

68

(a) Autofead solution (3 features) (b) Natural frequencies (3 features) (c) Statistical moments (16 features)

(d) AR(5) parameters (20 features) (e) AR(20) RMS error (4 features)

Figure 22 – Damage extent estimation solution accuracies

average, the Autofead solution provides the lowest or second-lowest error level. While the error

is similar for the next best solution of AR(5) parameters, the dimension reduction provided by

Autofead is significant using only 3 features compared to 20.

Table 9 – Damage extent estimation solution RMS errors

Damage level Autofead Natural frequencies Statistical moments AR(5) parameters AR(20) RMS error

0 0.36 0.98 0.56 0.39 0.47

1 0.45 0.24 0.44 0.48 0.45

1.33 0.16 0.44 0.30 0.16 0.34

1.54 0.15 0.58 0.24 0.16 0.30

2 0.21 0.78 0.50 0.19 0.53

4 0.14 1.41 0.30 0.23 0.52

Average 0.25 0.74 0.39 0.27 0.44

69

This chapter experimentally demonstrates the Autofead method on a variety of SHM

problems including binary damage detection, classification of damage type for rotating

machinery, and multivariate regression of damage extent. Significant performance

improvements over conventional features are realized utilizing only supervised examples. The

results show Autofead as a promising method for SHM feature design in applications where

sufficient training data can be acquired.

A portion of this chapter has been published in Smart Materials and Structures, Dustin

Harvey and Michael Todd, 2014. The title of this paper is “Structural Health Monitoring

Feature Design by Genetic Programming”. The dissertation author was the primary investigator

and author of this paper.

70

 Chapter 5

Benchmark Study

5.1. Problem Set

This chapter provides a direct comparison between Autofead and state-of-the-art TSC

methods. Openly available data sets allow for evaluation and comparison of methods over a

wide range of application areas. The largest repository is hosted at the UCR Time Series

Classification/Clustering Page [54]. This database is used by many TSC researchers providing

direct, unbiased comparison of results using the predefined training and testing splits in the data.

For this study, 43 problems in the UCR database were supplemented with an additional 6

problems provided by Bagnall et al. [12].

5.1.1. Characterization

The 49 problems selected for this study represent a wide range of data types and

problem dimensions. Table 10 provides characteristics for each of the 49 problems studied

including data type, data source, number of classes, instance counts, and the number of samples

in the input data. 25 problems consist of time series measurements from a variety of sensors.

71

Table 10 – Benchmark study problem characteristics

Data type Problem Source Number of classes Training instances Testing instances Time series length

Sensor

ChlorineConcentration [54] 3 467 3840 166

CinC_ECG_torso [54] 4 40 1380 1639

Cricket_X [54] 12 390 390 300

Cricket_Y [54] 12 390 390 300

Cricket_Z [54] 12 390 390 300

Earthquakes [12] 2 322 139 512

ECG200 [54] 2 100 100 96

ECGFiveDays [54] 2 23 861 136

ElectricDevices [12] 7 8953 7745 96

FordA [12] 2 3571 1320 500

FordB [12] 2 3601 810 500

Gun-Point [54] 2 50 150 150

InlineSkate [54] 7 100 550 1882

ItalyPowerDemand [54] 2 67 1029 24

Lightning2 [54] 2 60 61 637

Lightning7 [54] 7 70 73 319

Motes [54] 2 20 1252 84

SonyAIBORobotSurface [54] 2 20 601 70

SonyAIBORobotSurfaceII [54] 2 27 953 65

StarLightCurves [54] 3 1000 8236 1024

TwoLeadECG [54] 2 23 1139 82

uWaveGestureLibrary_X [54] 8 896 3582 315

uWaveGestureLibrary_Y [54] 8 896 3582 315

uWaveGestureLibrary_Z [54] 8 896 3582 315

Wafer [54] 2 1000 6174 152

Shape

representation

50Words [54] 50 450 455 270

Adiac [54] 37 390 391 176

DiatomSizeReduction [54] 4 16 306 345

FaceAll [54] 14 560 1690 131

FaceFour [54] 4 24 88 350

FacesUCR [54] 14 200 2050 131

Fish [54] 7 175 175 463

HandOutlines [12] 2 1000 300 2709

Haptics [54] 5 155 308 1092

OSULeaf [54] 6 200 242 427

SwedishLeaf [54] 15 500 625 128

Symbols [54] 6 25 995 398

WordsSynonyms [54] 25 267 638 270

Yoga [54] 2 300 3000 426

Synthetic

ARSim [12] 2 2000 2000 500

CBF [54] 3 30 900 128

MALLAT [54] 8 55 2345 1024

Synthetic_Control [54] 6 300 300 60

Trace [54] 4 100 100 275

Two_Patterns [54] 4 1000 4000 128

Spectral

Beef [54] 5 30 30 470

Coffee [54] 2 28 28 286

OliveOil [54] 4 30 30 570

Histogram MedicalImages [54] 10 381 760 99

72

One-dimensional shape representations account for 14 problems. Six problems are synthetically

generated to test specific aspects of TSC methods, and the last four contain spectral and

histogram data. The authors note that the Motes data set is sometimes referred to as MoteStrain

in other works.

5.1.2. Problem Descriptions

This section provides a brief explanation of the type of data and classes in each

problem. In some cases, insufficient information was available to clearly state the nature of the

data and classes. Problems are listed alphabetically with problem names emboldened.

50Words: 50 handwritten words from shape profiles

Adiac: 37 taxa of single-celled alga from curvatures extracted from binary images

ARSim: 2 distinct AutoRegressive processes designed specifically to be difficult to separate in

the time domain

Beef: 5 degrees of contamination in beef from spectrographs

CBF: 3 synthetic waveform shapes scaled, stretched, and shifted with random additive noise

ChlorineConcentration: 3 classes related to the concentration of chlorine in a simulated water

distribution system from time series of chlorine levels at pipe junctions

CinC_ECG_torso: 4 patients from electrocardiogram measurements at various torso-surface

sites

Coffee: 2 classes of coffee (Arabica or Robusta) from spectrographs

Cricket_X: 12 cricket umpire gestures from x-axis accelerometer measurements in a wristband

Cricket_Y: 12 cricket umpire gestures from y-axis accelerometer measurements in a wristband

Cricket_Z: 12 cricket umpire gestures from z-axis accelerometer measurements in a wristband

DiatomSizeReduction: 4 taxa of single-celled alga from shape representations

73

Earthquakes: Binary prediction of impending major earthquake event in California from

segments of one-hour averages of seismic activity

ECG200: Binary abnormality detection in a single heartbeat of an electrocardiogram

ECGFiveDays: 2 dates five days apart from single heartbeats of an electrocardiogram of a 67

year old male

ElectricDevices: 7 groups of household devices from electrical demand profiles

FaceAll: Similar to FaceFour and FacesUCR

FaceFour: 4 people from shape representations of head outlines from side

FacesUCR: 14 people from shape representations of head outlines from side

Fish: 7 species of fish from shape representations

FordA: Binary detection of a symptom in an automotive subsystem from acoustic

measurements of engine noise collected in typical operating conditions

FordB: Binary detection of a symptom in an automotive subsystem from acoustic

measurements of engine noise with training data collected in typical operating

conditions and test data collected under noisy conditions

Gun-Point: 2 distinct actions performed by actors from x-axis record of hand motion from

video surveillance camera

HandOutlines: Binary detection of hand segmentation accuracy in an image from shape

representation

Haptics: 5 shapes drawn on a touchscreen from trace of x-axis position alone

InlineSkate: 7 speeds of professional inline speed skaters on a treadmill from angular

measurement of ankle movement

ItalyPowerDemand: 2 ranges of dates from power demand records in Italy

74

Lightning2: 2 categories of lightning strikes from power density profiles measured from

satellite instruments

Lightning7: 7 categories of lightning strikes from power density profiles measured from

satellite instruments

MALLAT: 8 synthetic waveforms with simulated faults

MedicalImages: 10 different region of human body from histograms of pixel intensity in a

medical image

Motes: 2 sensors in a laboratory network of Berkeley Mote sensors

OliveOil: 4 countries of origin from spectrographs of olive oil

OSULeaf: 6 tree species from shape representations of leaves

SonyAIBORobotSurface: 2 surfaces from x-axis accelerometer measurements of Sony AIBO

robot motion

SonyAIBORobotSurfaceII: 2 surfaces from y-axis accelerometer measurements of Sony

AIBO robot motion

StarLightCurves: 3 categories of stars from light intensity measurements

SwedishLeaf: 15 tree species from shape representations of leaves

Symbols: 6 classes representing 3 symbols drawn on a touchscreen using either x- or y-axis

position traces

Synthetic_Control: 6 common control chart patterns from synthetic waveforms

Trace: 4 transient signal behaviors from synthetic waveforms

Two_Patterns: 4 combinations of upward and downward steps in synthetic waveforms

TwoLeadECG: 2 leads of electrocardiogram record

uWaveGestureLibrary_X: 8 gestures from x-axis of handheld device acceleration

measurement

75

uWaveGestureLibrary_Y: 8 gestures from y-axis of handheld device acceleration

measurement

uWaveGestureLibrary_Z: 8 gestures from z-axis of handheld device acceleration

measurement

Wafer: Binary abnormality detection from in-line process control measurement for silicon

wafer processing

WordsSynonyms: 50 handwritten words remapped to 25 classes from shape profiles

Yoga: Gender identification from shape representations of images of yoga poses

5.1.3. Autofead configuration

The run configuration is identical for all problems in the benchmark study as shown in

Table 11. 750,000 candidate solutions were generated for each problem over 25 runs from

which the minimum fitness candidate is reported as the Autofead solution. The entire study

required roughly six months of computing time on a dozen standard desktop workstations

utilizing Intel Core i5-3470 quad-core, 3.2 GHz processors.

5.2. Comparing TSC Methods

For benchmarking, Autofead is evaluated in terms of accuracy, interpretability and

computational cost on 49 data sets across a wide range of problem types and characteristics. To

assess accuracy, Autofead solutions are directly compared with published state-of-the-art TSC

methods. The interpretability of solutions and data mining potential is demonstrated through

four examples in section 5.2.2. For computational cost, it was not considered worthwhile to

perform direct comparisons at this stage of Autofead's implementation and development, but

general conclusions are still possible in this regard.

76

Table 11 – Koza tableau for benchmark study run configuration

Parameter Setting

Objective Design optimal feature set for time series classification problems

Solution structure Classifer selection and set of features consisting of a sequence of functions

Function set 44 functions from function library; omitted convolve, select, and sorted select

Pattern recognition Selection of Gaussian Naïve-Bayes, linear disciminant analysis, and logistic regression classifiers

Fitness Minimize classification error bounded on [0,1] and break ties with quadratic loss

Fitness case sampling -fold repeated, stratified cross-validation

Evolution strategy with , , and

Solution size Maximum size of 5 features each limited to 15 functions and 8 parameters

Population initialization Ramped to initial maximum size of 3 features each limited to 5 functions and 3 parameters

Selection Tournament, tournament size 2

Genetic operators Crossover, 70%; mutate, 7%; reproduce, 3%; add feature, 10%; remove feature, 10%

Termination 280 iterations; 30,000 individuals

Run repetitions 25; 750,000 total individuals

5.2.1. Accuracy

Table 12 and Table 13 provide classification error on independent test data across all

problems for the 11 methods included for comparison. The authors believe the methods

presented represent the state-of-the-art for TSC accuracy at the time of writing. Table 12

includes Autofead, time series forests, two variants of dynamic time warping, and a shapelet

method using a support vector machine (SVM) classifier. The missing values indicate

publications that did not provide results for all problems used in this study. Table 13 includes

the feature database from Fulcher and Jones [18], a transformation-based ensemble [12], and 4

standard classifiers implemented in the open-source machine learning package Weka applied

directly to the time series [55]. The latter methods represent a simple approach to TSC of

treating each sample in the time series as a feature and applying standard classification

techniques.

The result for the best method on each problem is given in bold text. Autofead and TSF

account for over half of the best results across all problems with 13 each. The two DTW

variants and the shapelet method each perform best on an additional 7 or 8 problems. The final

77

Table 12 – Benchmark study classification error for Autofead, TSF, DTW, and Shapelets

Problem Autofead
TSF entrance

[16]
1-NN DTW, best

warping window [54]
1-NN DTW, no warping

window [54]
SVM (linear) with

shapelets [15]

ChlorineConcentration 0.423 0.254 0.350 0.352 0.439

CinC_ECG_torso 0.016 0.039 0.070 0.349 -

Cricket_X 0.487 0.290 0.236 0.223 -

Cricket_Y 0.390 0.200 0.197 0.208 -

Cricket_Z 0.464 0.244 0.180 0.208 -

Earthquakes 0.266 - - - -

ECG200 0.000 0.080 0.120 0.230 -

ECGFiveDays 0.002 0.056 0.203 0.232 0.011

ElectricDevices 0.340 - - - -

FordA 0.002 - - - -

FordB 0.186 - - - -

Gun-Point 0.040 0.047 0.087 0.093 0.000

InlineSkate 0.729 0.682 0.613 0.616 -

ItalyPowerDemand 0.133 0.030 0.045 0.050 0.079

Lightning2 0.443 0.180 0.131 0.131 -

Lightning7 0.288 0.260 0.288 0.274 0.301

Motes 0.133 0.119 0.134 0.165 0.113

SonyAIBORobotSurface 0.205 0.233 0.305 0.275 0.133

SonyAIBORobotSurfaceII 0.282 0.187 0.141 0.169 -

StarLightCurves 0.022 0.036 0.095 0.093 -

TwoLeadECG 0.046 0.118 0.132 0.096 0.007

uWaveGestureLibrary_X 0.264 0.210 0.227 0.273 -

uWaveGestureLibrary_Y 0.351 0.288 0.301 0.366 -

uWaveGestureLibrary_Z 0.298 0.262 0.322 0.342 -

Wafer 0.000 0.005 0.005 0.020 -

50Words 0.448 0.266 0.242 0.310 -

Adiac 0.276 0.230 0.391 0.396 0.762

DiatomSizeReduction 0.173 0.049 0.065 0.033 0.078

FaceAll 0.366 0.233 0.192 0.192 -

FaceFour 0.330 0.023 0.114 0.170 0.023

FacesUCR 0.260 0.101 0.088 0.095 -

Fish 0.251 0.154 0.160 0.167 -

HandOutlines 0.097 - - - -

Haptics 0.705 0.552 0.588 0.623 -

OSULeaf 0.219 0.434 0.384 0.409 -

SwedishLeaf 0.138 0.106 0.157 0.210 -

Symbols 0.068 0.112 0.062 0.050 0.154

WordsSynonyms 0.575 0.379 0.252 0.351 -

Yoga 0.064 0.151 0.155 0.164 -

ARSim 0.002 - - - -

CBF 0.004 0.026 0.004 0.003 -

MALLAT 0.208 0.045 0.086 0.066 -

Synthetic_Control 0.010 0.027 0.017 0.007 0.127

Trace 0.000 0.020 0.010 0.000 0.020

Two_Patterns 0.000 0.054 0.002 0.000 -

Beef 0.300 0.233 0.467 0.500 0.133

Coffee 0.143 0.036 0.179 0.179 0.000

OliveOil 0.267 0.067 0.167 0.133 -

MedicalImages 0.387 0.224 0.253 0.263 0.475

Win/Loss/Tie vs Autofead - 28/15/0 22/19/2 23/18/2 9/8/0

78

Table 13 – Benchmark study classification error for feature database, transformation ensemble, and Weka

Problem
Feature

database [18]
Ensemble with

weighted votes [12]
1-NN

Euclidean [55]
MLP
[55]

Random
forest [55]

SVM
(LibSVM) [55]

ChlorineConcentration - - 0.315 0.107 0.333 0.445

CinC_ECG_torso - - 0.099 0.574 0.387 0.219

Cricket_X - - 0.436 0.454 0.510 0.459

Cricket_Y - - 0.351 0.374 0.441 0.372

Cricket_Z - - 0.405 0.436 0.474 0.415

Earthquakes - 0.124 0.288 0.281 0.230 0.252

ECG200 0.010 0.110 0.110 0.160 0.180 0.140

ECGFiveDays - - 0.194 0.030 0.333 0.390

ElectricDevices - 0.378 0.401 0.720 0.359 0.673

FordA - 0.152 0.320 0.154 0.232 0.484

FordB - 0.265 0.410 0.285 0.388 0.505

Gun-Point 0.073 0.047 0.080 0.067 0.127 0.233

InlineSkate - - 0.669 0.711 0.682 0.784

ItalyPowerDemand - - 0.043 0.047 0.061 0.044

Lightning2 0.197 0.230 0.197 0.262 0.295 0.295

Lightning7 0.438 0.301 0.370 0.356 0.370 0.438

Motes - - 0.142 0.139 0.166 0.131

SonyAIBORobotSurface - - 0.323 0.286 0.336 0.329

SonyAIBORobotSurfaceII - - 0.136 0.185 0.239 0.185

StarLightCurves - - 0.138 0.144 0.063 0.143

TwoLeadECG - - 0.275 0.053 0.228 0.429

uWaveGestureLibrary_X - - 0.262 0.255 0.276 0.240

uWaveGestureLibrary_Y - - 0.338 0.327 0.343 0.327

uWaveGestureLibrary_Z - - 0.346 0.318 0.333 0.308

Wafer 0.000 0.004 0.006 0.037 0.007 0.007

50Words 0.453 0.352 0.356 0.336 0.444 0.396

Adiac 0.355 0.356 0.407 0.246 0.458 0.916

DiatomSizeReduction - - 0.065 0.033 0.131 0.699

FaceAll 0.292 0.294 0.314 0.165 0.405 0.196

FaceFour 0.261 0.136 0.125 0.125 0.295 0.489

FacesUCR - - 0.250 0.242 0.383 0.309

Fish 0.171 0.217 0.217 0.160 0.280 0.549

HandOutlines - 0.400 0.141 0.641 0.108 0.141

Haptics - - 0.620 0.562 0.601 0.575

OSULeaf 0.165 0.422 0.455 0.554 0.512 0.508

SwedishLeaf 0.227 0.152 0.203 0.126 0.211 0.269

Symbols - - 0.096 0.145 0.212 0.216

WordsSynonyms - - 0.378 0.478 0.486 0.483

Yoga 0.226 0.163 0.167 0.260 0.191 0.329

ARSim 0.322 0.486 0.415 0.452 0.500

CBF 0.289 0.172 0.150 0.147 0.182 0.114

MALLAT - - 0.178 0.143 0.197 0.429

Synthetic_Control 0.037 0.090 0.120 0.087 0.160 0.023

Trace 0.010 0.190 0.180 0.230 0.160 0.490

Two_Patterns 0.074 0.100 0.094 0.104 0.297 0.107

Beef 0.433 0.179 0.400 0.267 0.433 0.500

Coffee 0.000 0.200 0.250 0.036 0.286 0.107

OliveOil 0.100 0.266 0.233 0.133 0.200 0.600

MedicalImages - - 0.321 0.309 0.338 0.413

Win/Loss/Tie vs Autofead 7/12/1 8/18/0 21/28/0 25/24/0 15/34/0 15/34/0

79

row in each table gives pairwise comparisons between Autofead and each of the other 10

methods. The missing values make statistical comparisons difficult; however, these pairwise

comparisons clearly show that Autofead is competitive with other state-of-the-art TSC methods.

A closer look at Autofead's accuracy for each problem reveals indications of the

problem characteristics that lead to poor solutions. Table 14 gives Autofead's ranking and

percentile rank for each problem with a percentile rank of 100 indicating Autofead provided the

best solution. Problems are divided by the type of data involved and key characteristics of the

problem are given in the final two columns. Overall, Autofead performs very well on the sensor

data and synthetic problems, but other methods appear better suited for the shape problems.

This result is not surprising, as Autofead's strength is in finding transformations that improve

the data representation which is unlikely to be the best approach for shape data.

Additionally, a clear correlation is shown between large numbers of classes and poor

Autofead performance. The authors hypothesize that the current configuration with a maximum

of 5 features per solution and relatively short runs is insufficient to develop the complexity of

features required for problems with 7 or more classes. Lastly, problems with very small training

data sets pose an additional difficulty for Autofead to avoid overfitting.

Comparison of accuracy based on testing data alone is insufficient to select between

methods for application to new problems. A critical, often overlooked, factor is the ability to

correctly determine which method will generalize best to test data based solely on training data.

The plots shown in Figure 23 provide such analysis to compare Autofead with 1-NN Euclidean

and 1-NN DTW. The expected and actual accuracy gains normalize Autofead's accuracy on the

training and testing data, respectively, by accuracy of the compared method. In the shaded

regions labeled TP for true-positive and TN for true-negative, Autofead's fitness measure

80

Table 14 – Autofead performance summary for benchmark study

Data type
Problem Rank / out of Percentile rank Number of classes Average instances per class

Sensor

ChlorineConcentration 7/9 25 3 156

CinC_ECG_torso 1/8 100 4 10

Cricket_X 7/8 14 12 33

Cricket_Y 7/8 14 12 33

Cricket_Z 7/8 14 12 33

Earthquakes 4/6 40 2 161

ECG200 1/10 100 2 50

ECGFiveDays 1/9 100 2 12

ElectricDevices 1/6 100 7 1279

FordA 1/6 100 2 1786

FordB 1/6 100 2 1801

Gun-Point 2/11 90 2 25

InlineSkate 7/8 14 7 14

ItalyPowerDemand 9/9 0 2 34

Lightning2 10/10 0 2 30

Lightning7 3.5/11 80 7 10

Motes 4/9 63 2 10

SonyAIBORobotSurface 2/9 88 2 10

SonyAIBORobotSurfaceII 8/8 0 2 14

StarLightCurves 1/8 100 3 333

TwoLeadECG 2/9 88 2 12

uWaveGestureLibrary_X 6/8 29 8 112

uWaveGestureLibrary_Y 7/8 14 8 112

uWaveGestureLibrary_Z 2/8 86 8 112

Wafer 1.5/10 100 2 500

Shape representation

50Words 9/10 11 50 9

Adiac 3/11 80 37 11

DiatomSizeReduction 8/9 13 4 4

FaceAll 9/10 11 14 40

FaceFour 10/11 10 4 6

FacesUCR 6/8 29 14 14

Fish 8/10 22 7 25

HandOutlines 1/6 100 2 500

Haptics 8/8 0 5 31

OSULeaf 2/10 89 6 33

SwedishLeaf 3/10 78 15 33

Symbols 3/9 75 6 4

WordsSynonyms 8/8 0 25 11

Yoga 1/10 100 2 150

Synthetic

ARSim 1/6 100 2 1000

CBF 2.5/10 89 3 10

MALLAT 7/8 14 8 7

Synthetic_Control 2/11 90 6 50

Trace 1.5/11 100 4 25

Two_Patterns 1.5/10 100 4 250

Spectral

Beef 5/11 60 5 6

Coffee 6/11 50 2 14

OliveOil 9/10 11 4 8

Histogram MedicalImages 7/9 25 10 38

81

(a) Autofead versus 1-NN Euclidean

(b) Autofead versus 1-NN DTW, no warping window

Figure 23 – Comparison of expected (training data) and actual (testing data) accuracy gains from

selecting Autofead over competing methods

82

correctly predicts whether or not Autofead will outperform the competing method. The false-

positive, FP, region in the lower-right of the figures indicates data sets where Autofead is

incorrectly expected to be more accurate, possibly due to overfitting. The analysis shows

sufficient evidence for considering Autofead versus 1-NN DTW and a strong preference for

Autofead over 1-NN Euclidean. Based solely on accuracy, Autofead is clearly a method worthy

of consideration for TSC problems, especially with a small number of classes and large training

data sets.

5.2.2. Data Mining

Autofead is designed not only to be competitively accurate as a general TSC method

but also to provide easily interpretable solutions making the approach valuable for data mining

of time series databases. Although interpretability is difficult to quantify, the highlighted

example solutions in this section provide a strong case for Autofead in this regard. The full

solutions for all 49 problems can be found in section 5.3.

The ARSim problem is composed of 2 classes of synthetic AutoRegressive (AR)

processes with different AR coefficients. This data set is specifically designed to be very

difficult to separate in the time domain but much easier through a frequency or auto-correlation

representation [12]. Autofead's solution primarily relies on the single feature [difference, FFT

magnitude, Hilbert magnitude, square root, normalize, slope fit]. The key steps in this feature

are conversion to the frequency domain through FFT magnitude and the final function, slope fit.

Hilbert magnitude, square root, and normalize have little effect on the feature's effectiveness.

The feature can be interpreted as a measure of the relative distribution of energy between low-

and high-frequency portions of the spectrum after computing first differences. This solution

makes sense to separate the two classes, as the power spectral densities of the two processes are

distinct despite the similarity in the time domain.

83

In FordB, the TSC task is to identify whether or not an automotive engine symptom is

present from acoustics measurements. The critical feature in the Autofead solution is an

averaged measure of energy for the frequency 0.273 rad/s. The feature is represented as [sliding

windows (), FFT magnitude, square root, bisection select (), sum]. First, sliding

windows divides the 500 sample time series into 21 overlapping subsequences of 46 samples

each. Then, FFT magnitude is again used to convert to the frequency domain. The last two

functions sum the fourth FFT bin from each subsequence. This algorithm is very similar to

Welch's method for power spectral analysis. Without further knowledge of the data-generating

system, it is impossible to speculate on the importance of the 0.273 rad/s frequency, but the

feature clearly separates the two classes very well.

Acceleration data from a robot is used in SonyAIBORobotSurface to determine whether

the robot is walking on a concrete or carpeted surface. Autofead uses a very simple feature for

its solution computed as [difference, square, sorted bisection select (68)]. The last function sorts

the sequence and keeps the last index making the feature the maximum squared magnitude of

first differences. The feature is larger for the robot walking on the harder concrete surface due

to the higher energy and frequency of impacts during motion.

Lastly, the CBF problem provides an example of a shape problem where Autofead

performs very well. The synthetic data set includes three different shapes embedded at a random

position in noise. The cylinder shape is a single square wave pulse with discontinuities at each

end. The bell shape is a linear ramp up followed by a discontinuous step down, and the funnel is

opposite with a step up then linear ramp back down. Autofead's solution utilizes the presence of

strong discontinuities in each shape through [Hilbert imaginary, cube, sum]. The Hilbert

transform generates a large impulse in the imaginary component inversely related to the

discontinuities. Cubing the imaginary component further emphasizes these impulses prior to

84

summing. The bell and funnel shapes each produce a single impulse, positive and negative,

respectively. The cylinder produces opposite but roughly equal impulses at either end of the

square wave pulse producing a feature near zero.

In each of the highlighted examples, Autofead's solution relies on a single, easily

understood feature. In comparison to other feature-based TSC methods, the solution

representation produced by Autofead is far more similar to human expert designed features.

Other GP based approaches utilize large, complex tree or graph program structures that require

extensive simplification before any attempt at interpretation. Shapelets and the temporal

importance curves produced by TSF can provide useful information for certain classes of TSC

problems but do not generalize well for data mining of time series which require a data

transformation for optimal representation.

5.2.3. Computational Expense

The computational expense of traditional GP is immense for even moderately large

problems. The addition of numerical optimization procedures and training of thousands of

pattern recognition algorithms was unrealistic on desktop workstations as recently as a decade

ago. On a single, modern desktop workstation utilizing four processor cores, a typical Autofead

run time is measured on the order of hours. As with many GP methods, the search process can

be heavily influenced by the random initialization of the first generation. Therefore, 10’s to

100’s of runs are necessary to provide a measure of confidence that the best possible solution is

found requiring days to a few weeks for multiple runs on large problems.

Consequently, Autofead has a relatively large upfront computational expense. The

majority of the computational time is spent on numerical optimization of function parameters.

Relaxing parameter tolerances or removing features which require parameters greatly reduces

run time. Although the computational requirements are high for Autofead runs, the final

85

solutions are trivial to compute relative to other TSC methods, especially distance-based

methods, which use instance-based classifiers. For many applications, the high upfront expense

is worthwhile to produce very fast TSC solutions suitable for embedded, real-time, and other

resource-constrained systems.

5.3. Detailed Autofead Solutions

The final solution evolved by Autofead for each problem in the benchmark study is

listed in this section. Each feature algorithm is listed in square brackets followed by the selected

classifier. Parameter values and class mean sequences are given in parentheses where

applicable. Index parameters are given using a 0-based index. Problems are listed alphabetically

with problem names emboldened.

50Words: [inverse, inverse, difference, element sum (class index 30), sorted bisection

select ()], [sliding windows (), absolute value, center, slope fit, sum], [FFT

magnitude, sum], [keep end (), normalize, slope fit], [element product (class index 12),

slope fit], Gaussian Naïve-Bayes

Adiac: [absolute value, sum], [demean, cube, sigmoid, sum], [auto-correlation function,

sum], [control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠), set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑙𝑑

), Hilbert phase, demean, sorted bisection select ()], [difference, FFT imaginary,

absolute value, slope fit], Gaussian Naïve-Bayes

ARSim: [FFT magnitude, wavelet (), bisection select ()], [difference, FFT

magnitude, Hilbert magnitude, square root, normalize, slope fit], [center, difference, auto-

correlation function, Hilbert phase, bisection select ()], Gaussian Naïve-Bayes

86

Beef: [wavelet (), slope fit], [bisection select ()], [FFT imaginary, sum],

[sort order, element quotient (class index 3), center, absolute value, sum], linear discriminant

analysis

CBF: [sorted bisection select ()], [Hilbert imaginary, cube, sum], Gaussian

Naïve-Bayes

ChlorineConcentration: [difference, sign, FFT magnitude, sum], [difference, log10,

FFT real, slope fit], [Hilbert magnitude, FFT real, slope fit], Gaussian Naïve-Bayes

CinC_ECG_torso: [difference, bisection select ()], [FFT magnitude, sum],

[FFT magnitude, difference, sigmoid, log10, slope fit], [element product (class index 1), FFT

magnitude, sum], [element product (class index 3), absolute value, sum], Gaussian Naïve-Bayes

Coffee: [square, cube, FFT magnitude, Hilbert phase, bisection select ()], linear

discriminant analysis

Cricket_X: [difference, sorted bisection select ()], [demean, element difference

(class index 2), log10, sorted bisection select ()], [difference, slope fit], [element

product (class index 7), sum], [cube, sigmoid, difference, Hilbert magnitude, sum], linear

discriminant analysis

Cricket_Y: [keep beginning (), sum], [element product (class index 7),

difference, FFT magnitude, sum], [slope fit], [element product (class index 4), sum], [difference,

low-pass filter (), center and scale, absolute value, sum], Gaussian Naïve-Bayes

Cricket_Z: [element product (class index 7), sliding windows (), sorted

bisection select (), sum], [sorted bisection select ()], [FFT imaginary, cube,

log10, sum], [element product (class index 8), slope fit], [element product (class index 2), keep

beginning (), difference, log10, sorted bisection select ()], linear discriminant

analysis

87

DiatomSizeReduction: [FFT real, center, FFT phase, slope fit], Gaussian Naïve-Bayes

Earthquakes: [set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), element product (class index

1), sorted bisection select ()], [auto-correlation function, element sum (class index 0),

set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), difference, slope fit], [element product (class index 1),

sorted bisection select ()], [FFT phase, element product (class index 1), sum], [set

minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), sorted bisection select ()], linear discriminant

analysis

ECG200: [FFT real, log10, sorted bisection select ()], linear discriminant

analysis

ECGFiveDays: [FFT magnitude, normalize, bisection select ()], Gaussian Naïve-

Bayes

ElectricDevices: [Hilbert phase, keep end (), sum], [slope fit], [sigmoid, high-

pass filter (), FFT real, sorted bisection select ()], [log10, difference, sorted

bisection select ()], [keep end (), low-pass filter (), square root, demean,

sorted bisection select ()], Gaussian Naïve-Bayes

FaceAll: [square, slope fit], [square root, keep beginning (), sigmoid, slope fit],

[bisection select ()], [keep end (), Hanning window, sum], [Hilbert magnitude,

low-pass filter (), cross-correlate (class index 4), set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑

), exponential, sum], Gaussian Naïve-Bayes

FaceFour: [cross-correlate (class index 1), slope fit], [element product (class index 2),

sum], [inverse, sigmoid, element product (class index 3), sum], [Hilbert phase, Hilbert phase,

element product (class index 1), auto-correlation function, sum], linear discriminant analysis

FacesUCR: [slope fit], [Hilbert magnitude, slope fit], [cross-correlate (class index 12),

bisection select ()], [Hilbert magnitude, auto-correlation function, sum], [auto-

88

correlation function, normalize, element difference (class index 9), Hanning window, demean,

slope fit], Gaussian Naïve-Bayes

Fish: [set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), sorted bisection select ()],

[Hanning window, sorted bisection select ()], [Hilbert phase, sum], [difference, sign,

slope fit], [high-pass filter (), sliding windows (), element product (class index

1), sum, sum], Gaussian Naïve-Bayes

FordA: [sliding windows (), normalize, sigmoid, sorted bisection select (),

sorted bisection select ()], [log10, difference, sign, sigmoid, sorted bisection select

()], [absolute value, cumulative summation, sigmoid, sorted bisection select ()],

[demean, difference, sign, square, sum], linear discriminant analysis

FordB: [sorted bisection select ()], [sorted bisection select ()], [sliding

windows (), FFT magnitude, square root, bisection select (), sum], [Hilbert

magnitude, sliding windows (), auto-correlation function, normalize, bisection select

(), sum], logistic regression

Gun_Point: [sigmoid, Hilbert imaginary, center and scale, sigmoid, sorted bisection

select ()], [cube, auto-correlation function, center and scale, log10, difference, sorted

bisection select ()], [sorted bisection select ()], [sigmoid, Hilbert magnitude,

bisection select ()], [inverse, square, log10, sorted bisection select ()], linear

discriminant analysis

HandOutlines: [sorted bisection select ()], [exponential, FFT magnitude,

slope fit], [bisection select ()], [sorted bisection select ()], [transpose

windows, Hilbert imaginary, bisection select ()], logistic regression

Haptics: [bisection select ()], [inverse, FFT phase, transpose windows,

element product (class index 4), sum], [cumulative summation, FFT magnitude, sigmoid, keep

89

end (), sum], [inverse, FFT phase, transpose windows, element product (class index 3),

sum], [inverse, FFT phase, transpose windows, element product (class index 1), sum], logistic

regression

InlineSkate: [difference, sort order, element quotient (class index 2), sum], [cross-

correlate (class index 4), high-pass filter (), absolute value, sum], [difference, sort

order, element quotient (class index 4), sum], [difference, sort order, element quotient (class

index 3), sum], [slope fit], linear discriminant analysis

ItalyPowerDemand: [bisection select ()], [bisection select ()], [set

minimum value (), keep end (), FFT phase, set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑

), bisection select ()], [control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠), keep end

(), FFT phase, bisection select ()], Gaussian Naïve-Bayes

Lightning2: [square, cube, element quotient (class index 1), sorted bisection select

()], [log10, square, cube, element quotient (class index 1), sorted bisection select

()], Gaussian Naïve-Bayes

Lightning7: [sigmoid, demean, slope fit], [center, square, low-pass filter (),

absolute value, sum], [keep beginning (), sorted bisection select ()], [sigmoid,

exponential, Hilbert imaginary, sorted bisection select ()], [Hilbert imaginary, element

difference (class index 4), sorted bisection select ()], Gaussian Naïve-Bayes

MALLAT: [difference, Hilbert magnitude, slope fit], [high-pass filter (),

absolute value, Hanning window, element quotient (class index 4), Hanning window, sum],

[element product (class index 6), transpose windows, exponential, sorted bisection select

()], [Hanning window, slope fit], [element product (class index 3), low-pass filter

(), sum], Gaussian Naïve-Bayes

90

MedicalImages: [difference, FFT imaginary, Hilbert magnitude, sum], [Hilbert

imaginary, slope fit], [sign, slope fit], [sigmoid, FFT phase, sum], [FFT magnitude, absolute

value, high-pass filter (), sorted bisection select ()], Gaussian Naïve-Bayes

Motes: [sort order, difference, sorted bisection select ()], Gaussian Naïve-Bayes

OliveOil: [sorted bisection select ()], [keep end (), sum)], [sum],

[bisection select ()], [FFT magnitude, Hilbert imaginary, sort order, FFT imaginary,

bisection select ()], linear discriminant analysis

OSULeaf: [FFT magnitude, bisection select ()], [high-pass filter (),

element sum (class index 4), sorted bisection select ()], [FFT magnitude], [cross-

correlate (class index 5), square, sum], [FFT magnitude, sigmoid, auto-correlation function,

sorted bisection select ()], linear discriminant analysis

SonyAIBORobotSurface: [bisection select ()], [difference, square, sorted

bisection select ()], linear discriminant analysis

SonyAIBORobotSurfaceII: [difference, difference, sign, Hanning window, bisection

select ()], linear discriminant analysis

StarLightCurves: [sigmoid, auto-correlation function, slope fit], [auto-correlation

function, normalize, sigmoid, slope fit], [set minimum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), FFT

magnitude, square root, slope fit], [difference, square root, FFT magnitude, slope fit], logistic

regression

SwedishLeaf: [sliding windows (), sum, sum], [FFT magnitude, sum], [cross-

correlate (class index 7), sum], [difference, FFT magnitude, sigmoid, Hanning window, sum],

[difference, FFT magnitude, center and scale, slope fit], linear discriminant analysis

Symbols: [difference, Hilbert magnitude, sum], [auto-correlation function, sum],

Gaussian Naïve-Bayes

91

Synthetic_control: [difference, center and scale, FFT magnitude, sum], [FFT

magnitude, absolute value, sum], [cube, slope fit], [square, auto-correlation function, FFT

magnitude, cube, slope fit], [cube, slope fit], Gaussian Naïve-Bayes

Trace: [Hilbert imaginary, slope fit], [Hilbert magnitude, sigmoid, FFT magnitude],

linear discriminant analysis

Two_Patterns: [Hilbert imaginary, control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠), slope

fit], [demean, wavelet (), Hanning window, bisection select ()], [Hilbert

imaginary, normalize, control chart (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑𝑠), sum], [Hilbert phase, sum],

Gaussian Naïve-Bayes

TwoLeadECG: [sorted bisection select ()], [FFT magnitude, FFT real, Hilbert

phase, bisection select ()], linear discriminant analysis

uWaveGestureLibrary_X: [difference, element product (class index 2), log10, sum],

[cumulative summation, element product (class index 1), sum], [demean, auto-correlation

function, square, slope fit], [element product (class index 4), sliding windows (), sum,

sum], [absolute value, Hanning window, square root, cube, slope fit], linear discriminant

analysis

uWaveGestureLibrary_Y: [slope fit], [FFT imaginary, slope fit], [Hilbert imaginary,

slope fit], [sliding windows (), Hanning window, center, slope fit, keep end (),

low-pass filter (), FFT real, slope fit], [difference, element difference (class index 3),

log10, sum], linear discriminant analysis

uWaveGestureLibrary_Z: [cross-correlate (class index 6), slope fit], [Hilbert phase,

sum], [cross-correlate (class index 2), sum], [slope fit], [difference, log10, Hilbert magnitude,

sum], Gaussian Naïve-Bayes

Wafer: [difference, difference, sorted bisection select ()], Gaussian Naïve-Bayes

92

WordsSynonyms: [log10, Hilbert imaginary, slope fit], [Hanning window, sum], [keep

beginning (), absolute value, difference, exponential, sum], [Hanning window, sigmoid,

absolute value, normalize, slope fit], [FFT magnitude, Hilbert phase, slope fit], Gaussian Naïve-

Bayes

Yoga: [high-pass filter (), sorted bisection select ()], [sorted bisection

select ()], [sigmoid, slope fit], [set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), sliding

windows (), sum, sum], [difference, log10, sigmoid, FFT imaginary, sum], logistic

regression

5.4. Conclusions from Benchmark Study

In this study, the accuracy of Autofead solutions is directly compared to state-of-the-art

TSC methods on 49 openly available data sets. The accuracy is shown to be competitive with

other general, state-of-the-art TSC methods, and in 13 cases the evolved solution provided the

best accuracy among all methods compared. Additionally, Autofead is shown to produce highly

interpretable features in many cases making the method viable as a data mining tool for time

series databases. Computational cost for the evolutionary system is relatively high to perform

the search for solutions; however, the computational expense for classifying new time series is

very low making Autofead suitable for embedded and real-time systems.

A portion of this chapter has been submitted for publication in Data Mining and

Knowledge Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is

“Automated Feature Design for Time Series Classification”. The dissertation author was the

primary investigator and author of this paper.

93

 Chapter 6

Method Evaluation

6.1. Solution Space

The Autofead solution space consists of multiple features constructed from functions in

the function library and selection of a classifier. Figure 24 summarizes the usage frequency of

all functions and classifiers averaged over all runs and problems in the benchmark study.

Dimension-reduction functions are represented on a separate scale, as every feature algorithm

must include at least one of these four functions. It is important to note that the usage is uniform

across all functions and classifiers at the start of each run. Most functions and classifiers have

fairly similar usage with the exceptions of FFT magnitude and difference as slight outliers. It is

not surprising that these two functions would be important as they are very common operations

in digital signal processing and time series analysis. Similarly, Gaussian Naïve-Bayes is a very

popular method and accounts for roughly half of the classifier selections.

The error bars in Figure 24 for each feature and classifier show the minimum and

maximum usage for a single problem out of the 49. These values indicate that even though

94

Figure 24 – Function and classifier usage analysis for benchmark study

some functions are used somewhat less on average, they are still important for certain problems.

For the classifiers, although Gaussian Naïve-Bayes is used most often, linear discriminant

analysis and logistic regression are the majority classifier on some problems.

Another interesting aspect of the solution space is the average size of Autofead

solutions. All GP systems are subject to bloat whereby good solutions protect critical portions

of code in the evolutionary process by adding sacrificial code [23]. Bloat is evident within

Autofead solutions, as they tend to always contain the maximum number of features even

though only a few are actually important for classification. The extra features reduce the

probability of important features being modified in the breeding process. Within feature

algorithms, solutions rarely use more than 5 or 6 functions even though the constraint is set

95

much higher. The authors hypothesize that Autofead's highly-constrained solution structure

does not permit many opportunities for inconsequential code sections, thereby reducing the

effects of bloat. This quality helps make Autofead solutions compact and interpretable.

6.2. Search Method

The goal of the search process described in section 2.3 is to evolve an initial randomly

generated solution population in the direction of optimal fitness. Table 15 provides strong

evidence that the search process is performing well. For each problem, the first two columns

show a large decrease in mean fitness between the initial random population and the final

population over all 25 runs. The last three columns give the minimum fitness individual for the

initial population of all runs, final population of all runs, and final population in the worst

performing run. Although very low fitness individuals are generated for some problems in the

initial population alone, the search process is clearly further improving the fitness of the final

solution. The last column indicates that performing a single run on each problem instead of 25

runs would lead to some decrease in accuracy, but overall run consistency is good.

6.2.1. Genetic Programming

The benchmark study provides an excellent opportunity to perform directed analysis on

specific elements of the genetic programming aspect of the Autofead search. Although function

and classifier usage vary widely between problems as discussed in section 6.1, runs on the same

problem are found to be much more consistent in the distributions of functions and classifiers in

the final population. The function set in particular is quickly reduced within an Autofead run to

a much smaller set. Although the population begins with 44 equally used

96

Table 15 – Population fitness analysis for benchmark study

Problem
Initial population

mean
Final population

mean
Best initial
individual

Best run, best
individual

Worst run, best
individual

ChlorineConcentration 0.445 0.393 0.375 0.364 0.385

CinC_ECG_torso 0.663 0.050 0.090 0.000 0.000

Cricket_X 0.822 0.468 0.539 0.379 0.412

Cricket_Y 0.839 0.521 0.596 0.412 0.471

Cricket_Z 0.855 0.527 0.608 0.414 0.459

Earthquakes 0.190 0.053 0.056 0.022 0.037

ECG200 0.265 0.000 0.000 0.000 0.000

ECGFiveDays 0.320 0.000 0.000 0.000 0.000

ElectricDevices 0.657 0.332 0.355 0.240 0.291

FordA 0.446 0.050 0.059 0.000 0.034

FordB 0.380 0.077 0.078 0.047 0.068

Gun-Point 0.397 0.000 0.000 0.000 0.000

InlineSkate 0.811 0.490 0.517 0.162 0.416

ItalyPowerDemand 0.241 0.019 0.000 0.000 0.015

Lightning2 0.301 0.061 0.050 0.000 0.050

Lightning7 0.596 0.197 0.213 0.059 0.122

Motes 0.331 0.000 0.000 0.000 0.000

SonyAIBORobotSurface 0.275 0.000 0.000 0.000 0.000

SonyAIBORobotSurfaceII 0.265 0.000 0.000 0.000 0.000

StarLightCurves 0.413 0.055 0.062 0.023 0.035

TwoLeadECG 0.300 0.000 0.000 0.000 0.000

uWaveGestureLibrary_X 0.730 0.354 0.423 0.259 0.312

uWaveGestureLibrary_Y 0.696 0.384 0.444 0.318 0.351

uWaveGestureLibrary_Z 0.686 0.346 0.355 0.253 0.328

Wafer 0.193 0.000 0.000 0.000 0.000

50Words 0.857 0.366 0.469 0.266 0.314

Adiac 0.825 0.349 0.432 0.243 0.296

DiatomSizeReduction 0.304 0.000 0.000 0.000 0.000

FaceAll 0.807 0.306 0.429 0.192 0.235

FaceFour 0.590 0.014 0.033 0.000 0.000

FacesUCR 0.743 0.284 0.356 0.155 0.223

Fish 0.711 0.267 0.333 0.171 0.223

HandOutlines 0.340 0.152 0.139 0.105 0.128

Haptics 0.692 0.447 0.464 0.140 0.421

OSULeaf 0.713 0.223 0.337 0.109 0.146

SwedishLeaf 0.779 0.219 0.307 0.135 0.169

Symbols 0.403 0.000 0.000 0.000 0.000

WordsSynonyms 0.808 0.504 0.587 0.386 0.439

Yoga 0.442 0.104 0.090 0.035 0.087

ARSim 0.427 0.000 0.000 0.000 0.000

CBF 0.474 0.000 0.000 0.000 0.000

MALLAT 0.588 0.014 0.010 0.000 0.000

Synthetic_Control 0.588 0.002 0.007 0.000 0.000

Trace 0.463 0.000 0.000 0.000 0.000

Two_Patterns 0.639 0.021 0.129 0.000 0.010

Beef 0.542 0.142 0.160 0.000 0.050

Coffee 0.330 0.000 0.000 0.000 0.000

OliveOil 0.497 0.034 0.020 0.000 0.020

MedicalImages 0.504 0.374 0.364 0.313 0.337

97

functions, the distribution tends to converge to a reduced set of primarily 5-7 functions within

only about five generations.

Additional analysis of the best individuals’ evolution trees in the benchmark study

indicates the importance of the novel genetic operators used in Autofead. Across all runs, the

usage of genetic operators is fixed with the following probabilities: “crossover”, 70%; “mutate”,

7%; “reproduce”, 3%; “add feature”, 10%; “remove feature”, 10%. However, if only the

individuals which comprise the evolution trees of the best individual from each of the 1,225

runs are considered, the frequency of genetic operators which lead to the best solutions is 64.8%

“crossover”, 6.6% “mutate”, 3.5% “reproduce”, 19.7% “add feature”, and 5.4% “remove

feature”. The large increase for the “add feature” operator suggests that the feature selection

component of the search addressed by this operator is significant for these problems. Full run

parameter studies, while computationally expensive, would provide additional opportunities to

evaluate the design of the evolutionary search process.

6.2.2. Parameter Optimization

In Autofead, feature evaluations required during parameter optimizations account for

80-90% of the necessary computational effort in a run. This section provides evidence of the

benefit of inclusion of parameter optimization in the search process despite the apparent

computational cost. Thirty runs of signal detection problem 1 from section 3.2 are performed

with and without parameter optimization. For the unoptimized runs, the optimization module

was replaced with a random number generator using a uniform distribution over the parameter

bounds, and the runs were carried out to 50 generations per the rule-of-thumb for traditional GP.

In each generation of each run, the fitness of the best individual was saved for analysis.

98

(b) Solution performance

(c) Search effectiveness

(a) Run convergence (d) Computational expense

Figure 25 – Analysis of parameter optimization benefit on signal detection problem 1

Figure 25 presents results from the parameter optimization study. In Figure 25(a), the

optimized runs converge in far fewer generations than the unoptimized runs and reach a higher

median and best run fitness. Figure 25(b) and Figure 25(c) confirm that the inclusion of

parameter optimization results in improved solutions found in fewer generations. The

convergence rate in terms of generations is admittedly misleading as optimized runs require far

more computational effort and run time per generation. By sampling from the distributions in

Figure 25(c) and the measured run times, the distributions of run time to reach best fitness are

estimated and presented in Figure 25(d). From these results, it is clear that the inclusion of

parameter optimization in Autofead results in better, more consistent solutions with a slight

reduction in overall run time.

Many design decisions were made in development of the Autofead parameter

optimization scheme based on observation of parameter behaviors and fitness surfaces for

various features, as described in section 2.3.2. Figure 26 shows example parameter surfaces for

99

the features from signal detection problem 1 presented in Figure 8. Three of the features end

with a sorted select function whose parameter has been omitted for visualization purposes. The

behavior of sorted select in these cases is always to select the maximum value. Each parameter

surface is shown for the entire bounded parameter range. Features A and D in Figure 26(a) and

Figure 26(b), respectively, contain an invalid parameter region shown as 0.5 fitness in black.

In general, the parameter surfaces for Autofead features tend to be smooth and

unimodal or bimodal in a single region containing the optimal point. Outside this region, the

surface contains a rough landscape full of local minima. These observations provide

Fitness

(a) Feature A (c) Feature C

(b) Feature B (d) Feature D

Figure 26 – Parameter surfaces for signal detection problem 1 solutions from Figure 8

100

justification for the choice of global optimization instead of a local method. The initial grid

search locates the smooth fitness region around the optimal parameters then local optimization

is initiated to reach optimal fitness. For all four features shown in Figure 26, the parameter

optimization scheme found the true, global optimum in less than a hundred feature evaluations.

Furthermore, the surfaces indicate a wide range of solution fitness is possible with small

changes to algorithm parameters. This observation supports the assertion in section 2.2.3 that

good algorithms may be easily overlooked during feature design with poor parameter choices.

6.3. Fitness Quality

The fitness measure is an estimate of the expected classification error on new time

series. Autofead uses a sophisticated fitness measure and sampling procedure covered in section

2.3.3, but the large number of degrees-of-freedom makes the method very susceptible to

overfitting especially for small training data sets. The importance of including quadratic loss as

a tiebreaker in the fitness measure is evident in Table 15 as zero classification error solutions

are produced for nearly half the problems on the training data. In these cases, the combined

fitness measure uses quadratic loss to select the zero classification error solution that best

separates the classes to provide high confidence classifications.

Although the search process is correctly minimizing fitness, if fitness is not

representative of solution accuracy then the search will not proceed in the correct direction or

select the highest accuracy individual as the final solution. Figure 27 provides an example

problem where the estimated fitness is strongly correlated with classification error on the test

data. The grayscale image represents the distribution of all 750,000 candidate solutions

produced for the StarLightCurves problem. The red circle and green x symbols indicate the

101

Figure 27 – Fitness quality assessment for StarLightCurves problem from benchmark study

location of the minimum fitness and highest accuracy individuals. Here, the selected minimum

fitness individual is nearly the most accurate on the test data.

In Figure 28, the indications of fitness quality for the Lightning2 problem are much

poorer. The Lightning2 data set only includes 60 and 61 instances, respectively, for training and

testing. The vertical and horizontal banding in the figure are artifacts of the small data sets.

Figure 28 – Fitness quality assessment for Lightning2 problem from benchmark study

102

Although some highly accurate solutions are evolved with test data classification error below

10%, many more zero fitness solutions exist with poorer accuracy. This problem represents a

clear case of overfitting. With 637 samples in the time series and only 30 training instances in

each of the two classes, there are many opportunities to produce features with perfect separation

of the training data though many are unlikely to generalize for new time series.

Table 16 compares the minimum fitness and highest accuracy individual for each

problem. Only for 5 of 49 problems are these two individuals the same, and for half of the

problems the minimum fitness individual has at least 5% worse classification error than the

highest accuracy individual. If the highest accuracy individual had minimum fitness for each

problem, Autofead would provide the best solution on 32 of the 49 problems. Figure 29

provides a visual comparison between the minimum fitness and highest accuracy individuals.

Figure 29 – Comparison of expected (training data) and actual (testing data) accuracy gains from

selecting minimum fitness solutions over highest accuracy solutions in benchmark study

103

Table 16 – Fitness quality summary for benchmark study

 Minimum fitness individual Highest accuracy individual

Problem Fitness Classification error Fitness Classification error Spearman rank-order correlation

ChlorineConcentration 0.364 0.423 0.390 0.407 0.402

CinC_ECG_torso 0.000 0.016 0.000 0.001 0.905

Cricket_X 0.379 0.487 0.442 0.397 0.922

Cricket_Y 0.412 0.390 0.422 0.356 0.950

Cricket_Z 0.414 0.464 0.484 0.372 0.958

Earthquakes 0.022 0.266 0.133 0.180 0.001

ECG200 0.000 0.000 0.010 0.000 0.594

ECGFiveDays 0.000 0.078 0.000 0.000 0.797

ElectricDevices 0.240 0.340 0.283 0.256 0.846

FordA 0.000 0.002 0.000 0.000 0.912

FordB 0.047 0.186 0.089 0.131 0.805

Gun-Point 0.000 0.020 0.050 0.000 0.748

InlineSkate 0.162 0.729 0.443 0.495 0.336

ItalyPowerDemand 0.000 0.133 0.015 0.022 0.468

Lightning2 0.000 0.459 0.078 0.033 -0.079

Lightning7 0.059 0.356 0.266 0.123 0.483

Motes 0.000 0.133 0.100 0.029 0.610

SonyAIBORobotSurface 0.000 0.218 0.000 0.017 0.486

SonyAIBORobotSurfaceII 0.000 0.303 0.000 0.021 0.612

StarLightCurves 0.023 0.022 0.027 0.020 0.883

TwoLeadECG 0.000 0.076 0.000 0.000 0.722

uWaveGestureLibrary_X 0.259 0.264 0.289 0.244 0.981

uWaveGestureLibrary_Y 0.318 0.351 0.326 0.342 0.967

uWaveGestureLibrary_Z 0.253 0.298 0.287 0.284 0.976

Wafer 0.000 0.000 0.003 0.000 0.458

50Words 0.266 0.448 0.322 0.376 0.943

Adiac 0.243 0.276 0.284 0.246 0.975

DiatomSizeReduction 0.000 0.078 0.000 0.000 0.637

FaceAll 0.192 0.366 0.240 0.233 0.887

FaceFour 0.000 0.364 0.116 0.034 0.257

FacesUCR 0.155 0.260 0.198 0.239 0.962

Fish 0.171 0.251 0.272 0.166 0.782

HandOutlines 0.105 0.097 0.173 0.070 0.518

Haptics 0.140 0.705 0.447 0.503 0.484

OSULeaf 0.109 0.219 0.144 0.136 0.685

SwedishLeaf 0.135 0.138 0.154 0.114 0.978

Symbols 0.000 0.124 0.000 0.023 0.801

WordsSynonyms 0.386 0.575 0.477 0.505 0.835

Yoga 0.035 0.064 0.059 0.042 0.843

ARSim 0.000 0.001 0.000 0.000 0.918

CBF 0.000 0.182 0.000 0.000 0.929

MALLAT 0.000 0.159 0.000 0.019 0.827

Synthetic_Control 0.000 0.007 0.001 0.000 0.925

Trace 0.000 0.000 0.000 0.000 0.540

Two_Patterns 0.000 0.000 0.000 0.000 0.980

Beef 0.000 0.300 0.170 0.067 0.229

Coffee 0.000 0.000 0.000 0.000 0.467

OliveOil 0.000 0.267 0.178 0.033 0.313

MedicalImages 0.313 0.387 0.351 0.314 0.383

104

By definition, the gains between these two individuals must place all data points in the false-

positive region. Gains further from unity indicate data sets with poor fitness quality leading to

poor solution choice. Clearly, improvement of the fitness measure or sampling procedure could

greatly benefit the method.

Additionally, when the quality of the fitness measure is poor, the search is misdirected

and unlikely to discover optimal solutions anywhere within the population. The Spearman rank-

order correlation in the last column of Table 16 represents how well the relationship between

fitness and test data classification error for the entire solution population can be modeled as a

monotonic relationship [56]. Low correlation values below 0.5 indicate that the fitness measure

is not driving the search toward accurate solutions for 14 problems.

This chapter discusses various aspects of Autofead’s design in light of evidence from

analysis of the method’s behavior on the signal detection and benchmarking problems. Many

positive aspects of the solution space and search method are apparent; however, the search can

only be as effective as the fitness measure. Quality of the fitness estimate, likely due to

overfitting, is clearly the primary factor degrading Autofead's accuracy.

Portions of this chapter have been published in IEEE Transactions on Evolutionary

Computation, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Numeric Sequence Classification by Genetic Programming”. Additional

portions of this chapter have been submitted for publication in Data Mining and Knowledge

Discovery, Dustin Harvey and Michael Todd, 2014. The title of this paper is “Automated

Feature Design for Time Series Classification”. The dissertation author was the primary

investigator and author of these papers.

105

 Chapter 7

TSC Solution Robustness

7.1. Robustness Measures

A quantitative measure of expected performance is required to select the best TSC

method for a specific problem. Within methods such as Autofead, this metric further drives the

selection of features, parameter values, classifier choices, and other aspects of the solution.

While sampling methods and other best practices from machine learning are necessary to make

best use of finite data, they are frequently insufficient to provide an accurate estimate of the

performance of a real-world system from small training data sets. Additionally, training data is

often not fully representative of the conditions experienced by the final system such as varying

noise environments. Therefore, development of robust measures to evaluate relative

performance of TSC solutions is of great benefit to the Autofead method, TSC, and machine

learning as a whole.

Conventionally, the field of classification has relied on simple classification accuracy to

measure performance or perhaps a receiver operating characteristic (ROC) analysis as suggested

by Provost, Fawcett, and Kohavi [57]. Alternative fitness measures such as quadratic loss,

106

attempt to make use of the additional performance information contained in class posterior

probabilities. Autofead uses a combined fitness measure described in section 2.3.3 where

quadratic loss is used as a tiebreaker for classification error on small data sets. While this

approach improves on classification error alone, it is insufficient to fully address previously

discussed issues of overfitting and solution robustness.

 This chapter proposes a method to robustly evaluate time series classifiers in the

presence of multiple unknown sources of uncertainty that may affect real-life system

deployments. Consideration of TSC solutions under uncertainty has the additional benefit of

effectively increasing the size of training data, which may mitigate the issue of overfitting.

Traditional methods for uncertainty analysis propagate probabilistic models applied to inputs

through a given model or solution to establish confidence bounds on the outputs. Probabilistic

methods are poorly suited for the task of evaluating TSC solutions as they require specification

of an appropriate probabilistic uncertainty model and repeated sampling to obtain good

estimates of performance probabilities. General TSC methods such as Autofead are specifically

intended to address problems with limited domain knowledge that would drive the development

of a probabilistic model.

7.2. Non-Probabilistic Uncertainty Analysis

Non-probabilistic uncertainty analysis methods address the question of what possible

outputs can occur given a set of possible inputs. Therefore, non-probabilistic methods are

suitable for determining best-case and worst-case scenarios. Info-gap decision theory (IGDT)

provides a non-probabilistic framework to quantitatively evaluate the robustness and

opportunity of making distinct choices in the presence of uncertainty [58]. Pierce, Ben-Haim,

Worden, and Manson applied IGDT to the training of neural networks for classification and

107

proposed an interval arithmetic implementation of IGDT for machine learning applications to

avoid sampling from the uncertainty model [59, 60]. In the area of SHM, Stull, Hemez, and

Farrar recently proposed the use of IGDT to account for the uncertainties in many aspects of

SHM system design [61].

7.2.1. Application to TSC Solutions

To apply IGDT analysis to TSC algorithms, decisions must be made as to what point to

introduce uncertainty into the solution design process and data flow and an appropriate

uncertainty model. The uncertainty model could be applied either to the original input data,

measured feature spaces for feature-based methods, or to distance measures for instance-based

methods. The latter two options raise scaling issues for making fair comparisons between

solutions while applying uncertainty directly to the inputs is equivalent for both feature-based

and distance-based TSC methods. Additionally, uncertainty can be introduced within the

training data used to design solutions, or final solutions can be evaluated on a test data set with

uncertainty to select the most robust solutions. Application of uncertainty to training data

introduces an additional complication of training classifiers under uncertainty.

The uncertainty model proposed in this chapter is a simple instantaneous energy-bound

model applied to inputs of an independent test data set [58]. The specific choice of model

supports a very fast implementation scheme described in section 7.2.2. The model consists of a

variable but equal-width interval applied to each time series sample in the test data. The interval

radius, , is dependent on the variable uncertainty level, α, and normalized by the standard

deviation of the test dataset, , such that

 (2)

108

The uncertainty model states that each nominal sample, , may occur anywhere within

 .

7.2.2. Interval Arithmetic Implementation

The selection of an envelope-bound info-gap model allows for the time series intervals

to be efficiently propagated through feature algorithms using interval arithmetic. Interval

arithmetic represents each value as a range of possible values for bounding of errors in

mathematic computations. The Autofead function library was implemented in MATLAB using

the interval arithmetic package INTLAB to compute feature intervals from the envelope-bound

time series info-gap model for increasing uncertainty levels [62].

Next, feature intervals must be propagated through trained classifiers to determine all

possible class labels. The direct approach involves development of an interval implementation

for the forward method of each classifier. An alternative approach demonstrated here is suitable

for low-dimension feature spaces. In two-dimensions, and without loss of generality, feature

vectors with interval uncertainty represent rectangular feature interval boxes. Boxes that reside

in a single decision region must result in a single class prediction whereas boxes that intersect

one or more decision boundaries produce multiple class prediction possibilities. This approach

is equivalent in many cases to the threshold-based analysis of class posteriors applied by Pierce,

et al. [59, 60]. However, the structure of certain types of classifiers such as decision trees is

unsuitable for the latter approach while decision boundaries may be estimated for any classifier,

and directly solved for in many cases. Once class prediction probabilities are found for test data

set instances, a simple worst-case, best-case analysis is performed to determine the

classification error interval under each level of uncertainty.

109

7.3. Rotating Machinery Case Study

The rotating machinery experiment described in section 4.4 is used here to demonstrate

the proposed TSC solution robustness analysis. First, Autofead is applied to the training data to

generate candidate solutions. Table 17 summarizes the configuration used for this study. For

ease of visualization and implementation, solutions were restricted to two features and a limited

function library. Some functions, such as those involving the FFT or Hilbert transform, are

omitted since no interval arithmetic implementations are currently available for these functions.

The minimum fitness solution from the Autofead runs, here named solution A, uses a

Gaussian Naïve-Bayes classifier. Figure 30 depicts the feature space and decision boundaries

for solution A. Feature A1 uses the algorithm [set maximum value (), sigmoid,

difference, square, sum] to separate the outer race fault class. The algorithm for feature A2 is

[set maximum value (𝑡ℎ 𝑒𝑠ℎ𝑜𝑙𝑑), difference, difference, normalize, difference, absolute

value, sum] which tends to produce a smaller feature value for the ball spalling condition than

the other classes. From Figure 30, it is evident that the two features together provide a well-

Table 17 – Koza tableau for restricted rotating machinery run configuration

Parameter Setting

Objective Design optimal feature set to detect presence of damaged bearings

Solution structure Two features consisting of a sequence of functions, omitted class mean signals

Function set

26 functions from function library including absolute value, center, center and scale, control chart,

cube, cumulative summation, demean, difference, exponential, Hanning window, inverse, keep

beginning, keep end, log10, normalize, select, set maximum value, set minimum value, sigmoid, sliding
windows, slope fit, sort order, sorted bisection select, square, sum, and transpose windows

Pattern recognition
Selection of Gaussian Naïve-Bayes, linear disciminant analysis, logistic regression and CART
decision tree classifiers

Fitness Minimize quadratic loss bounded on [0,1]

Fitness case sampling -fold cross-validation

Evolution strategy with , , and

Solution size Two features each limited to 15 functions and 8 parameters

Population initialization Two features ramped to initial maximum size of 5 functions and 3 parameters

Selection Tournament, tournament size 2

Genetic operators Crossover, 75%; mutate, 10%; reproduce, 5%; add feature, 5%; remove feature, 5%

Termination 180 iterations; 20,000 individuals

Run repetitions 475; 9.5 million total individuals

110

Figure 30 – Restricted rotating machinery solution A feature space

separated feature space with only a few misclassifications.

Although solution A appears to perform very well, nine and a half million candidate

solutions are generated by Autofead, of which more than thirty solutions have less than 1%

worse fitness than solution A. A better estimate of the generalization performance is found by

computing classification error on an independent data set from the training data used within

Autofead. Figure 31 compares fitness and classification error on the test dataset for the 100

minimum fitness solutions. The correlation between the two performance measures is only 0.45

within these 100 solutions; although in this case the minimum fitness solution A, highlighted in

red, also has the minimum classification error on the test data set. These measures indicate

selection of solution A as the final Autofead solution; however, the data is collected from a very

limited set of operating conditions such as shaft speeds, examples of damage specimens,

temperatures, etc. which could affect performance of a real-world system.

111

Figure 31 – Restricted rotating machinery performance comparison for 100 minimum fitness solutions

Therefore, the robustness analysis proposed in section 7.2 is carried out on the 100

minimum fitness solutions to identify worse-case performance scenarios in the presence of

small changes to the test data. Figure 32 shows the first 50 samples of a single time series under

no uncertainty, very small uncertainty, and a noticeable amount of uncertainty. Although the

uncertainty levels appear relatively small, the dimensionality of the uncertainty model is very

large containing thousands of instances and hundreds of samples in each instance.

Figure 33 depicts the resulting feature intervals for two candidate solutions with the

same uncertainty level, . The dot inside each feature interval box depicts the feature

(a) No uncertainty, (b) Low uncertainty, (c) Medium uncertainty,

Figure 32 – TSC robustness envelope-bound uncertainty model

112

(a) Solution A, (b) Solution B,

Figure 33 – Restricted rotating machinery solution A and B feature spaces under uncertainty

value under no uncertainty. For solution A, every feature interval overlaps at least one decision

boundary at the level of uncertainty shown resulting in 0% worst-case classification accuracy.

In contrast, the features in solution B show significantly reduced sensitivity to uncertainty

relative to the separation of the classes. Consequently, the worst-case error of solution B is only

increased to 14.5% from a nominal level of 8.2% with no uncertainty on the test data. Solution

B’s feature algorithms are [center and scale, sliding windows (), sorted bisection select

(), sum] for B1 and [difference, difference, difference, difference, sorted bisection select

()] for B2. Interestingly, feature B1 divides the time series into 8.20 millisecond

segments using sliding windows. The segment length is on the order of the characteristic

vibration periods for the bearing geometry and shaft speed, and longer segment lengths degrade

the performance significantly. Therefore, the algorithm may be exploiting the relative vibration

frequency characteristics for the ball spalling and outer race defects to separate the two damage

classes.

113

After propagating the time series info-gap uncertainty model through to the feature

space and class prediction possibilities, robustness and opportunity curves are generated by

considering the worst-case and best-case class prediction scenarios for increasing levels of

uncertainty. Robustness of a candidate solution is measured as the largest uncertainty level

which, in the worst case, meets a specific minimum classification accuracy requirement.

Opportunity represents the smallest level of uncertainty that could produce windfall of

improved classification accuracy. Windfall, here, describes the possibility of achieving better-

than-nominal performance as uncertainty increases. Robustness and opportunity curves for the

one-hundred minimum fitness Autofead solutions are depicted in Figure 34. Minimum fitness

solution A has poor robustness but good opportunity, while solution B is the most robust but

provides the worst opportunity. This analysis indicates that selection of solution B as

Autofead’s final solution will provide a more reliable solution if real-world operating conditions

deviate from those under which training and testing data are collected.

(a) Robustness (b) Opportunity

Figure 34 – Restricted rotating machinery solution robustness and opportunity

114

This chapter proposes and demonstrates experimental results for an info-gap decision

theory based robustness analysis of time series classification algorithms. An envelope-bound

info-gap uncertainty model is applied directly to the time series in the test data set then

propagated through feature measurement and classification to generate class prediction

possibilities under increasing uncertainty levels. The interval arithmetic implementation

provides a fast, quantitative robustness measure to select among candidate solutions in the

presence of uncertainty and guarantee worst-case performance. In comparison to the fitness

measure currently utilized by Autofead or simple classification accuracy estimated on

independent data, the proposed robustness measure should provide an improved evaluation

criterion to estimate performance of real-world systems. Future studies are needed to determine

the effects of employing uncertainty analysis in solution evaluation with attention to the issue of

overfitting small data sets.

A portion of this chapter has been submitted for publication in Proceedings of SPIE

Smart Structures/NDE conference, Dustin Harvey, Keith Worden, and Michael Todd, 2014. The

title of this paper is “Robust Evaluation of Time Series Classification Algorithms for Structural

Health Monitoring”. The dissertation author was the primary investigator and author of this

paper.

115

 Chapter 8

Conclusions and Future Work

8.1. Conclusions

This dissertation encompasses all research to date on the automated feature design

method for time series classification called Autofead. The method uses a hybrid genetic

programming and numerical optimization process with a novel solution space design to search

for highly-informative features within accurate solutions. In many cases, Autofead is shown to

produce far more humanly-interpretable algorithms than other general time series classification

methods. For this reason, Autofead can serve as a powerful tool for time series data mining and

knowledge discovery tasks. Additionally, the method transfers directly to time series regression

and forecasting problems. Although the search is computationally intensive, the resulting

solutions are compact and easily-computed making them well-suited for embedded systems and

other resource-constrained environments.

The experimental studies performed provide extensive evidence of the method’s

capabilities, effectiveness, and pitfalls. Validation experiments on synthetic problems with

known optimal solutions show the ability of Autofead to design optimal and near-optimal

116

features in a variety of situations. A suite of structural health monitoring related experiments

demonstrated the flexibility of the method to address complex problems including multi-class

classification and multivariate regression for dynamic system state identification. Lastly, an

extensive study on real-world TSC data sets was carried out to benchmark Autofead against

state-of-the-art TSC methods. The presented results verify the accuracy of Autofead solutions,

at minimum, as competitive with competing methods and human expert designed features.

8.2. Future Work

Future studies related to the presented work could follow numerous beneficial research

directions. The largest issue affecting solution accuracy is quality of the estimation of fitness or

generalization error. In particular, Autofead is highly susceptible to overfitting for small training

data sets leading to overly optimistic performance estimates. This issue is prevalent throughout

the machine learning field and any improvements in related techniques such as cross-validation

procedures would greatly benefit the Autofead method. Uncertainty analysis provides another

possible path for improving fitness quality on small data sets. Further work is necessary to

determine the benefit of robustness-based fitness measures such as the non-probabilistic

robustness assessment presented in Chapter 7 of this dissertation.

Many implementation improvements are possible to reduce the computational cost of

Autofead search runs. In particular, early abandon techniques could be employed during

intensive calculations, for instance in the parameter optimization process. In such an approach,

continuous evaluation of the value of a candidate solution within the population is performed to

abort computations unlikely to produce fitness improvements.

Furthermore, a fully automated post-processing module would be beneficial to perform

tasks of analyzing final populations, comparing top solutions, and further refining solutions

117

through automatic improvement of estimation algorithms. For example, many design decisions

within the Autofead function library which constrain the solution space could be relaxed to

achieve incremental improvement of final solutions. Examples of relevant solution space

constraints include filter design in the filtering functions, selection of wavelet family for the

wavelet function, and optimization of the parameters of the sliding windows operation.

Further investigation of the univariate, binary classifier discussed in section 2.3.2 is

required to determine the methods accuracy and limitations. The classifier is employed as part

of the objective function for Autofead when applied to binary classification problems due to its

low computational cost. Additional validation and comparison to standard methods is necessary

to determine usability as a general purpose classification method.

Lastly, directed studies in application areas should investigate methods for

incorporating domain knowledge to tailor Autofead for specific tasks. Possible approaches

include providing pre-transformed data representations as inputs, customization of the function

library, and seeding the initial population with feature algorithms from conventional solutions to

related problems. Autofead may perform best in an iterative process where knowledge gained

from previous search runs as well as expert analysis is incorporated into future runs until

performance goals are realized.

118

References

1. A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review, Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 22, 1. 2000, 4–37.

2. C.M. Bishop, others, Pattern Recognition and Machine Learning, Vol. 1, Springer: New York.

2006.

3. T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, R. Tibshirani, The Elements of

Statistical Kearning, Vol. 2, Springer. 2009.

4. N. Japkowicz, M. Shah, Evaluating Learning Algorithms, Cambridge University Press. 2011.

5. Z. Xing, J. Pei, E. Keogh, A brief survey on sequence classification, ACM SIGKDD Explorations

Newsletter, 12, 1. 2010, 40–48.

6. H. Guo, L.B. Jack, A.K. Nandi, Automated feature extraction using genetic programming for

bearing condition monitoring, Proc. Machine Learning for Signal Processing, 14th IEEE Signal

Processing Society Workshop. 2004, 519–528,

7. T. Fu, A review on time series data mining, Engineering Applications of Artificial Intelligence, 24,

1. 2011, 164–181.

8. P. Esling, C. Agon, Time-series data mining, ACM Computing Surveys (CSUR), 45, 1. 2012, 12.

9. X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Experimental comparison

of representation methods and distance measures for time series data, Data Mining and Knowledge

Discovery, 26, 2. 2013, 275–309.

10. X. Xi, E. Keogh, C. Shelton, L. Wei, C.A. Ratanamahatana, Fast time series classification using

numerosity reduction, Proc. 23rd International Conference on Machine learning. 2006, 1033–1040,

11. Z. Prekopcsák, D. Lemire, Time series classification by class-specific Mahalanobis distance

measures, Advances in Data Analysis and Classification, 6, 3. 2012, 185–200.

119

12. A. Bagnall, L.M. Davis, J. Hills, J. Lines, Transformation based ensembles for time series

classification, Proc. SDM. 2012, 307–318,

13. L. Ye, E. Keogh, Time series shapelets: a new primitive for data mining, Proc. 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 947–956,

14. L. Ye, E. Keogh, Time series shapelets: a novel technique that allows accurate, interpretable and

fast classification, Data Mining and Knowledge Discovery, 22, 1-2. 2011, 149–182.

15. J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Classification of time series by shapelet

transformation, Data Mining and Knowledge Discovery, 28, 4. 2013, 1–31.

16. H. Deng, G. Runger, E. Tuv, M. Vladimir, A time series forest for classification and feature

extraction, Information Sciences, 239. 2013, 142–153.

17. B.D. Fulcher, M.A. Little, N.S. Jones, Highly comparative time-series analysis: the empirical

structure of time series and their methods, Journal of The Royal Society Interface, 10, 83. 2013.

18. B.D. Fulcher, N.S. Jones, Highly comparative, feature-based time-series classification, Knowledge

and Data Engineering, IEEE Transactions on, pre-print. 2014.

19. L.A. Levin, Universal sequential search problems, Problemy Peredachi Informatsii, 9, 3. 1973,

115–116.

20. M. Hutter, The fastest and shortest algorithm for all well-defined problems, International Journal of

Foundations of Computer Science, 13, 03. 2002, 431–443.

21. J. Schmidhuber, Optimal ordered problem solver, Machine Learning, 54, 3. 2004, 211–254.

22. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, A Bradford Book. 1992.

23. R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming, Lulu Enterprises Uk

Limited. 2008. Published via http://lulu.com and freely available at http://www.gp-field-

guide.org.uk.

24. D. Andre, Automatically Defined Features: The simultaneous evolution of 2-dimensional feature

detectors and an algorithm for using them, Proc. Advances in Genetic Programming. 1994, 477–

494.

25. N.R. Harvey, S.P. Brumby, S. Perkins, J.J. Szymanski, J. Theiler, J.J. Bloch, et al., Image feature

extraction: GENIE vs conventional supervised classification techniques, Geoscience and Remote

Sensing, IEEE Transactions on, 40, 2. 2002, 393–404.

26. P.G. Espejo, S. Ventura, F. Herrera, A survey on the application of genetic programming to

classification, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 40, 2. 2010, 121–144.

27. K.C. Sharman, A.I. Alcazar, Y. Li, Evolving signal processing algorithms by genetic programming,

Proc. Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, First

International Conference on. 1995, 473–480.

120

28. D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, et al., Genetic algorithms and support

vector machines for time series classification, Proc. of SPIE, Vol. 4787. 2002, 75.

29. D.R. Eads, S.J. Williams, J. Theiler, R. Porter, N.R. Harvey, S.J. Perkins, et al., A multimodal

approach to feature extraction for image and signal learning problems, Proc. Optical Science and

Technology, SPIE’s 48th Annual Meeting. 2004, 79–90,

30. K.L. Holladay, K.A. Robbins, Evolution of signal processing algorithms using vector based genetic

programming, Proc. Digital Signal Processing, 15th International Conference on. 2007, 503–506.

31. K. Holladay, K. Robbins, J. Von Ronne, FIFTH
TM

: a stack based GP language for vector

processing, Genetic Programming, 4445. 2007, 102–113.

32. A. Teller, M. Veloso, Program evolution for data mining, International Journal of Expert Systems

Research and Applications, 8. 1995, 213–236.

33. A. Teller, M. Veloso, PADO: A new learning architecture for object recognition, Symbolic Visual

Learning. 1996, 81–116.

34. A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing (3rd Edition), Prentice Hall.

2009.

35. G.R. Raidl, A hybrid GP approach for numerically robust symbolic regression, Genetic

Programming. 1998, 323–328.

36. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn:

machine learning in Python, The Journal of Machine Learning Research, 12. 2011, 2825–2830.

37. T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models,

Reliability Engineering and System Safety, 52, 1. 1996, 1–17.

38. R.P. Brent, Algorithms for Minimization Without Derivatives, Courier Dover Publications. 1973.

39. T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms, Oxford University Press. 1996.

40. R. Poli, Tournament selection, iterated coupon-collection problem, and backward-chaining

evolutionary algorithms, Proc. Foundations of Genetic Algorithms. 2005, 132–155.

41. C. Nadeau, Y. Bengio, Inference for the generalization error, Machine Learning, 52, 3. 2003, 239–

281.

42. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, A Bradford

Book. 1994.

43. D.Y. Harvey, M.D. Todd, Automated feature design for numeric sequence classification by genetic

programming, Evolutionary Computation, IEEE Transactions on, pre-print. 2014,

doi:10.1109/TEVC.2014.2341451.

44. D.Y. Harvey, M.D. Todd, Structural health monitoring feature design by genetic programming,

Smart Materials and Structures, 23, 9. 2014, 095002.

121

45. D.Y. Harvey, M.D. Todd, Automated feature design for time series classification, Data Mining and

Knowledge Discovery, in review. 2014.

46. S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based damage

identification methods, Shock and Vibration Digest, 30, 2. 1998, 91–105.

47. C.R. Farrar, S.W. Doebling, D.A. Nix, Vibration–based structural damage identification,

Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 359, 1778. 2001, 131–149.

48. C.R. Farrar, K. Worden, Structural Health Monitoring: A Machine Learning Perspective, Wiley.

2012.

49. K. Worden, C.R. Farrar, G. Manson, G. Park, The fundamental axioms of structural health

monitoring, Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 463, 2082. 2007, 1639–1664.

50. A. Raghavan, C.E. Cesnik, Review of guided-wave structural health monitoring, Shock and

Vibration Digest, 39, 2. 2007, 91–116.

51. E.B. Flynn, M.D. Todd, P.D. Wilcox, B.W. Drinkwater, A.J. Croxford, Maximum-likelihood

estimation of damage location in guided-wave structural health monitoring, Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 467, 2133. 2011, 2575–2596.

52. M. Lebold, K. McClintic, R. Campbell, C. Byington, K. Maynard, Review of vibration analysis

methods for gearbox diagnostics and prognostics, Proc. 54th Meeting of the Society for Machinery

Failure Prevention Rechnology, Virginia Beach, Virginia. 2000, 623–634.

53. E. Figueiredo, G. Park, J. Figueiras, C. Farrar, K. Worden, Structural health monitoring algorithm

comparisons using standard data sets, Los Alamos National Laboratory (LANL), Los Alamos, NM,

United States. 2009.

54. E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, et al., The UCR Time Series

Classification/Clustering Homepage. 2011. http://www.cs.ucr.edu/~eamonn/time_series_data/

55. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining

software: an update, ACM SIGKDD Explorations Newsletter, 11, 1. 2009, 10–18.

56. C. Spearman, The proof and measurement of association between two things, American Journal of

Psychology, 15, 1. 1904, 72–101.

57. F.J. Provost, T. Fawcett, R. Kohavi, The case against accuracy estimation for comparing induction

algorithms, Proc. 15
th

 International Conference on Machine Learning. 1998, 445–453.

58. Y. Ben-Haim, Info-Gap Decision Theory: Decisions Under Severe Uncertainty, Academic Press.

2006.

59. S.G. Pierce, K. Worden, G. Manson, A novel information-gap technique to assess reliability of

neural network-based damage detection, Journal of Sound and Vibration, 293, 1. 2006, 96–111.

60. S.G. Pierce, Y. Ben-Haim, K. Worden, G. Manson, Evaluation of neural network robust reliability

using information-gap theory, Neural Networks, IEEE Transactions on, 17, 6. 2006, 1349–1361.

122

61. C.J. Stull, F.M. Hemez, C.R. Farrar, On assessing the robustness of structural health monitoring

technologies, Proc. Topics in Model Validation and Uncertainty Quantification, Volume 4. 2012,

1–11.

62. S.M. Rump, Developments in Reliable Computing, INTLAB-INTerval LABoratory, Kluwer

Academic Publishers, Dordrecht, Netherlands. 1999.

