
● 

● 

Quantum Monte Carlo with OpenMP 4.0+ for Performance Portability 
Jordan Fox1,3, Jennifer Soter2,3 

Mentors: Stefano Gandolfi3 and Hai Ah Nam3 

1San Diego State University, San Diego, CA; 2Drew University, Madison, NJ; 3Los Alamos National Laboratory, Los Alamos, NM 

& 

Abstract Computer Architectures Motivation 
Prediction of nuclear phenomena is significant to the fields of astrophysics, 

nuclear medicine, and nuclear engineering. These simulations rely on 

computational models and depend heavily on high-performance computing (HPC) 
to calculate nuclear properties that cannot be measured experimentally.  

Quantum Monte Carlo (QMC) methods, specifically Auxiliary Field Diffusion 

Monte Carlo (AFDMC), have recently proven successful in computing 
ground-state properties of light-mass and medium-mass nuclei and are projected 
to scale up to heavy nuclei. 

We investigate the application of OpenMP to AFDMC. We present a detailed 
description of how a portable hybrid parallelization model may be implemented 
for many-thread architectures, and describe the dangers of improperly scoped 
variables to OpenMP. 

Physics Background 
In low-energy nuclear structure models, nuclei are described as a collection of 

interacting protons and neutrons. The properties of that system, such as 
radioactivity and resonances, are determined in part by the mass and the 

interaction model. 

Depending on the size of the nucleus, different methods are used to model these 

properties. Among these, Quantum Monte Carlo (QMC) has proven successful 
and robust with respect to problem size.  

A version of this is the Auxiliary Field Diffusion Monte Carlo (AFDMC). Using 

AFDMC, we are able to solve for a ground state wavefunction, which can be used 
to compute observables such as radius, density, decay rates, and more. 

The chart of nuclides (LEFT) organises nuclei based on their number of protons 
and neutrons. Many of these nuclides cannot be studied in a lab, thus methods 
like QMC are used to compute properties. 

A schematic of a heavy nucleus (RIGHT) undergoing β-decay. QMC models 
allow for us to compute decay-rates, as well as other observables, that are 
useful for many areas of theoretical and applied science.    

AFDMC was designed for large-scale distributed teraflop HPC systems. It 
currently uses MPI to distribute the work across each rank and periodically 
synchronizes for load-balancing. However, AFDMC using MPI-only is less efficient 
on current many-core petascale systems with increased on-node parallelism 
through increased cores and threads. OpenMP can use shared memory which can 
be much more efficient for accelerated architectures. 

KNL A hybrid model (MPI/OpenMP) is 
possible in AFDMC: implementing 272 threads over 68 cores 
fine-grain parallelization with OpenMP 

will allow the code to efficiently use the 
on-node parallelism of the Intel Xeon Phi 
‘Knights Landing’ (KNL) processor and 
GPU processors like the NVIDIA P100. 

Using new directives available in OpenMP 

4.5, specifically the OMP Target, AFDMC 

can achieve performance portability 
across these two architectures with a 
single code. 

Code Characterization 

The Monte Carlo algorithm approximates the configuration with least energy, 
according to a nuclear hamiltonian. From a trial wavefunction, we compute many 
walkers that are propagated through configuration-space. The walkers will, on 
average, approach minimum energy. 

     

 
      

     

  

          

       

      

      

       

 
 

   

   

   

     

   

    

   

    

   

    

    

     
  
 

     

        

        

         

       

      

        

         

           

          

       

      

          

       
        

      
           

      
        

 

        
          

       
        

        

          

             

       

        

      

  
   
   

   

   
   

 
  

   
  

      

  

   

    

   

    

  

   

  

     

     

    

    

     

   

       

    

        

      

     

    

      

Acknowledgements

Example: AFDMC uses a Fortran module called PSICALC. Within PSICALC, a 

large Fortran Object structure CORPSI is defined. Importing of PSICALC at  
high levels forces CORPSI to be shared between threads. It is difficult to avoid 
race conditions for components that need to be private. The solution will require 

redefining the Object in both structure and scope. 

2. To achieve performance portability, we propose the use of a 
OpenMP 4.5 Target directive. 

OMP Target defines a data environment (variables and instructions) that is 
contained, packaged at compile time, and can be delivered to the device on node. 

Algorithm structure (LEFT). Each MPI rank has a “stack” of walkers (blue/green 
lanes) that are propagated each step by the Green’s function G(R,R’,it). As walkers 
are terminated (red) or branched, the work-load is rebalanced between ranks. 

In a hybrid code, each stack will handle propagation on OpenMP, then MPI will 
redistribute work at each step. The walkers that survive are averaged to 
approximate the ground state wavefunction. 

Loop structure (RIGHT). Red loops must be serial. The green loop will use hybrid 
MPI/OpenMP parallelization. The blue loop can be threaded, but we anticipate 

efficiency to be problem-dependent. 

LA-UR-17-26838 

The MPI-only AFDMC version 
cannot take full advantage of 
the 272 hardware threads on 
a KNL. 

Runtimes (LEFT) of constant 
problem-size on 272 ranks 
distributed over N ranks. 

The code benefits from 
vectorization, which 
scales well 
>1 rank per core causes 
inefficient use of thread 
architecture 

Using OpenMP in the walker loop will allow for more efficient use of threads, 
granting efficiency for problem configurations with more than 1 rank per core. 

Conclusions 
We present a code design concept for the development of the AFDMC and 
similar codes in two steps: scoping structure and portability in OpenMP. 

1. Scoping of data structures is complex but crucial to efficient 
(thread-safe) OpenMP 

Fortran/C++ “Objects” must be redefined in AFDMC such that the entire Object 
can be either private or shared. Currently, the improper data scoping causes race 

conditions between threads trying to update large Object data structures. 

OMP Target will port to KNL and GPU similarly. 

The Target will consist of the entire data 
environment of a stack, so each MPI rank will 
carry one Target. At each step, the Target will 
be delivered to the device; propagation will be 

done on device, and the resulting walkers are 

returned to host. 

We anticipate improved efficiency in AFDMC through a restructuring of object 
data structures and the use of a OMP Target to propagate stacks of walkers. 

References Acknowledgments 
H. Nam, S. Gandolfi & J.Carlson personal communication Thanks to Hai Ah Nam, Stefano Gandolfi, Bob Robey, Kris Garrett, Joe Schoonover, and Jenniffer Estrada 
TALENT summer school: http://fribtheoryalliance.org/TALENT/ for their guidance and limitless patience. Thanks to the Information Science and Technology Institute, 
Pictures: http://rarfaxp.riken.go.jp/~gibelin/Nuchart National Security Education Center, and Los Alamos National Laboratory administration. 
https://en.wikipedia.org/wiki/Beta_decay This research used resources of the National Energy Research Scientific Computing Center, a DOE Office 
Sodani, Avinash. Knights Landing (KNL): 2nd Generation Intel® Xeon PhiTM Processor. 

of Science User Facility supported by the Office of Science of the U.S. Department of Energy under https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Pr 
ocessors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf Contract No. DE-AC02-05CH11231. This work was carried out under the auspices of the National 

Nuclear Security Administration of the US Department of Energy, supported by Contract No. 
DE-AC52-06NA25396 

http://fribtheoryalliance.org/TALENT/
http://rarfaxp.riken.go.jp/~gibelin/Nuchart/
https://en.wikipedia.org/wiki/Beta_decay
https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf



