
Interoperability Across GPU Languages and Platforms 

Abstract 
As researchers look towards exascale computing for large scientifc applications, the 
portability and composability of GPU parallelism becomes a vital endeavor. CUDA 
and OpenCL are specialized, low-level programming of GPU hardware, while Ope-
nACC and OpenMP4 are higher-level languages tailored for portability, as details are 
left to the compiler. How these methodologies perform together is the focus of this 
research. We assess current interoperability and the performance of a large-scale grid 
running the Game of Life on GPUs. 

Background 
Modern scientifc applications are composed of multi-physics packages and libraries 
that were developed independently and can use different programming languages and/or 
models. Joining these packages can lead performance issues on top of barriers to inter-
operability. When utilizing GPUs, interoperability is particularly problematic due to 
how GPU languages interact with the hardware. 

Currently there are two methods of programming GPUs in scientifc applications: 

Low(System)-Level 

• The management of memory on/off 
the device and division of work on 
GPU must be done by the user. 

• Pros: Kernels can be specialized to 
particular GPU features. 

• Cons: Code becomes diffcult to 
maintain across platforms. 

• Examples: CUDA and OpenCL 

High-Level 

• The user introduces directives around 
portions of code the compiler needs to 
parallelize on the GPU. 

• Pros: User friendly and designed for 
portability 

• Cons: Compiler isn’t always reliable. 

• Examples: OpenACC and OpenMP4.X 

Conway’s Game Of Life 
Conway’s Game Of Life1,2 uses an 8-point stencil, which is a common motif among 
physics algorithms, to generate the next iteration. To test interoperability among GPU 
languages, packages exchange buffers on the GPU and apply the rules of the game. 

Game of Life Rules: 

1. Under-population: Any live cell with less than 2 live neighbors dies 

2. Longevity: Any live cell with 2 or 3 live neighbors lives on 

3. Over-population: Any live cell with >3 live neighbors dies 

4. Reproduction: Any dead cell with 3 live neighbors becomes alive 

Priscilla Kelly1,2 

Robert Robey2 (Advisor) 
1San Diego State University, San Diego, CA 92182 

2Los Alamos National Laboratory, Los Alamos, NM 87545 

Interoperability Results 
Interoperability between GPU languages is defned as the ability for each language to affect 
data on the GPU in an alternating pattern only by the use of its buffer. As shown in Figure 2, 
grids are allocated on the GPU and the package will apply the rules for 10 generations. 

Figure 2: Each loop in the fgure is what the package will enact on the CPU and GPU 

As Nvidia created CUDA and helped develop OpenACC, these two languages are interoper-
able using a PGI compiler version greater than 12.6. To test this, two packages were written 
in C, one in CUDA and OpenACC, which apply the rules. Interoperability is also valid for 
Fortan with CUDA+OpenACC3 . 

Figure 3: This is our current interoperability among the four major GPU languages 

Figure 4: Lines of serial code versus total 
run time for 6.4x105 elements 

Performance Results 
The timings were run on two types of GPUs: Nvidia’s Tesla K40m (on Intel Xeon 
E5-2660 @ 2.20 GHz processor) and Tesla M2090 (Intel Xeon E5-2670 @ 2.60 GHz). 
The fgures below show that CUDA+OpenACC, when CUDA and OpenACC alternate 
iterations on the GPU, there is no added expense to runtime. 

(a) On node (b) Across nodes 

Figure 5: These are the runtime vs. number of elements results for Tesla K40m 

(a) On node (b) Across nodes 

Figure 6: These are the runtime vs. number of elements results for Tesla M2090 

Conclusion 
With large multi-physics codes, inter-language operability between physics packages, 
such as ocean and atmospheric models, is necessary to model real-world problems. 
While the conclusions presented here show that there is a signifcant beneft of moving 
to a lower-level language such as CUDA, there is some beneft to including packages 
where only OpenACC present. 

Future Directions: Incorporating OpenGl to pass buffers between CUDA and OpenCL. 
Use Unifed Memory Access (UVA) for multiple MPI ranks to interact with the GPU, 
and among GPUs, for better performance. 

References1 https://www.olcf.ornl.gov/tutorials/ 
2 Larkin, Jeff, OpenACC Interoperability Tricks, PGI Insider (2013) 
3Gardner, Martin, Scientifc American 223, 120–123. (1970) 

Acknowledgments 
The authors thank Jeff Larkin, Software Engineer for NVIDIA, for his insight. 
The authors also thank LANL Institutional Computing Resources to access to their clusters. 
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under 
Grant No. 1321850. Any opinions, fndings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily refect the views of the National Science Foundation. 

LA-UR-16-25442 

Productivity vs. Performance 
Figure 4 shows a comparison of devel-
opment productivity to performance. A 
fully integrated CUDA version of the test 
code is 27 times faster than pure Ope-
nACC, but requires 70 lines of code – 
18 of which are just to generate point-
ers. 

This only applies to the serial case. For the 
parallel case, there is additional code required 
to put and pull halo values for MPI. 

(a) Beacon (Period 2) (b) Clock 2 (Period 4) (c) Random Seed 

Figure 1: Possible starting patterns for the Game of Life 

A random seed, such as Fig. 1, was used to initialize the experiments as the grid 
scaled from 102 to 106 elements. 

https://www.olcf.ornl.gov/tutorials

