LA-UR-14-21456

This document is approved for public release; further dissemination unlimited
RADIUS: Rapid Automated Decomposition of Images for Ubiquitous Sensing

Polygonal features from sparse edge information for timely and automated analysis of big data imagery

BACKGROUND & MOTIVATION
State-of-the-art pixel and color based methods do not exploit the multiscale spatial and structural cues in images for effective and efficient analysis
- Miss large or small features
- Limited scalability to large images

DESCRIPTION
RADIUS computes polygonal features at multiple scales to structurally characterize images in a hierarchical manner using a pyramidal graph structure. RADIUS easily adapts custom algorithms for various image analysis applications.

RADIUS first uses image edge pixels (Fig. b), to obtain a Delaunay triangulation of the image (Fig. c). The triangulation is an image-adaptive grid from which perceptual cues of human vision such as proximity, symmetry, and continuity between edges are computed. These serve as grouping criteria to merge the spectrally sampled triangles (Fig. d) into visually meaningful polygons (Fig. e):

- **a.** Pixel image
- **b.** Edge pixels
- **c.** Proximity graph
- **d.** Color sampling
- **e.** Polygonization

With this initial polygonization as a starting point, RADIUS enables a hierarchical scheme for extracting multiscale features by successive grouping of polygons, obtained as above, based on structural, spectral, and statistical attributes:

ANTICIPATED IMPACT
Increased analyst performance
- Real-time automated image analysis
- Direct analyst to selected features in the images

Enhanced analysis capabilities
- Rapid Segmentation of Large Images
- Hierarchical Image Analysis
- Spatial Image Description
- Anomaly & Change Detection and ID
- Feature Shape & Context Analysis
- Object Recognition
- Vector ESRI Shape file Representation

PATH FORWARD
Technology demonstration with partners:
- Seeking new Government and commercial partners to demonstrate technology with real world scenarios

Validate and harden algorithms using complex data sets:
- National security applications
- Biomedical and environmental applications
- Materials science

Potential End Users:
- DOE, DOD, DHS
- Aerospace (Geospatial Intelligence)
- Biomedical and Radiographic

RADIUS is TRL 4 – Developed an industry operational mode tool for change detection assay in aerial imagery that is currently being evaluated for deployment.

Patents constituting RADIUS:
- Multiscale Characterization and Analysis of Shapes, U. S. Patent # 6,393,159
- Vectorized Image Segmentation via Trixel Agglomeration, U. S. Pat.# 7,127,104

Point of Contact: Angela Mielke, Intelligence and Space Research Division amielke@lanl.gov, (505) 667-2965