
You CUDA Had It All: Object Oriented Fortran and Porting to GPUs 
Abstract 

We demonstrate performance metrics of an Object Oriented Fortran code with GPU acceleration 
enabled through NVIDIA/PGI’s CUDA on different GPU architectures. PGI’s support of Obejct 
Oriented Fortran could enable a wider range of scientifc problems to be accessible on fewer resources 
by leveraging the power of a graphics card. As an example, spectral element methods have been shown 
to be arithmetically intensive, suggesting signifcant speedup can result from parallelization on GPUs. 
An open source Object Oriented Fortran spectral element library, SELF, is parallelized using CUDA 
and OpenMP. Code performance is examined using a Tesla M2090 (Fermi), GeForce GTX Titan X 
(Maxwell), Tesla K20, and Tesla K40 (Kepler) with the cuBLAS library and different code restructuring 
to play to the strengths of GPUs. 

What is SELF? 

– Spectral Element Libraries in Fortran (SELF) is a collection of tools for implementing continuous and 
discontinuous Galerkin spectral element methods in 2-D and 3-D. 

Figure 2: The pressure feld associated with a 
topographic wave mode that is extracted using the 
SELF-CGSEM libraries. Topographic waves help 
explain ocean dynamics on continental margins and 
may help explain processes like the Gulf Stream 
separation (Stern, 1998) 

Figure 1: SELF-Shallow water solver 
demonstrating dipole propagation 

Figure 4: Illustration that the spectral element 
Figure 3: Shallow Water Visualization method can result in many dense matrix-matrix 

operations. 

Spectral Elements 

– The global physical domain is decomposed into ”spectral elements”. Within each spectral element, 
functions are approximated by polynomial interpolants of arbitrary order. 

– By mapping each element from physical space to a reference computational space, the algorithm can 
be written to exploit SIMD parallelism. 

–Through interpolation formulas, derivative operations (divergence, gradient, curl) are expressed within 
each element as matrix-matrix products. 

–The frst matrix is a ”derivative-matrix” and is the same for each element. The second matrix typically 
involves combinations of the PDE solution and metric terms; hence, the data for the second matrix in 
the product varies with each element. 

– 2-D problems typically require between 50MB and 100MB during a simulation for total memory 
usage, and 3-D problems are expected to tackle systems with O(106 − 108) degrees of freedom, giving 
memory requirements between 500 MB and 1GB. 

– The small memory footprints and high algorithmic intensity make SELF an ideal candidate for porting 
to GPUs. 

Jenniffer Estrada§∗ Mentors: Joseph Schoonover∗, Bob Robey∗ 

§Youngstown State University ∗Los Alamos National Laboratory 

OpenMP, OpenACC and CUDA 

– OpenACC has very similar constructs to OpenMP and can 
be added to codes that already have OpenMP threads. 

– CUDA and OpenACC can take advantage of Unifed 
Memory Management, which has the CPU and GPU seeing 
the same memory with the use of pointers. 

Limitations 

– Data movement is costly (start-up cost and cost per byte), 
so the aim is to move the data infrequently. PCI bus is great 
as an I/O bus, but terrible as a memory bus. Ideally, minimize 
frequency and volume, and increase the regularity of the data (contiguous data). 

– Small cache, but latency insensitive. 

– Complex data structures are not easily ported and have limited support with CUDA or OpenACC, but 
Unifed Memory Management makes this easier to handle. 

Methodology 

– Spectral element methods have been shown to be arithmetically intensive, and can greatly beneft from 
parallelization on a GPU (Abdi, 2016 (NUMA GPU Implementation)). 

– Running the code under Allinea-MAP profler and generating a callgraph with Valgrind’s Cachegrind, 
it was shown that the most time consumed was during several matrix matrix multiplication operations, 
with MappedTimeDerivative subroutine taking the longest with respect to the total execution time. 

– The scaling of the matrix-matrix multiplication on the CPU sees a linear increase in wall time, 
compared to the GPU wall time logarithmically increasing with dimensionality. 

Figure 5: Call Graph of SELF 

Figure 6: Serial (Fortran90 compiled with PGI on 
Eight-Core Intel Xeon model E5-2670 @ 2.6 GHz) 
vs GPU (CUDA Fortran compiled with PGI on Tesla 
M2090) parallelized matrix multiplication 

Algorithm Optimizations 

– The original code calculated several matrix 
multiplications using small square matrices 

– Due to the high cost of moving data to and from 
the GPU, the small matrices are concatenated 
together to be sent to the GPU and do the 
multiplication, and then separated out after being 
returned. 

– CUDA C and the double precision matrix-matrix 
multiplication routine from the CuBLAS library is 
used. 

– To reduce the data transfers, memory is allocated 
once on the GPU, and all static variables are passed 
once. The fux divergence matrix is the only data 
changing and being copied with every time step. 

– Porting greater portions of SELF is necessary for 
signifcant performance improvements, which is feasible with OpenACC and CUDA. 

LA-UR-16-25634 

Results 
CUDA 

– There is a slight speedup in performance with the Tesla M2090, which might be due to the infuence 
of the underlying CPU and bus, compared to the Darwin nodes. On the Kepler architecture there is no 
difference on the K40 and slower performance on the K20. There is a 1.5x speedup with the Titan X 
using Unifed Memory management with CUDA C and the cuBLAS library (NVCC compiler) 
cross-compiled with Fortran (PGI compiler) compared to the serial Fortran version. There is a noticeable 
positive effect with using Unifed Memory Management with CUDA. 

– Varying the polynomial degree of of the shallow water equations, causing greater matrix sizes 
demonstrates that there is a theoretical performance improvement with larger problems on the GPU. 

Conclusion 
– The advantage of using GPUs for computational problems that lend themselves to high arithmetic 
intensity and parallelization is evident, but porting FORTRAN codes using newer standards using Nvidia’s 
CUDA programming language is not currently feasible without massive re-writes and a need for writing 
specifc kernels to accomplish handling the derived types on the GPU more effciently, whereas 
OpenACC requires less of an effort to port existing FORTRAN codes to GPUs using compiler directives, 
but memory management might not be optimal due to being left completely up to the compiler. 

– Utilizing and optimizing GPU parallelization and heterogeneous platforms in physics applications is 
numerically feasible on unstructured meshes, and offers new avenues for the future of computational 
sciences as we approach the age of exa-scale high performance computing. 

– Application submitted to ORNLHack, a 5 day GPU Hackathon at Oak Ridge in October, to 
fnish implementation of GPU acceleration. 

References and Acknowledgements 
M.E. Stern, 1998, Separation of a density current from the bottom of a continental shelf, J. Phys. Oceanogr., 

28, 2040–2049 
For 3D NUMA GPU implementation, see: 
Abdi et al. GPU Accelerated Spectral Element Methods: 3D Euler equations. Naval Post Graduate 
School, 2016. 
For more information on SELF and the Spectral Element Methods code, see: 
https://github.com/schoonovernumerics/SELF 
Special thanks to Jeff Larkin, NVIDIA 

https://github.com/schoonovernumerics/SELF



