A Challenges of Performance Portability for

‘tosfamos NS4 Fortran Unstructured Mesh Codes 8 ORINNELL Qf stony Brok

EST.1943 National Nuclear Security Administration D&Vld Nelll Asa‘nza1’ Ablgail HSU.Q
Mentors : Neil Carlson3, Zach Jibben?

L Grinnell College, *Stonybrook University, °Los Alamos National Laboratory

Introduction Challenges Performance and Productivity Analysis
This project investigates how different approaches to pa- Kernel optimization is challenging due to available tools, . . _
rallel optimization impact the performance portability of Fortran features, and unstructured meshes. 10°. Performance Scaling with OpenMP CPU Fffect of Vector Instructions on OpenMP CPU
——— Haswell 25(64) . B Haswell 25(32)
unstructured mesh Fortran codes. Limited compiler support for Fortran 2008 o . Eﬁil’ﬁ"z ;15(144) § 0.005 EE KNL(272)
In addition, we explo?e tl.qe prodpctnnty challenges due to Limited compiler support for OpenMP GPU § —— Broacwel(72) § 0.004
the software tool limitations unique to Fortran. B 0 cowers gff‘ifé?)?”“’ =
Lack of performance-portable libraries for Fortran o SR : |
o AS a case study, we op- No CUDA Fortran compiler compatible with Truchas, = 'i v
timized one of the key forced to rewrite computational kernel in CUDA C & ~ T & 000
Melt Col = | .. computational kernels of Fort ¢ : dine to do 1 1030, N ~ o~ =] 000
Truchas[1] 2 3D multi- oritran array Sy.Il E.LX I'.GQU.II'GS eXpanding to ao 100PS 10 10 10 10 no-vec _fggi?ég -xCZ%FéEt-)iAt\S/xz -xM5|§-2AE)/i>t<5512
, . L . for OpenMP optimization Number of Threads Intel compiler (ifort) flag
Crichh —Hh physics application for si- . .
mulating metal casting .Indlre(ft addP?SSIY}g for unstructured meshes causes Figure 3. OpenMP CPU performance across node Figure 4. Vector length impact on run time across
Ftsugion —| Sf= Qomnone and processing. ineffective caching, in contrast to regular access pat- types (lower is better). Intel® processors (lower is better).
_ . terns of structured meshes o ,
N Truchas has been in deve- Kernel performance scales well initially as the number For small vector sizes, Haswell 2S5 performs bet-
= TopCo %C)Pmeflt for over 20 years, structured grid unstructured grid of cores increases, but scales poorly with more than ter than KNL due to its higher clock speed. KNL
n o s written in modern one thread per core. Only KNL and Power9 gfortran has more than twice as many vector units as Has-
P oir —p PO | ¢ Bt o P;ortr:n, gnd USES ufn_ 2 SH o continue to speed-up with more than one thread per well 2S [2], resulting in a lower run time for 256-bit
et i | SLIHEITeE IRESAes TOF 2 =l core. With the most physical cores (72), Haswell 4S vectors. The performance for 512-bit vectors likely
eramic Insulator atch Pan modellng Complex geome- E‘ E . . i])
CastFloor fries. = longitude ° longitude is the best performing hardware. decreased due to indirect addressing.
Figure 1. Induction Furnace 3D Model . .] .]
Figure 2.Non-Contiguous Memory Access for Unstructured Mesh|3] Ny Performance Of Optlmlzatlon Approaches o | Performance VS Llnes Changed |
S B OpenMP CPU B aswell ifor B OpenMP CPU
"%25 = SUDAGPU 1 0f v ENLifort4S ‘ W CUDAGPU]
P 20} penMP GPU | - ’ sswell 25 ifor s OpenMP GPU
Met hO dOlOgy %15_ '§ 2 ® II;Iroadwell ifortt
10} L 5ol Power9 gfortran
We modified and optimized the key kernel to investigate the performance portability of three paralleliza- 3 | o > > Fowers xif
tion approaches. To determine portability, we ran on a variety of different node configurations. To measure & §15 v ot el mvec
productivity, we recorded number of line changes. ' g ! > A Volta Power3 nvce 4 <
S 5t <
Parallelization approaches: Q,@’Z’b O | | | | | |
e OpenMP CPU: Directive-based parallel runtime with a work-sharing model o “Number of Lines Chazr?;ed > >
DA: GPU- ific 1] Nvidia hard . : .. : .
: gU MPG GggpeNcn y d?’ng:j,age’ On,}lf Eins OIE) Vll\ﬁ) 4&1(’)+W&re ble QPU o " Figure 5. Performance relative to original serial Figure 6. Both OpenMP approaches perform well
cnl . & 1IreCtlves avaliable 111 cn . cllabDliec computin . . .
P v v P PHMES code run on Haswell 2S (higher is better). for less effort (upper-left is better).
Hardware resources: Each approach speeds-up the kernel by at least a OpenMP on the CPU provides the best perfor-
CPU model S:C:T° GPU model™ factor of 4. OpenMP on the CPU performs best mance for the least effort. Adding CUDA enables
Haswell 2S | Intel® Xeon® E5-2698 v3 @2.30 GHz | 2:16:2 | N/A due to powerful CPUs, namely Power9 and Haswell the use of the GPU, but requires rewriting the ker-
Haswell 4S | Intel® Xeon® E7-8880 v3 @2.30 GHz | 4:18:2 | N/A 4S. OpenMP on the GPU and CUDA perform nel in C. OpenMP on the GPU performs similarly
KNL Intel® Xeon Phi™ 7250 @1.40 GHz 1:68:4 | N/A similarly on one GPU. Power9 xIf runs 4 times to CUDA, enabling GPU computation for signifi-
Broadwell | Intel® Xeon® E5-2695 v4 @2.10GHz | 2:18:2 NVIDIA® TITAN V® faster than Power9 gfortran. cantly less effort.
Power9 IBM® POWER9™ @3.80 GHz 2:20:4 NVIDIA® Tesla® V100 SXM2

“Sockets : Cores per socket : Threads per core

Conclusion

""Kernel only ran on one of the on-node GPUs

e Compiler choice can dramatically impact performance on the same architecture.

e OpenMP on the CPU is the most productive approach, requiring the least programmer effort for at least
a factor of 4 speed-up. It is also the most portable due to widespread compiler and hardware support.

Many thanks to our mentors: Bob Robey, Hai Ah Nam, Kris [1] Los Alamos National Lab. Truchas: 8D Multiphysics Si- e OpenMP on the GPU is a viable optimization approach, requiring little programmer effort and providing

Garrett, Doug Jacobsen, Neil Carlson, and Zach Jibben. mulation of Metal Casting and Processing. GitLab, 2007- comparable performance to CUDA. This approach is currently limited to running on IBM hardware

Support provided by ASC Integrated Codes Telluride Project. 2017. gitlab.com/truchas/truchas-release. P 9 - the xIf i but it b tabl i doot the standard
2] "Cori Configuration." National Energy Research Scien- (Power9) using the xIf compiler, but it may become more portable as compilers adopt the standard.

Support provided by U.5. Department of Fnergy at Los Ala- tific Computing Center, nersc.gov/users/computational- e CUDA is the least productive approach because it requires adding a Fortran-C interface and rewriting the
mos National Laboratory supported by Contract No. DE- systems /cori/configuration. Accessed 23 July 2018. >
computational kernel in CUDA C. More optimization effort may yield increased performance. Portability

AC52-06NA25396 Stuebe, David. "Unstructured Grid Services." Ocean Ob- C e - 1:
Data collected on the Darwin cluster at Los Alamos Natio- servatories Initiative, confluence.oceanobservatories.org/ is limited because the CUDA API can only run on Nvidia hardware.

nal Laboratory, and the Cori cluster at the National Energy dislplaY/ CIDev/Unstructured+Grid+Services. Accessed 23 e Fully utilizing all available on-node GPUs could provide a significant performance improvement, especially
Research Scientific Computing Center. Doty ZOLE. given the increasing adoption of GPUs in high-performance computing.

Acknowledgements References

Parallel Computing Summer Research Internship LA-UR-18-26965

