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Introduction 

•  Motivated by graph-based methods for quantum molecular dynamics 
(QMD) simulations  

•  Explored graph partitioning/clustering methods and implementations 
that run on the D-Wave 
– k-Concurrent graph partitioning into equal parts 
– k-Concurrent community detection using the modularity metric 
–  Iterative multi-level graph partitioning with D-Wave refinement 

•  Used sapi and hybrid classical-quantum qbsolv software tools 
•  Demonstrated “proof of principle” results on example graphs and 

material electronic structure graphs 
•  Results are shown to equal or out-perform current “state of the art” 

methods 

Graph partitioning/clustering implementations on the D-Wave. 
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Motivation 

•  Next Generation Quantum Molecular Dynamics LDRD-DR (PI:AMN Niklasson) 
•  Quantum-based models capture the making and breaking of covalent bonds, charge 

transfer between species of differing electronegativities, and long-range electrostatic 
interactions - reactions 

•  Graph-based methods for quantum molecular dynamics (QMD) simulations 
A. M. N. Niklasson et al, Graph-based linear scaling electronic structure theory, J. Chem. Phys. 144, 234101 (2016). 

•  Density matrix generated each timestep from many small sub-matrices (or sub-graphs) 
•  Shown to be equivalent to traditional methods (ex. diagonalization) 
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Quantum Annealing on the D-Wave 2X System 

•  Ising model formulation used for small graphs that are 
directly embeddable in the Chimera graph using sapi 

–  Minimizes the objective function:              O(h,J,s) = Σhisi + ΣJijsisj  

•  Larger graphs are formulated as QUBOs for hybrid classical 
quantum qbsolv - 0/1 valued variables 

–  Minimizing the objective function:             O(Q,x)= ΣQiixi + Σqijxixj 

•  Reduced qubit/coupler footprint achieved by thresholding and 
graph complement 

•  D-Wave 2X Architecture 
–  Fixed sparse graph G = (V,E) called the Chimera graph  
–  1095 qubits, 3061 couplers, with sparse bipartite connectivity  
–  Chimera graph consists of a 12 x 12 array of 4 x 4 bipartite unit cells  
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•  Applications: 

– Graph-based QMD simulations - Used as initial solution for core-halo partitioning 
– Physical network design 
– VLSI design 
– Telephone network design (original application with algorithm due to Kernighan) 
– Load balancing - minimize total communication between processors 
– Sparse matrix-vector multiplication - Partition the rows of a matrix to minimize 

communication during matrix-vector multiplication 

Graph Partitioning - Description 

•  Definition: 
•  Given a graph G = (V, E) 

•  V  ~ nodes 
•  E  ~ edges (possibly weighted) 

•  Goal: Partition V into k equal parts minimizing the number of 
cut edges between parts 
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Graph Partitioning – Benchmarks and Random Graphs 

• Graphs partitioned: 
– Using sapi for small graphs (up to 45 vertices) 
– Using qbsolv for large graphs (> 45 vertices, up to 1000s) 

• Results comparison: minimize number of cut edges between parts 
– Quality 

•  METIS 
•  KaHIP (winner 10th DIMACS challenge) 
•  Best known solution 

– Data   
•  Walshaw benchmark archive (http://chriswalshaw.co.uk/partition/) 
•  Random graph models (from NetworkX), e. g. Erdos-Renyi, PowerLaw graphs 
•  Molecule electronic structure graphs from QMD simulations 

• Comparable to existing methods and sometimes better! 
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Graph 2-Partitioning Formulation 

•  Exact Formulation 
– min xTLx, such that Σ xi = n/2, xi in {0,1} 

•  QUBO 
– min xT (βL + α1nxn) x – αn (Σxi) + αn2/4, xi in {0,1} 

•  where 
•  L ~ Laplacian matrix; 1nxn ~ all ones matrix 
•  α, β ~ penalty constants 

Partition k 

10,000 atoms  
Water system 

Density matrix (for QMD) 
METIS 
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Graph 2-Partitioning Results using qbsolv 

Graph n best METIS KaHIP qbsolv 

add20 2395 596 723 760 647 

data 2851 189 225 221 191 

3elt 4720 90 91* 92 90 

bcsstk33 8738 10171 10244* 10175 10171 

*: not 0% imbalance 

 Walshaw GP benchmark graphs: 
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k-Concurrent Graph Partitioning – Multiple parts in parallel 

• Partition into k parts in 
parallel 

• Uses super-node concept 
• Unary embedding 
•  k logical qubits per vertex 
• New formulation requires a 

kn x kn QUBO 
• Results in 1 of k qubits set 

on for each vertex 
• Similar to graph coloring 

problem 
• Useful for graph partitioning 

and community detection 
Super-node Concept 
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Graph k-Partitioning Formulations 

•  QUBO Formulation 1 – Proof of Principle 
– Combines super-node concept with the 2-partitioning formulation and  constraints on 

balanced part sizes and each node in 1 of k parts 
– Penalty constants: α (balancing), β  (minimize cut edges)  
– Requires tuning of node weights and and coupler strengths for super-node 
– Resulting parts not always well-balanced 

•  QUBO Formulation 2 – (k-1)n x (k-1)n QUBO 
– Combines super-node, balancing constraints on part sizes, and constraint on each node 

being in 1 of k-1 parts 
– Penalty constants: α (balancing), β (minimize cut edges), γ (each node in 1 part) 
– Results not always balanced,  k-1 balanced parts and large kth part 

•  QUBO Formulation 3 – kn x kn QUBO 
– Combines super-node with explicitly enforcing balancing constraints on part sizes, and 

constraint on each node being in 1 of k parts 
– Penalty constants, : α , β, γ 
– Results in balanced parts 
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k-Concurrent Graph Partitioning – Directly on D-Wave 

•  Dense random graphs with 
ρ=0.9 (from NetworkX) 

•  Using sapi for embedding 
and solving 

•  Limited to ~45 node graphs 
•  A 15-node graph into 4 

parts and 20-node graph 
into 3 parts use 900+ qubits 

•  Results comparable for 
sapi, METIS, and qbsolv 

•  Results using sapi are 
typically equal to qbsolv 

n k sapi METIS qbsolv 

10 2 
3 
4 

19 
29 
32 

19 
29 
33 

19 
29 
32 

15 2 
3 
4 

45 
62 
70 

47 
62 
73  

45  
62 
70 

20 2 
3 

83 
120  

83 
122 

83 
120 

27 2 156 164 156 

30 2 182 183 182 
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k-Concurrent Graph Partitioning – Large Random 
Graphs 

• Random graphs with ρ=0.9 
(from NetworkX) 

• Using qbsolv for large graphs 
• Penalty constants α = 1000, β 

= 1, γ  = 5000 
• Produces kn x kn QUBO 
• Results in equal sized parts 
•  Typically equal or better than 

METIS 

n k METIS qbsolv 

250 
 

2 
4 
8 

16 

13691 
20885 
24384 
26224 

13600 
20687 
24459 
26176 

500 2 
4 
8 

16 

55333 
83175 
98073 

105061 

54999 
83055 
97695 

105057 

1000 2 
4 
8 

16 

221826 
334631 
392018 
421327 

221420 
334301 
392258 
420970 
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k-Concurrent Graph Partitioning – Molecule electronic 
structure graphs 

Graph k METIS qbsolv 

Phenyl dendrimer 
    n = 730 

2 
4 
8 

16 
32 

706 
20876 
22371 
28666 
49732 

706 
2648 

15922 
26003 
49745       

Peptide 1aft 
    n = 384 

2 
4 
8 

16 
32 

12 
29 

121 
209 
495 

12 
20 
66 

180 
425 
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Graph Clustering using Community Detection 

• Using modularity or community network analysis for natural 
clusters 
– M. E. J. Newman, Modularity and community structure in networks, 2006, 

PNAS, vol. 103, no. 23, 8577-8582. 
•  For example, identifying secondary structures in proteins 

– I Rivalta, MM Sultan, N-S Lee, GA Manley, JP Loria, VS Batista, Allosteric 
pathways in imidazole glycerol phosphate synthase, PNAS, vol. 109, no. 
22, pp. 1428-1436 (2011). 

• Maximize modularity 
• Use of thresholding to reduce edges – qubits/couplers  
•  Fits naturally on D-Wave machine, no reformulation required 
• New k-Concurrent community detection formulation 
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2-Clustering Community Detection with Thresholding 

•  Using modularity or community 
detection for natural clusters 

•  Compare for 2 clusters 
•  Effect of thresholds on weights 
•  Reduction in qubits/couplers 

Threshold # edges modularity 
0 561 0.371794871795 

0.02 544 0.371794871795 
0.05 411 0.371466140697 
0.07 300 0.371466140697 
0.08 244 0.271449704142 
0.1 227 0.271449704142 
0.11 212 0.255095332018 
0.12 194 0.255095332018 
0.13 169 0 

Karate club graph (n = 34) using qbsolv 
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2-Clustering for Identifying Communities in Bio-Systems  

•  IGPS is an enzyme in bacteria consisting of 
2 molecules (454 residues) 

• Applying community detection using qbsolv 
resulted in communities corresponding to 
IGPS’s 2 molecules 

•  The modularity matrix is calculated from a 
correlation matrix based on an MD 
simulation 

 

IGPS Protein Structure 

Correlation matrix (for CNA) Girvan-Newman 

Modularity 
Matrix 
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k-Concurrent Community Detection 

•  Determine at most k communities, 
maximizing modularity in parallel 

•  Similar formulation as k-concurrent 
graph partitioning 
– kn x kn QUBO 
– Constraint: each node in only 1 

community 
– Tunable penalty constants, α,  γ 

•  Using qbsolv on D-Wave 
•  Matches best known karate club 

graph results for communities and 
modularity 

•  Next, apply to more bio-systems 
and social networks 

Karate club graph (N = 34)  
4 communities,  modularity = 0.419789 
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Multi-level Graph Partitioning with D-Wave Refinement 

•  General solution strategy 
consisting of 3 stages 
– Coarsening 
–  Initial solution – on D-Wave 
– UnCoarsening – refinement on D-Wave 

•  Successfully used in graph 
partitioning solvers 
– METIS, KaHIP, and more 

•  Explore KaHIP coarsening with  
   D-Wave (sapi, qbsolv) refinement 
•  Develop prototype for specialized 

classical-quantum graph 
partitioning software 
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Multi-level Graph Partitioning – Early results  

•  Test graph from SuiteSparse 
Matrix Collection 
– Delaunay_n15, 32,768 vertices 

•  Multi-level using KaHIP/qbsolv 
runs faster than qbsolv alone 

•  Results comparable to METIS 
and KaHIP 

•  Currently using 2-partitioning 
formulation for refinement 

•  Next, try k-concurrent 
partitioning and community 
detection 

•  More testing required 
 

Method Timing Quality 
METIS seconds 359  

(16389, 16379) 
KaHIP seconds 364 
qbsolv hours 2888 

 (16384, 16384) 
Multi-level 
KaHIP/
qbsolv 

minutes 460 
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Multi-level Graph Partitioning – Varying D-Wave 
embeddable graph size 

•  Partition h vertices at 
each iteration 

•  Walshaw benchmark 
graph 
– add20 
– 2395 vertices, 7462 edges 

•  Example runs of multi-
level graph partitioning 
for add20 using 
different D-Wave 
maximum embeddable 
graph sizes (h x h)  

•  Larger h results in less 
iterations required 

0 200 400 600 800 1000

number iterations

0

1000

2000

3000

4000

5000

c
u

t

h=10

h=20

h=40

h=80

METIS

add20
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Next Steps 

• Publish graph partitioning and community detection results  
Graph Partitioning using Quantum Annealing on the d-Wave System. 
H Ushijima-Mwesigwa, CFA Negre, SM Mniszewski 

• Apply k-concurrent graph partitioning to more examples 
• Apply k-concurrent community detection to more bio-systems 

and social networks 
• More development and testing for multi-level approach 
• Explore reduced qubit approaches for current formulations 
• Make code available 
• Collaborate on relevant graph structure problems     
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The End 

Thank You! 
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