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Generative Models 

•  Two approaches in machine learning:   
– Discriminative: Learn P(y|x) 
– Generative: Learn P(y,x)  
 

•  Discriminative models are easier to train, 
but generative models are more powerful 
because in some sense it “understands” 
the world better.  
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Boltzmann Machines: A Generative 
Model   
•  Energy based model. Assign a scalar energy value to 

configurations of interest 
•  Associate lower energy with plausible configurations 
•  Probability given by 

•  Consists of visible units (data) and hidden units 
(capture dependencies between data) 

     General Boltzmann machines have  
     arbitrary connectivity. Hard to train.  
    

  

P (x) =
e

(�E(x))

Z
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Restricted Boltzmann Machines 

•  Restrict connections to occur only between 
pairs of visible and hidden units. No 
connections among visible units or hidden 
units. 

•  h’s are independent given v and v’s are 
independent given h (markov property) 
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Restricted Boltzmann Machines 

•  Energy given by  

•  Conditional independence implies: 

•  Once we know the parameters (b,c,W) 
generating data is easy 

E(v, h) = �b0v � c0h� h0Wv

p(h|v) =
Y

i

p(hi|v)

p(v|h) =
Y

j

p(vj |h)
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Learning Parameters: RBM Training 

•  Learn parameters that maximize log-
likelihood of data. Assuming data 
independence, we have  

•  The gradient is given by 

 

 

arg max

(w,b,c)
`(w, b, c) =

nX

t=1

logP (vt)

r✓`(✓) =
nX

t=1

Ep(h|v)
⇥
r✓(�E(vt, h)

⇤

� nEp(v,h)(r✓(�E(vt, h))
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RBM Training   

r✓`(✓) =
nX

t=1

Ep(h|v)
⇥
r✓(�E(vt, h)

⇤

� nEp(v,h)(r✓(�E(vt, h))

•  Gradient depends on joint distribution 

•  Intractable since it involves the partition function Z 

•  To avoid this, use Gibb’s sampling to sample from 
joint (Boltzmann distribution). Involves running a 
Markov chain to convergence (Markov Chain Monte 
Carlo or MCMC) 
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Practical Ways to Train RBM 

•  Instead of running MCMC to convergence, 
run it for just a few (k) steps. Sample from 
this distribution (Contrastive Divergence) 

•  In practice, k (number of steps) is < 100. 
Some times even 1 step works well ! 
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D-Wave as a Boltzmann Sampler 

•  D-Wave is a physical Boltzmann machine 
 
•  In theory, should give samples from a 

Boltzmann distribution (parameterized by 
some effective temperature) after annealing 

 
•  Approach: Instead of Gibbs’s sampling, map 

RBM onto D-Wave and sample from solution 
states 
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Mapping RBM onto the D-Wave  

•  RBM’s are full bipartite graphs. D-Wave 
has sparse connectivity. 

•  Using logical qubits, can implement up to 
48x48 bipartite graph. Lots of qubits lost 

•  For this work, no qubit chaining. Map each 
pixel of the training image directly onto a 
qubit 
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Chimera Restricted RBM 

Same embedding as in Benedetti et al 
(2015) and Doulin et al (2014) 
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Mapping binary RBM to Ising Model 

•  RBM’s are binary {0,1} units.  
•  To map this to Ising  model, where units are 

in {+1,-1} we use the following transformation 
described in Domoulin (2014) 

 
W 0 =

W

4

b0i =
1

2
bi +

1

4

X

j

Wij

c0i =
1

2
ci +

1

4

X

j

Wji
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Experiments 

•  Basic Outline (classical side): 
–  Initialize visible units and hidden  units 
–  Clamp visible units to a training sample 
–  Run few steps of contrastive divergence for gradient 
–  Update parameters 
–  Run till convergence  
 

•  On the D-Wave, same process except we do not 
run contrastive divergence, but sample from 
solution states 
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Data 

•  MNIST (handwritten 
digits 0-9) 

•  Train on 1000 digits and 
learn features.  

•  And then see if the 
model can generate its 
own representations. 
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D-Wave Effective Temperature, Parameter 
Noise etc 

•  D-Wave effective temperature is different 
from physical temperature. Estimate this 
via sampling and then find a best fit  

•  Did not do any corrections for weight and 
bias noise. 

•  Effective temperature also fluctuates 
during training (Benedetti et al 2015). Did 
not correct for this. 
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Experiments:  
Contrastive Divergence (CD) 1 Step  

Filters learned 
after epoch 1 

Generated Images Filters learned 
after epoch 15 
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After 50 Steps of CD 

Filters 

Generated Images 
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After 100 Steps of CD 

•  CD-100 

Filters 

Generated Images 
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D-Wave (Experiment 1) 

Filters learnt are sparse due to  
sparse connectivity graph 

Generated images are 
noisy and largely 
indistinguishable from 
one another 
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D-Wave  (Experiment 2) 
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D-Wave (Experiment 3) 
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D-Wave Observations 

•  Effective temperature and parameter noise 
affect modeling 

•  However, limited connectivity is a  much 
bigger problem 
– RBM’s are robust to limited connections. But 

the D-Wave has less than 1% of connections 
of  a complete bipartite graph.  

– Qubit chaining can overcomes connectivity 
issues, but then image has to be significantly 
down-sampled. 
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