Structural Health Monitoring Tools
(SHMTools)

Example Usages

LANL/UCSD Engineering Institute

LA-CC-14-046
LA-UR-14-21093
(© Copyright 2010, Triad National Security, LLC
All rights reserved.

April 1, 2019

Example Usages

Contents

= Data Set Descriptions

= [ntegrating Examples

= Modal Analysis

= Condition-Based Monitoring
= Active Sensing

= OQutlier Detection

Data Set Descriptions

Experimental Procedure Description of the 3-Story Structure

Experimental Procedure Description of the Condition-Based Monitoring Example Data

Integrating Examples

Example using DAQ plus AR Parameters plus Mahalanobis Distance

Outlier Detection based on a Chi-square Distribution for the Undamaged Condition
Damage Location using AR Parameters from an Array of Sensors

Damage Location using ARX Parameters from an Array of Sensors

Appropriate Autoregressive Model Order

Modal Analysis

Optimal Sensor Placement Using Modal Analysis Based Approaches

Data Normalization for Outlier Detection using Modal Properties

Condition-Based Monitoring

Ball Bearing Fault Analysis

Gearbox Fault Analysis

Active Sensing

Sensor Diagnostics
National Instruments Ultrasonic Active Sensing DAQ
Active Sensing Feature Extraction Example

Outlier Detection

Assembling a Custom Detector

How to Use the Default Detectors

Parametric Detectors:

Outlier Detection based on the Nonlinear Principal Component Analysis

Outlier Detection based on the Factor Analysis Model

Outlier Detection based on Principal Component Analysis

Outlier Detection based on the Singular Value Decomposition

Outlier Detection based on the Mahalanobis Distance

Semi-Parametric Detectors:

Direct Use of Semi-Parametric Routines

Non-Parametric Detectors:

Direct Use of Non-Parametric Routines

Fast Metric Kernel Density Estimation

Published with MATLAB® R2013a

file:///C|/Users/211074/Documents/SHMToolsDoc/exampleDirectUseofSemiParametric.html
http://www.mathworks.com/products/matlab/

Base-Excited 3-Story Structure Data Sets

Contents
= Structure Description
= Data Acquisition System
= Data Sets Description
= File Descriptions

= Information

Structure Description

The three-story building structure shown with its basic dimensions in Figure 1 is used as a damage detection test bed structure.

C D A B
Accel]
Srd Floor) coelerometer (Channel 3)
1] TH [l =L
i i T 4t o) i v
Column
7.7 F&umper " 3 3 1
- Ll Accelerameter (Channed 4)
wif | 2nd Floor =
I =y | . " o = e oo
| | £] ETE]
17.7 1 1 {2 2+ T
Acceleromeler (Channel 3)
1st Floor
I ! | [= e
il 1 0 [=5=] . La
Shaker
-
77 || | 3 I 1 u -
Il Acceleromater {Channel 2)
Base .
I -+ 1. _ ~ [L £ o A
- S— . . - - I £ . N — T
- IS 4 1 e
z S K z
F Load cedl n = 1
i 17.45 {Channel 1) 4y - I I 1 i
!
i - T = I Ty A
¥ Baseplale X
Figure 1

The structure consists of aluminum columns and plates assembled using bolted joints. The structure can slide on rails that allow movement
in the x-direction only. At each floor, four aluminum columns (17.7x2.5x0.6 cm) are connected to the top and bottom aluminum plates
(30.5x30.5x2.5 cm) forming a (essentially) four degree-of-freedom system. Additionally, a center column (15.0x2.5x2.5 cm) is suspended
from the top floor. This column can be used to simulate damage by inducing nonlinear behavior when it contacts a bumper mounted on the
next floor. The position of the bumper can be adjusted to vary the extent of impacting that occurs at a particular excitation level. In the
context of SHM, this source of damage is intended to simulate fatigue cracks that can open and close or loose connections that can rattle
under dynamic loading.

Data Acquisition System

An electrodynamic shaker provides a lateral excitation to the base floor along the centerline of the structure. The structure and shaker are
mounted together on an aluminum baseplate (76.2x30.5x2.5 cm) and the entire system rests on rigid foam. The foam is intended to
minimize extraneous sources of unmeasured excitation from being introduced through the base of the system. A load cell (Channel 1) with a
nominal sensitivity of 2.2 mV/N was attached at the end of a stinger to measure the input force from the shaker to the structure. Four
accelerometers (Channel 2-5) with nominal sensitivities of 1000 mV/g were attached at the centerline of each floor on the opposite side
from the excitation source to measure the system response. Because the accelerometers are mounted at the centerline of each floor, they
are insensitive to torsional modes of the structure. In addition, the shaker location and the linear bearings minimize the torsional excitation
of the system.

A National Instruments PXI data acquisition system was used to collect and process the data. Analog output waveforms were generated
using a PXI-4461 DAQ module and the response signals from the five sensors were acquired using a PXI1-4472B DAQ module. ICP
conditioning to the five sensor channels was provided by a PCB 482A16 signal conditioner. The analog output channel of the system, which
provides the drive signal to the shaker, is input to a Techron 5530 Power Supply Amplifier that drives the shaker. The analog sensor signals
were digitized at a rate of 2560 Hz and acquired in blocks of 65536 points. However, then the data were downsampled into 8192 data
points at 3.125 ms intervals corresponding to a sampling frequency of 320 Hz. These sampling parameters yield time series 25.6 s in
duration. A band-limited random excitation in the range of 20-150 Hz was used to excite the structure. This excitation signal was chosen in
order to avoid the rigid body modes of the structure that are present below 20 Hz. The excitation level was set to 2.6 V RMS in the National
Instruments system.

Data Sets Description

The structural state conditions can be categorized into four main groups, as shown in Table I. Note that for each state condition where
performed 50 tests, yielding 50 time histories per channel for each state condition.

Table |
Label State condition Description
State#1 = Undamaged Baseline condition

State#2 Undamaged Mass = 1.2 kg at the base

State#3 Undamaged Mass = 1.2 kg on the 1st floor

State#4 Undamaged 87.5% stiffness reduction in column 1BD

State#5 Undamaged 87.5% stiffness reduction in column 1AD and 1BD
State#6 Undamaged 87.5% stiffness reduction in column 2BD

State#7 Undamaged 87.5% stiffness reduction in column 2AD and 2BD
State#8 Undamaged 87.5% stiffness reduction in column 3BD

State#9 Undamaged 87.5% stiffness reduction in column 3AD and 3BD

State#10 Damaged Gap = 0.20 mm

State#11 Damaged Gap = 0.15 mm

State#12 Damaged Gap = 0.13 mm

State#13 Damaged Gap = 0.10 mm

State#14 Damaged Gap = 0.05 mm

State#15 Damaged Gap = 0.20 mm and mass = 1.2 kg at the base
State#16 Damaged Gap = 0.20 mm and mass = 1.2 kg on the 1st floor
State#17 Damaged Gap = 0.10 mm and mass = 1.2 kg on the 1st floor

The first group is the baseline condition. The baseline condition is the reference structural state and is labeled State#1 in Table I. The
bumper and the suspended column are included in the baseline condition, but the spacing between the bumper and the column was
maintained in such a way that there were no impacts during the excitation. The second group includes the states with simulated operational
and environmental variability. Such variability often manifests itself in changes in the stiffness or mass distribution of the structure, in order
to simulate such operational and environmental condition changes, tests were performed with different mass-loading and stiffness
conditions (State#2-9). The mass changes consisted of adding a 1.2 kg (approximately 19% of the total mass of each floor) to the first floor
and to the base, as shown in Figure 2 when the mass is at the base. The stiffness changes were introduced by reducing the stiffness of one

or more of the columns by 87.5%. This process was executed by replacing the corresponded column with one that had half the cross
sectional thickness in the direction of shaking.

15t Floor

Base

Figure 2

The third group includes the damaged state conditions; these were simulated by the introduction of nonlinearities into the structure using the
bumper and the suspended column with different gaps between them, as shown in Figure 3. The gap between the bumper and the
suspended column was varied (0.20, 0.15, 0.13, 0.10, and 0.05 mm) in order to introduce different levels of nonlinearity (State#10-14).

3rd Floor

LI o

_— Column
-~

Eum& er Gap

ﬁﬂP:] || 2nd Floor

Figure 3

Finally, to create more realistic conditions, the fourth group includes state conditions with the simulated damage in addition to the mass and
stiffness changes used to introduce simulated operational and environmental variation (State#15-17). The changes in mass and stiffness
are such that the variations in the first natural frequencies are in the range of +/- 5 Hz for the state conditions with operational and
environmental variations.

More details about the test structure as well as damaged scenarios can be found in Figueiredo et al. (2009).

File Descriptions

data3SS.mat - Each structural state condition is composed of 10 tests. The tests are stored in concatenated format. For instance,
dataset(1:8192,1:5,1:10) corresponds to the data sets from Channel 1-5 of State #1 and dataset(;,1:5,91:100) corresponds to the data sets
of State #10. Each time series has 8192 data points.

data3SS2009.mat - Each structural state condition is composed of 50 tests. Expands data3ss.mat. This dataset is available in the additional
datasets download.

Information

References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

http://institute.lanl.gov/ei/software-and-data/
Author: Eloi Figueiredo

Date Created: September 01, 2009

Published with MATLAB® R2013a

http://institute.lanl.gov/ei/software-and-data/
http://www.mathworks.com/products/matlab/

Conditioned-Based Monitoring Example Data Set for Rotating Machinery

Contents

= Structure Description

= Data Acquisition System
= Data Sets Description

= File Descriptions

= Information

Structure Description

The example CBM data was collected via the SpectraQuest. Inc. Magnum Machinery Fault Simulator. The fault simulator can produce many
faults but the damage states in the data below includes bearing and gearbox damage. The test bed consists of a main shaft driven by an
electric motor which has a single rotation tach signal that reads the main shaft rotation in these experiments. The main shaft was set up to
be supported by two ball bearings. The shaft is a 3/4 inch diameter steel shaft with a support length of 28.5 inches, center to center
between bearings. Two aluminum masses were supported on the main shaft, one 8.5 inches to the right from the motor side bearing and
the other 6.5 inches from the belt drive side bearing. A belt drive was used to drive a gearbox (description below) via belt drive. The belt
drive consists of two double groove belt sheaves with a sheave ratio of ~1:3.71 where the smaller sheave was attached to the main shaft
and the larger sheave to the gearbox shaft. The belt span is 13 inches and the tension was kept near the recommended value of 3.7 Ibs. of
force for a deflection to span ratio of 1:64. A magnetic break applied a torsional force to the pinion shaft of the gear box of approximately
1.9 Ibs.-in.

Gearbox Data: Ratio: 1.5:1, Model: Hub City M2, Pitch Angle Gear: 56 degrees 19 minutes, Pitch Angle Pinion: 33 degrees 41 minutes,
Pressure Angle for Gear and Pinion: 20 degrees, Material: Forged Steel, Backlash Tolerance: 0.001-0.005 inches, Pitch Diameter Pinion:
1.125 inches, Pitch Diameter Gear: 1.6875 inches. Number of teeth (Pinion): 18 Number of Teeth Gear: 27, Pinion Bearing: NSK 6202 (1
Bearing), Gear Bearing: (2 Bearings)

Main Shaft Ball Bearing Data: Manufacturer: MB Mfg., Model: ER-12K, Number of Rolling Elements: 8, Rolling Element Diameter: 1.318,
Bearing Fault Frequencies are: Fundamental Train Frequency (Cage Speed): 3.048*Shaft Frequency Ballpass Frequency (Outer Race):
3.048*Shaft Frequency Ballpass Frequency (Inner Race: 4.95*Shaft Frequency Ball (Roller) Spin Frequency: 1.992*Shaft Frequency
Data Acquisition System

Channel 1: Tachyometer Channel 2: Accel. Mounted on Gearbox Channel 3: Accel. Mounted on Top of Bearing Housing Channel 4: Accel.
Mounted on Side of Bearing Housing

Data Sets Description

Each instance contains 5 seconds of data sampled at 2048 Hz from 4 channels. Shaft speed is nominally constant at ~1000 rpm.

State 1: Baseline condition 1: Tachometer located on main shaft. Ball bearings supporting main shaft in healthy condition. Gearbox driven
by belt drive. Gearbox in healthy condition.

State 2: Baseline condition 2: Tachometer located on main shaft. Ball bearings supporting main shaft in healthy condition. Gearbox driven
by belt drive. Gearbox in healthy condition.

State 3: Main Shaft Ball (Roller) Spin Fault: Tachometer located on main shaft. Ball bearings supporting main shaft & have roller element
fault. Gearbox in healthy condition.

State 4: Baseline condition 1: Tachometer located on main shaft. Fluid bearings supporting main shaft in healthy condition. Gearbox driven
by belt drive. Gearbox in healthy condition.

State 5: Baseline condition 2: Tachometer located on main shaft. Fluid bearings supporting main shaft in healthy condition. Gearbox driven
by belt drive. Gearbox in healthy condition.

State 6: Gear Box Worn tooth Fault: Tachometer located on main shaft. Fluid bearings supporting main shaft in healthy condition. Gearbox
driven by belt drive. Gearbox suffers from worn tooth damage.

File Descriptions

data_CBM - Each structural state condition is composed of 64 tests. The tests are stored in concatenated format. For instance,
dataset(1:10240,1,1:64) corresponds to the data sets from Channel 1 (tachyometer) of State #1.

Information

Author: Luke Robinson

Date Created: July 23, 2013

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

DAQ plus AR Parameters plus Mahalanobis Distance

Contents

= [ntroduction

= Assign Data Acquisition Setting

= START OF TRAINING

= Construct Excitation Waveforms

= Acquire Time Series Data

= Calculate Appropriate AR Model Order
= Extract AR Parameter Features

= Learn Mahalanobis Distance Model
= Determine Threshold

= END OF TRAINING

= START OF LIVE TESTING

= Set up Testing Process

= Acquire Time Series Data

= Extract AR Parameter Features

= Apply Mahalanobis Scoring

= Threshold the Score

= END OF LIVE TESTING

= Plot Detection Results

Introduction

This example demonstrates how to sequence together a full structural health monitoring process. The Los Alamos National Laboratory
Engineering Institute's 3-Story Test Structure is used as the test bed in conjunction with National Instruments data acquisition hardware.

The process is broken into two major stages: training and live testing. In the training, a set of data is acquired and processed in order to
learn a model of the undamaged system. In live testing, one at a time, small blocks of data are acquired, processed, and classified as either
"undamaged" or "damaged" based on the learned model and statistically derived thresholding.

The example starts by collecting a series of five second blocks of acceleration histories from the undamaged structure as it is being excited
with band-limited white noise. It then fits a linear autoregressive model to each of the histories. The AR model coefficients will then serve as
the feature vectors. The example then trains a Mahalanobis distance-based detector by learning the mean and covariance matrix of the
feature vectors from the undamaged structure. It then calculates a threshold based on a 99% confidence.

The example then runs several test cases one at a time with the structure in different undamaged and damaged states. For each case, the
example acquires a time series block, extracts the AR-based feature vector, calculates the Mahalanobis distance, and thresholds the
Mahalanobis distance to determine if the structural state is either damaged or undamaged.

Requires data_simDAQ.mat dataset if in simulation mode.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

SHMTools functions called:

bandLimWhiteNoise_shm exciteAndAquire_shm arModelOrder_shm arModel_shm learnMahalanobis_shm scoreMahalanobis_shm
plotDetectResults_shm

Author: Eric Flynn

Date Created: August 19, 2009

Flag if simulating DAQ with stored data

isSimulation=true;

if isSimulation
load("data_simDAQ.mat", "simTrainingData”, "simTestData");
end

Assign Data Acquisition Setting

Set up five channels on the National Instruments device, acquire at a sample rate of 320 Hz for a duration of 4096 samples.

adaptor="nidaq” ;
ailD="Dev5";
aiChans=0:4;
aolD="PXI1lslot2";
sampleRate=320;
aiNumSamples=1600;

START OF TRAINING

Construct Excitation Waveforms

Generate the arrays of time series data for the excitation signal. The signals will be blocks of band-limited white noise from 20 to 150 Hz.

runCount=50;
arraySize=[aiNumSamples, runCount];
cutoffs=[20 150]/sampleRate*2;
rms=2.6;

exciteWaveform=bandLimWhiteNoise_shm(arraySize,cutoffs,rms);

Acquire Time Series Data

Aquire the 50 sets of time series data to serve as the undamaged training sets.

if isSimulation
trainingData=simTrainingData;
else
trainingData=exciteAndAquire_shm(adaptor, ailD, aiChans, aolD, sampleRate, exciteWaveform,
aiNumSamples, runCount);
end

Plot some of the training time series data.

figure();
t=(0:aiNumSamples-1)/sampleRate;

plot(t,trainingbData(:,5,1));
title("Sample Time Series from Training Data®)

xlabel ("Seconds®); ylabel("Volts®);

Sample Time Series from Training Data
15 T T T T

Yolts

-15 : :
0 1 2 2 4 a
Seconds

Calculate Appropriate AR Model Order

Calculate an appropriate AR model order for reconstructing the time series using the Partial Autocorrelation Function Method.

data=trainingData(:,5,1);
method="PAF" ;

arOrder=arModelOrder_shm(data,method);

Extract AR Parameter Features

Extract the AR coefficients from channel five (top floor) of the acceleration time histories. These AR coefficients will serve as the feature

vector.

[arParametersTrain]=arModel_shm(trainingData(:,5, :),arOrder);

Plot the AR feature vectors from the training sets.

figure();

plot(arParametersTrain®,".-")

title("Training AR Feature Vectors")

xlabel (AR parameters®); ylabel("Amplitude®)
set(gca, "XTick",1:arOrder, "Xlim",[1 arOrder])

Training AR Feature Vectors
2 T T T T T T T T

=

1
=
[y |

Amplitude

1
1

AR parameters

Learn Mahalanobis Distance Model

Learn a model based on the Mahalanobis distance using the AR features from the training set.

[model]=learnMahalanobis_shm(arParametersTrain);

Determine Threshold

Determine Mahalanobis score threshold assuming AR feature vectors are Gaussian distributed. If the original feature vectors are multi-
dimensional Gaussian, then the distribution of the square of the Mahalanobis distance will be chi-squared with degrees of freedom equal to
the number of AR coefficients (model order).

dist="chi2";
dof=arOrder;
confidence=.99;

mThreshold = icdf(dist,confidence,dof);

END OF TRAINING
START OF LIVE TESTING

Set up Testing Process

Acquire and process test sets one at a time. The test will be run seven times with the structure in the following seven states: State 1,2,3:
Undamaged, State 4: One loose joint, State 5: Two loose joints, State 6: Three loose joints, State 7: Four loose joints. This looping mimics
the process an in-service SHM system might follow.

numTestCases=7;

runCount=1;

arraySize=[aiNumSamples, runCount];
testData=zeros(aiNumSamples,5,numTestCases);
arParametersTest=zeros(numTestCases,arOrder);
testScores=zeros(numTestCases,1);
damageState=zeros(numTestCases,1);

for i=1:numTestCases

caseName=["Case " num2str(i)];

Create excitation waveform

exciteWaveform=bandLimWhiteNoise_shm(arraySize,cutoffs,rms);

Acquire Time Series Data

if i1sSimulation
testData(:,:,i)=simTestData(:,:,i);
else
pause(15)
testData(:, :, i)=exciteAndAquire_shm(adaptor, ailD, aiChans, aolD, sampleRate,
exciteWaveform, aiNumSamples, runCount);
end

Extract AR Parameter Features

[arParametersTest(i, :)]=arModel_shm(testData(:,5,1),arOrder);

Apply Mahalanobis Scoring

The score is equal to the squared Mahalanobis distance from the training set

testScores(i)=scoreMahalanobis_shm(arParametersTest(i,:),model);

Threshold the Score

damageState(i)=-testScores(i)>mThreshold;
if damageState(i), s="Damaged®; else s="Undamaged®; end
fprintf(l, "Case %d: %s\n",i,S);

Case 1: Undamaged

Case 2: Undamaged

Case 3: Undamaged

Case 4: Damaged

Case 5: Damaged

Case 6: Damaged

Case 7: Damaged

end

END OF LIVE TESTING

Plot some of the time series data from the test sets

figure();

t=(0:aiNumSamples-1)/sampleRate;
plot(t,trainingData(:,5,1));

title("Sample Time Series from Testing Data”)
xlabel ("Seconds™); ylabel("Volts®);

Sample Time Seres from Testing Data

Wiolts

Seconds

Plot AR features from the test data. Note that by casual obeservation,
the feature vectors from the damaged cases don"t seem much different

than those from the undamaged.

figure();
plot(arParametersTest®,".-")

title("Testing AR Feature Vectors"®)

xlabel ("AR parameters®); ylabel("Amplitude®)

set(gca, "XTick" ,1l:arOrder, "XIim" ,[1 arOrder])
legend("Case 1","Case 2", "Case 3","Case 4°,"Case 5","Case 6", "Case 7%);

Testing AR Feature Vectors
2 T T T T T T T T

Amplitude

AR parameters

Plot Detection Results
Plot the Mahalanobis distance for each case on a bar graph along with the threshold and the detected state (undamaged/damaged).

scores=sqrt(-testScores);
threshold=sqgrt(mThreshold);
detectedStates=damageState;
stateNames={"Undamaged” , "Damaged”};
axesHandle=[];

plotScores_shm(scores, detectedStates, stateNames, threshold, false, false, axesHandle);

ylabel ("Mahalanobis Distance Squared®)

30

B rdamaged
I Damaged

25

20

15

10

Wahalanobis Distance Squared

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Outlier Detection based on Chi-Squared Distribution for Undamaged State

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling For Feature Classification
= Confidence Interval

= Hypothesis Test

Introduction

The goal of this example is to discriminate acceleration time histories from undamaged and damaged condition based on a Chi-square
distribution for the undamaged condition. Two different approaches are used for classification, namely, based on confidence intervals and
hypothesis test.

The autoregressive (AR) parameters are used as damage-sensitive features and a machine learning algorithm based on the Mahalanobis
distance is used to create damage indicators (DIs) invariant for feature vectors from the normal condition and that increase for feature
vectors from damaged conditions.

Data sets from Channel 5 of the base-excited three story structure are used in this example usage. More details about the data sets can be
found in 3-Story Data Sets.

Requires data3SS.mat dataset.
References:
SHMTools functions called:

ar Mbdel _shm
| ear nMahal anobi s_shm
scor eMahal anobi s_shm

Author: Eléi Figueiredo

Date: September 01, 2009

Load Raw Data

Load data set:
| oad(' dat a3SS. nat');
dat a=dat aset(:,5,:);
t=size(data, 1);

Plot one time history from the baseline (State#1) and damaged (State#10) conditions:

figure

plot(1:t,data(:,1,1),"'.-k")

hol d on

plot(t+1l:t*2,data(:,1,101),".-r")

title("Two Tine Histories (State 1 and 10) in Concatenated Format')
| egend(' Undamaged' , ' Damaged')

x| abel (' Cbservations')

yl abel (' Accel erations (g)')

set(gca, ' Xlim,[1 t*2])

Two Time Histories (State 1 and 10} in Concatenated Format

2 T T T T T T T T
—— lndamaged

—— Damaged

Accelerations (g)

_2 | | | | | | | |
2000 4000 6000 S000 10000 12000 14000 16000
Ohservations

Extraction of Damage-Sensitive Features

The AR(15) model parameters are extracted from the acceleration time histories.

AR model order:
ar Or der =15;
Estimation of the AR parameters:

[ar Par anet er s] =ar Mbdel _shn{ dat a, ar Or der) ;

Feature vectors from all the undamaged cases:

| earnData = splitFeatures_shn(arParaneters, states<10, [], []);

Feature vectors from all instances (undamaged and damaged):

scor eDat a=ar Par anet er s;

Plot test data:

figure

pl ot (1: ar Order, scorebData(10: 10: 90,:),"'.-k")
hol d on

pl ot (1: ar Order, scoreDat a(100: 10: 170,:),".-r")

title(["AR(' , nunRstr(arOrder),') Paraneters fromOne Tine History for each State Condition'])

x| abel (' AR Paraneters')

yl abel (" Anpl i tude')

set(gca, ' XTick',l:arOder, ' Xlim,[1 arOrder])

text(12,2.5, " Undanaged' , "' Color',"'k', "' EdgeColor',"'k', "' BackgroundColor','w)
text(12,2.0, ' Damaged', ' Color','r', "' EdgeColor','k', ' BackgroundColor'," 'w)

AR(1%) Parameters from One Time History for each State Condition
3 T T T T T T T T T T T T T

Undamaged

Damaged

Amplitude

|
1 2 3 4 a 8 7 g8 9 10 1
AR Parameters

1 1 1
1T 12 13 14 1%

Statistical Modeling For Feature Classification

First, each feature vector is reduced to one score (DI) by using the Mahalanonbis-based machine learning algorithm. Second, the Chi-
square distribution is used to model the DIs from undamaged condition. (Note that the parametric distribution of the damaged condition is

not used because it lacks precision.)

Run the Mahalanobis-based Machine Learning Algorithm:

[rodel] =l ear nMahal anobi s_shn{ | ear nDat a) ;

[DI] =scor eMahal anobi s_shn{ scor eDat a, nodel); DI =-Dl;

Flag and split all the instances into undanaged (0) and damaged (1):

st at eFl ag(1: 90) =0; stateFl ag(91: 170) =1,
x=DI (1: 90);

y=DI (91: 170) ;

n=l engt h(DI);

Define the Underlying Distribution of the Undamaged Condition

Histogram:

nbi ns=15;
h1l=(max(x) - m n(x))/nbi ns;
[n1, xout 1] =hi st (x, nbi ns);

Impose parameteric probability distribution:

dist="chi 2';

Estimate probability distribution function (PDF):

X = pdf (dist, x, arOrder);

Plot histogram along with superimposed idealized PDF:

figure

bar (xout 1, n1/ (h1*l engt h(x)), ' k')

title('H stogram al ong with Superinposed |dealized Chi-square PDF (Undamaged Condition)')
hol d on

plot(x, X, ' +b")

xl abel ("DI""s Anplitude')

yl abel (' Probability")

| egend(' Hi stograni, ' PDF'")

Histogram along with Superimposed |dealized Chi-square PDF (Undamaged Condition)

[:]12 I I I I
B Hictogram
+ PDF

0.1

0.03

0.06

Frobability

0.04

0.02

3] 10 15 20 25 20
Dil's Amplitude

Note: Irregularities in the original distribution (histogram) most likely due to chance, are ignored by the smoothed distribution. Accordingly,
any generalizations based on the smoothed distribution will tend to be more accurate than those based on the original distribution.

Estimate cumulative distribution function (CDF):

cdf x = cdf (dist, x, arOrder);

figure

pl ot (x, cdf x, " +b")

title('Chi-square CDF (Undanmaged Condition)')
xl abel ("DI""s Anplitude')

yl abel (' Probability"')

Chi-sguare CDF (Undamaged Condition)
1 T T T T

++

++
=+
09

T
+
+
|

0.3 +T -

=
|
+

Ty

Frobatility
i
L |
.
|

o
I~
="
1

L]

(]

—.H-_
Ty

0z

0.1 R .

|
3] 10 15 20 25 20
Dil's Amplitude

Confidence Interval

This section defines an upper threshold for feature classification based on information from the undamaged distribution. Note that feature
classification can be done using either hypothesis tests or confidence intervals. Hypothesis tests only indicate whether or not an effect is
present, whereas confidence intervals indicate the possible size of the effect.

Probability of false alarm or level of significance:

PFA=0. 05;

Threshold limit (or critical DI):

UCL = icdf(dist, (1-PFA), arCOder);

Plot DlIs along with the threshold:

figure

plot(1:90,DI(1:90),"'.k")

hol d on

pl ot (91: 170, DI (91: 170), "' .r")

title(' Danage Indicators for the Test Data')

x|l abel ({' State Condition','[Undanaged(1-450) and Damaged (451-850)]"'})
ylabel ("DI""'s Anplitude')

set(gca, ' XLim ,[1 length(Dl)])
| egend(' Undanmaged' , ' Danaged')

line(' XData',[0 length(Dl)]," ' YData' ,[UCL UCL], "' Color',"'b','LineWdth',1,'LineStyle',"

Damage Indicators for the Test Data
18[:][:][:] T T T T T T e T T

+ Undamaged
16000 + Damaged

*

14000 .

12000 -

10000 + .

g000 R =

Dl's Amplitude

G000 * .

4000 * +]

2000 " o 1
+
*::;

0 ' ' ' NN SIS VS
20 40 60 g0 100 120 140 160
State Condition
[Undamagedi1-450) and Damaged (45 1-850)]

Number of Type | and Type Il Error:

cl assState=zeros(1, | ength(Dl));
for i=1:1ength(D);

if DI(i)>UCL; classState(i)=1; end
end

nuner ror Typel =l engt h(fi nd(cl assState==1 & st at eFl ag==0));
nunkr ror Typel | =l engt h(fi nd(cl assState==0 & st at eFl ag==1));

fprintf(' Nunber of Type | Error is % \n', nunErrorTypel)
fprintf(' Nunber of Type Il Error is % \n', nunErrorTypell)

Nunber of Type | Error is 5
Nunber of Type Il Error is 1

In order to define an effective threshold for outlier detection, it was adopted a 95% confidence interval of the upper-tail Chi-square
distribution from the undamaged condition. The threshold was found from the false alarm constraint. Note that by changing the threshold,
one can trade off probability of false alarm (PFA) and probability of detection (PD). The number of Type | and Type Il errors gives
information about 23 false positive indications of damage and 11 false negative indications of damage (roughly 4% of misclassifications).

Hypothesis Test

Statistical Hypothesis (p-values):

-”[J =Undamaged

HL =Damaged

Decision Rule:

The p-values for a test result represents the degree of rarity of that result given that the null hypothesis is true.
Decision:

Smaller p-values tend to discredit the null hypothesis -U[J and to support the alternative hipothesis -HL

Pick a DI score up randomly:

aux=Dl (80);

p_val ue = 1-cdf(dist, aux, arO der)

p_val ue

0. 3525

Hypothesis tests are useful to indicate whether or not an effect is present. Rather than associate the result to a predetermined level of
significance, the p-value indicates the degree of rarity of a test result, i.e., for a given DI score, the p-value gives an indication of the
probability of representing a time history from an undamaged condition. As a reference, for a level of confidence of 95%, the result supports
the alternative hypotheses if p-value is lesser than 0.05.

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Damage Location using AR Parameters from an Array of Sensors

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features
= Data Normalization for Novelty Detection

= Damage Location

Introduction

The goal of this example usage is to locate the source of damage in a structure based on the outlier/novelty detection. The autoregressive
(AR) parameters are used as damage-sensitive features and a machine learning algorithm based on the Mahalanobis distance is used to
create damage indicators (DIs) invariant for feature vectors from normal conditions and that increase when feature vectors are from
damaged conditions.

Data sets of the base-excited three story structure are used in this example usage. More details about the data sets can be found in 3-
Story Data Sets.

Requires data3SS.mat dataset.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

SHMTools functions called:

ar Mbdel _shm
| ear nMahal anobi s_shm
scor eMahal anobi s_shm

Author: Elé6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set:

| oad(' dat a3SS. mat ') ;

dat a=dat aset (:, 2:5,:);
Plot time histories from the baseline condition (Channel 2-5):

figure

for i=1:4;

subplot(2,2,i)

plot(data(:,i,1)," k")

title([' Channel ', numRstr(i+1)])

set(gca, ' YTick',-2:2,"Xlim,[1 8192],"'VYlinm ,[-2.5 2.5])

if i==3 || i==4, xlabel (' Cbservations'); end
if i==1]|]| i==3, ylabel('Acceleration (g)'); end
end
Zhannel 2 Zhannel 2
2 2
o
[
o
I
D
o
[
[
=1
2000 4000 6000 s000 2000 4000 6000 s000
Zhannel 4 Zhannel
2 2
o
[
o
I
T
I
[
[
=1
-7 -7
2000 4000 8000 8000 2000 4000 8000 8000
Observations Observations

Extraction of Damage-Sensitive Features

This section extracts the AR(15) model parameters from time histories of Channels 2-5 and plot the feature vectors for each instance.

AR model order:

ar Or der =15;

Estimation of the AR Parameters:

[ar Par anet er s] =ar Mbdel _shn{ dat a, ar Or der) ;

[n nj=size(arParaneters);

Plot test data:

figure;
pl ot (1: marParaneters(1:90,:)"',"'k',1l: marParaneters(90:170,:)"',"'r")
title([' Concatenated AR(', nun2str(arOrder),') Paraneters for all Instances'])

| egend(' Undanaged' , ' Danaged')

x|l abel (' AR Paraneters')

yl abel (" Anpl i tude')

w=8;

set(gca, ' Xlim,[1 nj)

M1, 1: 9) =" Undanaged' ; M 2, 1: 7) =' Danaged' ;

| egend([line('color', " k");line("color',"'r')],M;

h(1l)=line([m4, mM4],[-ww, color', k', "lineStyle","-.");
h(2)=line([m4*2; M4*2],[-ww, 'color', k', "lineStyle' ,"-.");
h(3)=line([m4*3; mM4*3],[-ww,' 'color'," k', "lineStyle' ,"-.");

text (4, -7,' Channel 2','Color',"'k',"'EdgeColor',"'k',"'BackgroundColor',"'w)
text (18, -7, ' Channel 3','Color',"'k','EdgeColor',"'k',"'BackgroundColor',"'w)
text(33,-7,' Channel 4','Color',"'k',"'EdgeColor',"'k',"'BackgroundColor'," 'w)
text (48,-7,' Channel 5','Color',"'k',"'EdgeColor',"'k',"'BackgroundColor'," 'w)

Concatenated AR(15) Parameters for all Instances

— Undamaged
— Damaged

Amplitude

Channel 2 Channel 3 Channel 4 Zhannel 5

8 | | | |
10 20 30 40 o0 510

AR Parameters

Data Normalization for Novelty Detection

The Mahalanobis-based machine learning algorithm is used to normalize the features and reduce each feature vector to a score.

Dl =zeros(17, 4);
scor eDat a=zeros(17, ar O der);

cnt =1;
for i=1:4;
for j=1:09;
| earnData(j *9-8:j*9,:)=arParameters(j*10-9:j*10-1, cnt:cnt+arCOder-1);
end
scoreData(1: 17, :) =ar Par anmet er s(10*(1: 17),cnt: cnt+arOrder-1);
[model] =I ear nMahal anobi s_shn{(| ear nDat a) ;

Dl (:,i)=scoreMhal anobi s_shn(scor eDat a, nodel) ;

cnt =cnt +ar Or der ;

Damage Location

Plot DIs from Channel 2-5:

figure
for i=1:4;

subplot(2,2,i)

bar(1:9,DI (1:9,i),"'k"); hold on; bar(210:17,DI (10:17,i),"'r")
title([' Channel ', nunRstr(i+1)])

set(gca, ' Xlim ,[0 length(D)+1]," XTick',1:1ength(Dl))

grid on
if i==3 || i==4, xlabel('State Condition'); end
if i==1|] i==8, ylabel('D"); end

end

Channel 2
EI:II:I i

250

Channel 3

SEEEEEEE RN I T EESREEERESERE RS
O 00 pi ittt B B
SEEEEEEE RN I 00 pro oo bbb i

12234567 8NMNANAAN4TE7T 12234567 8NMNANAAN4TE7T

10" Channel 4 w10 Channel 5
e e e e e 2 e e e e e

123456730 M12A345687 123456730 M12A345687
State Condition State Condition

The figure above shows that the extracted features from Channels 2-3 are lesser sensitive than from Channels 4 and 5 to discriminate the

undamaged (1-9) and damaged (10-17) state conditions. This is an indication that the source of damage is located near to Channels 4 and
5.

See also:

Damage Location using ARX Parameters from an Array of Sensors

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Damage Location using ARX Parameters from an Array of Sensors

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features
= Data Normalization for Novelty Detection

= Damage Location

Introduction

The goal of this example usage is to locate the source of damage in a structure based on the outlier/novelty detection. The autoregressive
model with eXogenous (ARX) inputs parameters are used as damage-sensitive features and a machine learning algorithm based on the
Mahalanobis distance technique is used to create a damage indicators (Dls) invariant for feature vectors from normal condition and that
increase when feature vectors are from damaged conditions. This example usage intends to show the advantages of taking into account the
input force to locate damaged in the structure. (See example to check the differences when using the AR parameters as damage-sensitive
features.)

Data sets of the base-excited three story structure are used in this example usage. More details about the data sets can be found in 3-
Story Data Sets.

Requires data3SS.mat dataset.
References:
SHMTools functions called:

ar xModel _shm
| ear nMahal anobi s_shm
scor eMahal anobi s_shm

Author: El6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set:

| oad(' dat a3SS. nat');

Plot time histories from the baseline condition (Channel 2-5):

figure
for i=1:4;

subplot(2,2,i)
pl ot (dataset (:,i+1,1)," k')

title([' Channel ', numRstr(i+1)])
set(gca, ' YTick',-2:2,"Xlim,[1 8192],"'VYlim ,[-2.5 2.5])

if i==3]| i==4, xlabel('Observations'); end
if i==11]| i==3, ylabel('Acceleration (g)'); end
end
i_hannel 2 i_hannel 3
2 2
o
[
o
I
D
o
[
[
=1
2000 4000 6000 s000 2000 4000 6000 s000
Zhannel 4 Zhannel
2 2
o
[
o
I
@
I
[
[
=1
-7 -7
2000 4000 8000 8000 2000 4000 8000 8000
Observations Observations

Extraction of Damage-Sensitive Features

Extraction of the ARX(10,5) model parameters from the time histories.

ARX model order:

orders=[10 5 0];
ar xOr der =15;

Estimation of the ARX Parameters:

[ar xPar anet er s] =ar xModel _shn{ dat aset, orders);

[n nj=size(arxParaneters);

Plot test data:

figure
pl ot (1: marxParaneters(1:90,:)'," k', 1l: marxParaneters(90: 170,:)"', " 'r")
title([' Concatenated ARX(', nunRstr(orders(1)),"',',nun2str(orders(2)),') Paraneters fromall

I nstances'])

x| abel (" ARX Paraneters')

yl abel (' Anpl i tude')

set(gca, ' Xlim,[1 n)

M 1, 1: 9) = Undamaged' ; M 2, 1: 7) =' Damaged' ;

| egend([line('color', " k");line("color','r')],M;

wW=5;
h(l)=line([m4,mM4],[-ww, color', k', " lineStyle,"-.");
h(2)=line([m4*2; mM4*2],[-w W], 'color', k', "IlineStyle' ,"'-.");
h(3)=line([m4*3; mM4*3],[-w W, color', k', "IlineStyle' ,"'-.");

text (4, -4, "' Channel 2','Color',"'k', "' EdgeColor',"'k',"'BackgroundColor',"'w)
text (18, -4, ' Channel 3','Color',"'k','EdgeColor',"'k',"'BackgroundColor'," 'w)
text (33,-4,"' Channel 4','Color',"'k',"'EdgeColor',"'k',"'BackgroundColor',"'w)
text (48, -4, ' Channel 5','Color',"'k',"'EdgeColor','k',"'BackgroundColor'," 'w)

Concatenated ARX(10,5) Parameters from all Instances
) .

— Undamaged
— Damaged

I
|
I
|
3t i
!
I
I
i
|

Amplitude

Zhannel 5 -

Channel 4

e [Channel 2 Channel 3

5 | |
10 20 30 40 o0 510

AR Parameters

Data Normalization for Novelty Detection

The Mahalanobis-based machine learning algorithm is used to normalize the features and to reduce each feature vector to a score.

Dl =zeros(17,5);

scor eDat a=zeros(17, ar xOr der) ;
cnt =1;
for i=1:4;
for j=1:09;
| earnData(j*9-8:j*9,:)=arxParanmeters(j*10-9:j*10-1, cnt:cnt+arxOder-1);
end
scoreDat a(1: 17, :) =ar xPar anet er s(10*(1: 17), cnt: cnt +ar xOr der - 1) ;
[model] =I ear nMahal anobi s_shn(| ear nDat a) ;

Dl (:,i)=scoreMhal anobi s_shn(scor eDat a, nodel) ;

cnt =cnt +ar xOr der ;

Damage Location

Plot DIs from Channel 2-5:

figure
for i=1:4;

subplot(2,2,i)

bar(1:9,DI (1:9,i),"'k"); hold on; bar(210:17,DI (10:17,i),"'r")
title([' Channel ', nunRstr(i+1)])

set(gca, ' Xlim ,[0 length(D)+1]," XTick',1:1ength(Dl))

grid on
if i==3 || i==4, xlabel('State Condition'); end
if i==1]| i==3, ylabel('D"); end

end

2000

Channel 2 Channel 3

g000

= 1000 bt] appg bl

12234567 8NMNANAAN4TE7T 12234567 8NMNANAAN4TE7T

10" Channel 4 w10 Channel 5

123456730 M12A345687 123456730 M12A345687
State Condition State Condition

The figure above shows that the ARX parameters perform better discrimination of the state conditions (in special at Channel 3) than the AR
parameters. (See example.) Note that the location of damage can be done by comparing the number of outliers per channel.

See also:

Damage Location using AR Parameters from an Array of Sensors

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Appropriate Autoregressive Model Order

Contents

= Introduction
s Load Raw Data

= Run Algorithm to find out the Appropriate AR Model Order

Introduction

The goal of this example usage is to find out the appropriate autoregressive (AR) model order using an algorithm based on the partial
autocorrelation function (PAF). One acceleration time history from the baseline condition is used to carry out the analysis.

Data sets from Channel 5 of the 3-story structure are used in this example usage. More details about the data sets can be found in 3-Story
Data Sets.

Requires data3SS.mat dataset.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

SHMTools functions called:
ar Model Order _shm
Author: El6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set:
| oad(' dat a3SS. mat');

Acceleration time history from the baseline condition (Channel 5):
dat a=dat aset (:,5,1);

Plot time history:

figure;

pl ot (data, ' k')

title('Acceleration Tinme History (Channel 5)')

x| abel (' Data Points')

yl abel (' Accel eration (g)')

set(gca, ' YTick',-2:2,"Xlim,[1 8192],"Ylinl,[-2 2])

Acceleration Time History (Channel 5)
2 T T T T T T T T

Acceleration (q)
L]

| | | | | | | |
1000 2000 3000 4000 5000 G000 7000 2000
Data Foints

Run Algorithm to find out the Appropriate AR Model Order

Using the PAF-based algorithm.

Set parameters:

met hod="' PAF' ;
ar Or der Max=30;

Run algorithm:

[mreanARor der, arOrders, nodel] =ar Model Or der _shm(dat a, et hod, ar Or der Max, 0. 078) ;

out Dat a=nodel . out Dat a;
ar Or der Li st =nodel . ar Or der Li st ;
CL=npdel . control Lim t;

Plot results along with the threshold:

figure

pl ot (arOrderList,outData, ' -.*k'")

title([' Appropriate Mddel Order Selection using ',nmethod,' Technique'])
x| abel (' AR Order (p)')

yl abel (' Magni t ude')

xlim[1 max(arOrderList)])

grid on

hol d on

| egend([' AR Order: ', nun2str(neanARorder)])

line('XData',[1 max(arOrderList)], ' YData' ,[CL(1) CL(1)], Color','r","'LineWdth' ,1, ' LineStyle ,"'-.")
if strcnp(method, ' PAF'), line('XData',[1 max(arOrderList)], "' YData' ,[CL(2)
CL(2)],"'Color',"'r","'LineWdth',1,"'LineStyle',"'-."); end

Appropriate Model Order Selection using PAF Technigue

% T . | =% — AR Order 9
04 k... {l b e ST i
: I : : E : 1
| l : : : :
P T : : : :
a2l e jfl'. e T TR b e
IR 5 5 | L S
BT : koH oy
V) AR s e S s e ety Nttt Srerh i
o N 0 i, g ¥
N L T T AR
g_] 0z _HJ][L jro O * .. o
| L :
o I !
= 04 i,l e -)IK'.,I | .
04hg | ra,L ..]
| : | *
Nals _.|..|; l: .. -
I I
ok é 5 | z
_I:IS _i R R RREREEEE -
1 L i i I 1
a 10 145 20 25 30

AR Order (p)

The PAF-based algorithm suggests an AR model of 9th order. This indication should be taken as a reference for a starting point. Other
algorithms should be tried in order to find out a possible range of AR model orders. (Note that the arModelOrder_shm function contains
other techniques, namely, the SVD, AIC, BIC, and RMS.)

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Optimal Sensor Placement Using Modal Analysis Based Approaches

Contents

= [ntroduction

= Load Example Modal Data

= Plot Mode Shapes

= OSP Fisher Information Matrix, Effective Independence Method

s OSP Maximum Norm

Introduction

Computes the 12-sensor optimal arrangments using the Fischer information method and the maximum norm method, plotting the resulting
arrangements on the structure's geometry.

Requires data_ OSPExampleModal.mat dataset.
References:

D. Kammer, “Sensor placement for on-orbit modal identification and correlation of large space structures,” Journal of Guidance, Control,
and Dynamics, vol. 14, 1991, pp. 251-259.

M. Meo and G. Zumpano, “On the optimal sensor placement techniques for a bridge structure,” Engineering structures, vol. 27, 2005, pp.
1488-1497.

SHMTools functions called:

responsel nter p_shm
addResp2Geom shm
nodeEl enent Pl ot _shm
CSP_Fi sher | nf oEl V_shm
get Sensor Layout _shm
nodeEl enent Pl ot _shm
pl ot Sensors_shm
OSP_MaxNor m shm

Author: Eric Flynn

Date Created: June 26, 2009

Load Example Modal Data

Loads nodeLayout, elements, modeshapes, and respDOF

| oad (' dat a_OSPExanpl eMbdal . mat' , ' nodeLayout' , ' el ements' , ' nodeShapes', ' respDOF')

Plot Mode Shapes

Convert the 3rd 1D mode vector to 2D response array using degree of freedom (DOF) definitions in respDOF

geonlayout =nodelLayout ;
di spVec=npdeShapes(:, 3);
use3DI nt er p=f al se;

r espXYZ=r esponsel nt er p_shn(geonLayout, di spVec, r espDOF, use3DI nterp);

Add the response vector to the node layout

[respLayout, respScale] = addResp2Geom shn(geonlLayout,respXYZ, []);

Plot the response of the structure

close all; aHandl e=[];
nodeEl enent Pl ot _shn(respLayout, el ement s, respScal e, aHandl e) ;
xl abel (" X');ylabel ("Y');zlabel ("2); title(' Mode 3');

Mode 3

i

A

o

=

100

Do the same with the 10th mode vector

di spVec=npdeShapes(:, 10);
respXYZ=r esponsel nt er p_shn(geonLayout, di spVec, r espDOF, use3DI nt erp) ;

[respLayout, respScale] = addResp2Geom shm(geonlLayout,respXYZ, []);

nodeEl enent Pl ot _shn{resplLayout, el enent s, r espScal e, aHandl e) ;
xl abel (" X');ylabel ("Y');zlabel ("Z); title(' Mbde 10');

Mode 10

100

Y 100 100 X

OSP Fisher Information Matrix, Effective Independence Method

Calculate the 12 optimal DOFs to place sensors by maximizing the determinant of the Fisher Information Matrix using the Equivalent
Independence Method

nunSensor s=12;
covhatrix=[1];
[opLi st,det@ = OSP_Fi sherlnfoEl V_shn({nunSensors, nodeShapes, covMatriXx);

Convert 1D optimal DOF indices vector to 2D sensor layout array

sensor Layout =get Sensor Layout _shm(opLi st, r espDOF, nodeLayout) ;

Plot the sensors with the geometry

respScal e=[];
aHandl e=[];

aHandl e=nodeEl enent Pl ot _shn{ nodeLayout, el enent s, respScal e, aHandl e) ;
pl ot Sensors_shn{sensor Layout , aHandl e) ;
xl abel (" X');ylabel ("Y');zlabel ("2); title('Fisher Information EI Method");

Fisher Information El Method

)
o
e |
s o e G|
et
Yo ¥ L
e e e e BN
i SO o e | Eeee il
R e B
e
: I ﬁﬁlﬁf
20 Y
10 = - 100
Fh A il P A U
AER I it S 50
i o et o LT
a0 iy st oy e
IS Sial!
i, < 0

t

y -50° 100

OSP Maximum Norm

Calculate the 12 optimal DOFs to place sensors by maximizing the norm of the response. The influence of the modes are weighted linearly.
Sensors which are closer than a distance of 20 are "dueled" to maintain a minimum sepparation.

numrSensor s=12;

wei ght s=13: - 1: 1;

dual i nghi st ance=20;
geomnlLayout =nodelLayout ;

[opLi st] =0SP_MaxNor m shn{ nunSensors, nobdeShapes, weights, dualingbi stance, respDOF, geomlLayout);
Convert 1D optimal DOF indices vector to 2D sensor layout array

sensor Layout =get Sensor Layout _shn(opLi st, r espDOF, nodeLayout) ;

Plot the sensors with the geometry

[1;

respScal e

aHandl e

[1;

m(nodelLayout, el enent s, r espScal e, aHandl e) ;

m(sensor L;yout , aHandl e) ;

nodeEl enent Pl ot _sh

aHandl e

ot Sensors_sh
abel (' X');

abel (' Y');

abel (' Z');

tle(' Max Norm Met hod');

p
X
y
z

t

—
L
—

@,@,ﬁ,
RN
fﬁﬁﬁ.

IR

tlax MNorm Method

-100

L I, T

i L A,

R
AR i

ﬂw Ty

-50

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Data Normalization for Outlier Detection using Modal Properties

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling for Feature Classifiction

= ROC Curve

Introduction

The goal of this example usage is to discriminate time histories from undamaged and damaged conditions based on the outlier/novelty
detection using the transfer function between Channel 1 (input force) and Channel 5 (output acceleration). The natural frequencies are used
as damage-sensitive features and a machine learning algorithm based on nonlinear principal component analysis (NLPCA) is used to create
damage indicators (DIs) invariant for feature vectors from normal condition and that increase when feature vectors are from damaged
condition. Additionally, the receiver operating characteristic (ROC) curve is applied to evaluate the performance of this classifier.

Requires Neural Networking Toolbox and data3ss.mat dataset.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

Sohn, H., Worden, K., & Farrar, C. R. (2002). Statistical Damage Classification under Changing Environmental and Operational Conditions.
Journal of Intelligent Material Systems and Structures , 13 (9), 561-574.

SHMTools functions called:
frf_shm

rpfit_shm

| ear nNLPCA_shm

scor eNLPCA _shm
ROC_shm

Author: Elé6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set:
| oad(' dat a3SS. mat ') ;
Split into input force (Channel 1) and output acceleration time histories (Channel 5):

i nput Force(:,:)=dataset (:,1,:);
out put Acc(:,:)=dataset(:,5,:);

Plot one force and one acceleration time history from the baseline condition:

figure

subpl ot (2,1, 1)

pl ot (i nput Force(:,1), " k")

title('Force Tinme Hi story fromthe Baseline Condition (Channel 1)')
yl abel (" Force (N)')

axi s([1 8192 -100 100])

subpl ot (2, 1, 2)

pl ot (out put Acc(:, 1), k')

title('Acceleration Tinme History fromthe Baseline Condition (Channel 5)')
x|l abel (' Data Points')

yl abel (' Accel eration (g)"')

axis([1 8192 -2 2])

Force Time History from the Baseline Condition (Channel 1)
1[:“:' T T T T T T T T

Force (M)

-100

1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 S000

Acceleration Time History from the Baseline Condition {Channel &)
2 T T T T T T T T

Acceleration (q)

1000 2000 2000 4000 5000 G000 7000 8000
Data Foints

Extraction of Damage-Sensitive Features

Set parameters:

Matrix size:

[n nj=size(outputAcc);

Sampling frequency:

sf =320;

Window size to compute the FFT:

bl ockSi ze=n/ 4;

Frequency resolution:

df =sf/ bl ockSi ze;

Parameter initialization:

G=zer os(bl ockSi ze, M ;

Compute frequency response functions (FRFs):

G=frf_shm(dataset(:,[1,5],:), bl ockSi ze, 0. 5, @ann, true);

Generate frequency vector

freqvec = linspace(0, 160, bl ockSi ze/ 2)";

Plot four FRFs:

state=[1 7 10 14];
figure
for i=1:4;
subplot(2,2,i)
pl ot (freqvec, abs(Q&(:, state(i)*10)), ' k')
title(['State# ,nunstr(state(i))])
set(gca, ' Xlini,[20 140], 'Ylim ,[0 0.3], " Ytick' ,[0 0.15 0.3])

if i==3 || i==4, xlabel('Frequency (Hz)"'); end
if i==1 || i==3, ylabel (' Magnitude'); end

end

Statetty

Statedt]
. . . 03

03

015t

e WM

0T — o= —
20 40 B0 80 100 120 140 20 40 B0 80 100 120 140

Magnitude
]
o

State#t14

State#10
: : : 03

03

015t

Magnitude
pan]
o

0 : : . : 0 : : Tthmarat btk
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Freguency (Hz) Freguency (Hz)

Frequency range to fit the FRF at each identified natural frequency:

frq=[26 36
50 60
65 75];

Number of modes to fit in each range:

nnmodes=[1
1
1];

Number of extra terms to include:

ext ernms=4;

Run rpfit function to extract the natural frequencies as damage-sensitive features:

[res, freq] = rpfit_shm (G df, frq, nnodes, externs);

Training data:

| earnDat a=freq(:, 1:90)';
Test data:

scoreData=freq' ;

Plot damage-sensitive features:

figure

pl ot (1: 3, scoreData(1:90,1:3),"' -.*k"',1:3,scorebata(91:170,1:3), "' -.*r")

set(gca, ' XLim ,[0 4], ' XTick',0:4,"XTickLabel",[" ";"1";"2";"3 ;" "],"YLim,[20 80])
title(' Feature Vectors Conposed of Natural Frequencies')

x| abel (' Mode Nunber')

yl abel (' Magni t ude')

grid on

Feature Yectors Composed of Matural Freguencies
80 T !)

70

MWagnitude
N ()]
L] L]

I
=

30

Mode Number

Statistical Modeling for Feature Classifiction

The NLPCA-based machine learning algorithm assumes two nodes in the bottleneck layer in order to represent the changes due to
operational and environmental variations.

Run machine learning algorithm:

[rodel] =l ear nNLPCA_shn{ | earnDat a, 2, 5, 5) ;

[DI'] =scor eNLPCA_shm(scor eDat a, nodel) ;
Normalization procedure:

Dl n=scal eM nMax_shm(-DI, 1, [0,1]);
Plot Dls:

figure;
bar (1:90,Din(1:90), " 'k"); hold on; bar(91:170, DI n(91:170), 'r")

title('Damage Indicators (D) of the Test Data')

x| abel ({' Case Nunber','[Undamaged(1-90) and Damaged (91-170)]'})
ylabel ("DI''s Anmplitude')
xlim([0O 171])

Damage Indicators (D) of the Test Data
1 I I I 1 I I I I

Dl's Amplitude

a 20 40 G0 80 100 120 140 160

iZase Mumber
[Undamagedi1-90) and Damaged (91-170]]

ROC Curve

Flag all instances:

flag(1:100,1)=0; flag(101:170,1)=1;

Run ROC curve algorithm:

[TPR FPR] =ROC_shm(DI, fl ag) ;

Plot ROC curve:

figure

plot(FPR TPR '.-b");

title(' ROC curve')

xl abel (' Fal se Alarm - FPR)

yl abel (' True Detection - TPR)

hol d on

line(' XData',[0 1], ' YData',[O0 1], ' Color','k','LineWdth',61,'LineStyle ,'-.")

ROC curve

09

0.3

0.7

06

05

0.4

True Detection - TPR

03

02

0.1

A

0.4 06 08 1
Falze Alarm - FFR

=
=
[

The ROC curve suggests that the approach (damage-sensitive features along with machine learning algorithm) is not appropriate to
discriminate undamaged and damaged state conditions. (More details about ROC curves see example.)

file:///C|/Users/211074/Documents/SHMToolsDoc/exampleROC.html

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Condition Based Monitoring Ball Bearing Fault Analysis

Contents

= |ntroduction:

= Begin Bearing Damage Analysis Script

= 1) Look at an Example Time and Frequency Series

= 2A) Order Track using ARSTach.

= Compare Resampled Angualar Series and Frequency Domain Content

= 2B) Use signalARSAccel to further refine the angular resampling.

= Compare Resampled Angualar Series and Frequency Domain Content

= 3) Remove Order Tracked Frequency using Discrete Random Separation

s Compare Resampled Angualar Series and Frequency Domain Content

= 4) Look at Normalized Average Fast Spectral Kurtosis Image (Random Component)
= Plot FSK Images for Baseline Damage and Difference.

= 5) Compute the Demodulated Enveloped Signal of the Random Component
= 6) Look at Some Feature Types

= 7) Plot ROC Curves

Introduction:

This example goes through a recommended semi-automated procedure outlined in Vibration-based Condition Monitoring by R. Randall. The
data was collected from a machinery fault simulator with roller bearings supporting a shaft with a gear box attached to it and being driven by
a belt drive. The script proceeds to remove periodic frequency components generated by the gearbox which tends to drown out the bearing
fault vibrations. To remove the periodic components the signals first needed to be resampled to the gear shaft angular domain. The random
components associated with bearing damage are separated and the spectral kurtosis for a number of healthy and damaged signals are
compared to determine if filtering and demodulation are appropriate for the signal to maximize the detection of the ball bearing roller fault. In
this example it turns out that the random component signal is optimal and no demodulation was needed. Then some damage features are
computed for a number of instances containing modified vibration signals from a healthy bearing and a bearing with a roller element fault to
compare the detection capabilities of each damage feature using receiver operating characteristic curse.

Requires data_CBM.mat dataset.

References:

[1] Randall, Robert., Vibration-based Condition Monitoring, Wiley and Sons, 2011.
SHMTools functions called:

arsAccel _shm
arsTach_shm

crest Factor _shm
denmean_shm

di scRandSepar ati on_shm
envel ope_shm

fast Kurtogram shm

i mport_CBMDat a_shm
pl ot ROC_shm

pl ot Kurt ogram shm
ROC_shm

st at Moment s_shm

Author: Luke Robinson

Date Created: July 25, 2013

Begin Bearing Damage Analysis Script

clear; clc

% Load Desired Data States and Channels for Qutter Race Bearing Danage w
% Channel 3: Accel Munted on Top of Bearing Hounsing
[dat aset, danmmgeStates, statelist, Fs] = inport_CBMData_shm ();

states = (stateList == 5) | (stateList == 6);
channels = [1,3]; % tachyoneter and accel

X = dataset(:, channel s, states);
danageSt at es = danageSt at es(st ates);
stateList = stateList(states);

i Baseline = find(stateList == 5);
i Danage = find(statelList == 6);
[X] = demean_shn(X);

1) Look at an Example Time and Frequency Series

9%l ot | nstance Nunber ##
i nstance = 16;

figure;
subplot (3,2,1) %ime Series Conparison
pl ot (X(:,2,iBaseline(instance)),'b")

hol d on;
pl ot (X(:, 2, i Damage(i nstance)), 'r')
axis tight;

xlim[1 512]);

title('Tine Series Data, First 512 points');
x| abel (" Sanpl e');

yl abel (' Accel eration (g)');

| egend(' Basel i ne' , ' Danaged')

subpl ot (3, 2,2) %vrequency Donmain Comparison

[psdMatrix, f, islsided] = psdwWelch_shm (X(:,2,[i Baseline(instance), ...
i Damage(instance)]), []. [I. [I. Fs, [1);

pl ot (f, psdvatrix(:,1,1),"'b");

hol d on;

pl ot (f,psdvatrix(:,1,2),"'r");

axis tight;

xlim([0 600]);

grid on;

title(' PSD Magnitude Plot');

x| abel (' Frequency (Hz)');

yl abel (" Magni tude');

% Fromthe raw time signal and FFT you cannot gain nuch information at the
% raw stage for bearing damage. Froma priori know edge of the shaft speed
% and gear box data. It is known that the fundanental gear mesh frequency

% is approxinmately 120Hz and its harnonics are integer nultiples of the

% fundanental nmesh frequency i.e. (120Hz 240Hz 360Hz...) which can be

% clearly seen to be the dominate frequency conponents even though the

% data in question was retrieved froma sensor relatively distant fromthe
% gear box. These periodi c conponents need to be renoved fromthe vibration
% si gnal .

« 107 "PSD Magnitude Plot

Time Series Data, First 512 points

= 5 ,

% 1 BEISEHF'IE 1 % 4 ..

% = 3 ..

5] Damaged %)| PUUUUUUURRRRURE S DUUURTIRN PO SUPOPRRRR

L e [e L O R

5 - . | . |] = e

100 200 200 400 500 0 200 400 GO0

Sample Frequency (Hz)

2A) Order Track using ARSTach.

% The data in this exanple was retrieved froma system that had m nor speed
% fluctuations in the main shaft speed. The shaft speed variation was on
% the order or +/- 3RPM As such it nmay be possible to sinply use the

% si gnal ARSAccel algorithmto order track the signal but for the sake of

% di scussion both are used. signal ARSTach uses a single pulse per rotation
% signal to resanple a tinme dormain signal that may have | arge speed

% fluctuations into a vibration signal tracked to orders of the shaft

% rotation in an equally space angular domain. This inproves periodic

% frequency conponents that would have sneared from shaft speed

% fluctuations. The tachoneter is |ocated on the main shaft but the gear
% box is separated by a belt drive with a gear ratio equal to 1:3.71 and
% nmust be accounted for to resanple to the gearbox shaft. nFilter is used
% for various anti-aliasing functionality in signal ARSTach. signal ARSTach
% by default uses a Kaiser windowed fir filter with a beta shape function
% set to 4 as its filter type.

%si gnal ARSTach | nput :

nFilter = 255; %Anti -Alias Filter Length
= 256; %Desired Sanpl es per Rev
gearRatio = 1/3.71,; %vai n Shaft: CGear Saft Ratio

[xARSMat ri xT, sanpl esPerRev] = arsTach_shm (X, nFilter, sanpl esPerRev, gearRatio);

Compare Resampled Angualar Series and Frequency Domain Content

subpl ot (3, 2,3) %Angul ar Series Conparison
pl ot ((1: sanpl esPer Rev) / sanpl esPer Rev, xARSMat ri xT(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)),"'b")
hol d on; plot((1:sanpl esPerRev)/sanpl esPer Rev, xARSMat ri xT(1: sanpl esPer Rev, 1, i Damage(i nstance)), 'r")
axis tight;
title({' Angul ar Resanpl ed Signal using Taconeter';...
["1 Gear Revolution, SPR ' nunRstr(sanpl esPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');

subpl ot (3, 2,4) %vrequency Donain Conparison

[psdMatrix, f, islsided] = psdWelch_shm (xARSMatri xT(:,1,[i Baseline(instance), ...
i Damage(instance)]), [], [], []., samplesPerRev/27, []);

pl ot (f, psdvatrix(:,1,1),"b");

hol d on;

pl ot (f,psdvatrix(:,1,2),"'r");

grid on;

axis tight;

xlin([0 5]);

title({' PSD Magni tude Pl ot using Tachoneter'; ...
["First 5 Orders, SPR ' nunRstr(sanpl esPerRev)]});

x| abel (' Frequency (Gear Mesh Orders)');

yl abel (' Magni tude');

= Time Serieg F.Bageiliﬂne s Km'SPSD Magnitude Plot

5 1 S AT]

g 0 £ R J.

3 1 | | | | | g TR RIS RTIoTS] [PR

pr 100 200 300 400 500] 200 40 600
Sample Freguency (Hz)

Angular Resampled Signal using Tacometer PSD Magnitude FPlot using Tachometer
1 Gear Revolution, SPR; 256 First & Orders, SPR256

05
0

o=

Magnitude
o e T

1
=
on

02 04 06 08 1]
Fevolutions Frequency (Gear Mesh Orders)

Acceleration (g)

2B) Use signalARSAccel to further refine the angular resampling.

% si gnal ARSAccel can be perfornmed on vibration signals that have | ow

% varyi ng speed or have been previously order tracked using a tachoneter

% signal. Here we can gain sonme inprovenent over the previous nethod since

% the tachonmeter signal was not directly correlated to the gear shaft but

% have to be estimated. Due to round off error of the gear ratio as well as
% possi bl e belt slipping. Sone reduction in periodic snearing can be gai ned
% by angul ar resanpling again using the phase infornmation extracted froma
% peri odi ¢ conponent of a vibration signal.

% Wth the knowl edge that the gear consists of 27 teeth, and the sanpling
% frequency resanpled to a specified sanpl esPerRev. It can be determ ned
% by | ooking at the frequency domain that the 2nd harnonic is a good

% candi date to resanple the signal too.

gnal ARSAccel | nput:

Usi

Fs sanpl esPer Rev; %Sanpling Frequency in FFT to Get Fc and Fsb
nFilter = 129; %Anti - Al'i asi ng/ BandPass Filter Length

Y%sanpl esPer Rev %Keep as 1024

Fc = 53. 65; %ycl es/ Rev (Chosen Harnonic Central Frequency)
Fsb = 0. 45; %ycl es/Rev (First Order Side Band Di stance)

meshOrder = 2; %2nd Order Harnonic

[xARSMat ri XA, sanpl esPer Rev] = arsAccel _shm
(xARSMat ri xT, Fs, nFi | ter, sanpl esPer Rev, Fc, Fsh, neshOr der, nGear Teet h) ;

Compare Resampled Angualar Series and Frequency Domain Content

subpl ot (3, 2,5) %Angul ar Series Conparison
pl ot ((1: sanpl esPer Rev) / sanpl esPer Rev, xARSMat ri XA(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)),"'b")
hol d on; plot((1:sanpl esPerRev)/sanpl esPer Rev, xARSMat ri xA(1: sanpl esPer Rev, 1, i Damage(i nstance)), 'r")
axis tight;
title({" Angul ar Resanpl ed Signal using Taconeter+Accel' ;...
['1 Gear Revolution, SPR ' nunRstr(sanpl esPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');

subpl ot (3, 2, 6) %requency Donain Conparison

[psdMatrix, f, islsided] = psdWelch_shm (xARSMatri xA(:, 1, [i Baseline(instance), ...
i Damage(instance)]), [], [], []. samplesPerRev/27, []);

plot(f,psdMvatrix(:,1,1),"'b");

hol d on;

plot(f,psdMatrix(:,1,2),'r");

axis tight;

grid on;

xlim([0 5]);

title({' PSD Magni tude Pl ot using Tachoneter+Accel'; ...
["First 5 Oders, SPR' nun2str(sanplesPerRev)]});

x| abel (' Frequency (Gear Mesh Orders)');

yl abel (' Magni t ude') ;

= Time Serieg F.Bageiliﬂne s ¥ m'EPSD Magnitude Plot

5 1 S AT T NSNS]

g ol £ R J.

3 1 | | | | | g TR RIS RTIoTS] [PR

pr 100 200 300 400 500] 200 40 600
Sample Freguency (Hz)

Angular Resampled Signal using Tacometer PSD Magnitude FPlot using Tachometer
1 Gear Revolution, SPR; 256 First & Orders, SPR256

05
0

0.5 - - -
0z 04 06 08 1 0

Fevolutions Frequency (Gear Mesh Orders)
Angular Resampled Signal using Tacometer+R&iaMagnitude Plot using Tachometer+Accel

o=

Acceleration (g)
Magnitude
o e T

o 1 Gear Revolution, SPR: 256 First & Orders, SFR256

5 83 ' ' ' ' % 04— SRR R — S

g '8 % 03k 1

- S | R = E - 1

T 02 04 06 08 1 0 1 2 3 4 3]
Fevolutions Frequency (Gear Mesh Orders)

3) Remove Order Tracked Frequency using Discrete Random Separation

% Di scret e/ Random Separati on uses two wi ndows of the sane signal with a

% speci fied delay or sanple separation that are used to estimate an opti nal
%filter to filter out the periodic or discrete frequency conponents from a
% signal. The filter is non-causal so filter delay and w ndow separation

% have to be accounted for. Recommended val ues for nWn would be equal to
% t he sanples per revolution, nFFT = 2*nWn, and nWnDel ay set to an

% integer multiple of nWn. Once the periodic signal if filtered out it is
% renoved fromthe original signal using subtraction and the random si gnal
%is the signal mnus the gear nmesh harnonics.

%si gnal DRS | nput :

nWn = sanpl esPer Rev; %N ndow Si ze

nOvlap = 0; 9 ndow Overl ap

nFFT = 2*nW n; %\unber of FFT Bins (Filter Size)
nW nDel ay = nWn; %N ndow Separation Del ay

[xPMatrix, xRvatrix] = di scRandSeparati on_shm (xARSMatrixA, nWn, nOvlap, nFFT , nWnDel ay);

Compare Resampled Angualar Series and Frequency Domain Content

figure;

subplot(2,2,1) %biscrete Series Conparison
pl ot ((1: sanpl esPer Rev) / sanpl esPer Rev, xPMVatri x(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)), 'b")
hol d on; plot((1:sanpl esPerRev)/sanpl esPer Rev, xPMatri x(1: sanpl esPer Rev, 1, i Damage(i nstance)), 'r')
axis tight;
title({'Periodic Resanpl ed Series';
["1 Gear Revolution, SPR ' nunRstr(sanpl esPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');
| egend(' Basel i ne' , ' Damage')

subpl ot (2, 2,2) %Di screte Frequency Donmi n Conpari son
[psdMatrix, f, islsided] = psdWelch_shm (xPMatrix(:,1,[iBaseline(instance), ...
i Damage(instance)]), [], [1, []., sampl esPerRev/27, []);
plot(f,psdMatrix(:,1,1),"'b");
hol d on;
plot(f,psdMatrix(:,1,2),'r");
axis tight;
grid on;
xIim([0 5]);
title({" Periodic PSD Magni tude Plot' ;...
["First 5 Gear Mesh Orders, SPR ' nunRstr(sanpl esPerRev)]});
x| abel (' Frequency (Gear Mesh Orders)');yl abel (' Magnitude');

subpl ot (2, 2, 3) %andom Series Conpari son
pl ot ((1: sanpl esPer Rev) / sanpl esPer Rev, xRVat ri x(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)), 'b")
hol d on; plot((1:sanmpl esPerRev)/sanpl esPer Rev, xRvatri x(1: sanpl esPer Rev, 1, i Damage(i nstance)), 'r")
axis tight;
title({' Random Resanpl ed Series'; ...
['1 Gear Revolution, SPR ' nungstr(sanplesPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');

subpl ot (2, 2,4) %andom Frequency Domai n Conpari son
[psdMatrix, f, islsided] = psdWel ch_shm (xRvatrix(:,1,[iBaseline(instance), ...
i Damage(instance)]), [], [1, []. samplesPerRev/27, []);
plot(f, psdMatrix(:,1,1),"'b");
hol d on;
plot(f,psdMatrix(:,1,2),'r");
axis tight;
grid on;
xIim([0 5]);
title({' Random PSD Magni tude Plot' ;...
["First 5 Gear Mesh Orders, SPR ' nun@str(sanpl esPerRev)]});
x| abel (' Frequency (Gear Mesh Orders)');
yl abel (' Magni t ude');

Feriodic Resampled Series Feriodic FSD Magnitude Flot

1 Gear Revolution, SPR: 256 First & Gear Mesh Orders, SPR; 256
T L i : Dq
= 021 — Baseline : : :
- Damage o (3L U P L]
s 01k = : : :
% . .I T ||1|lH”|m|| H |m|”1||| E 05 5 : 5
5 L S 0.2 B IRt I JONEE
& 01 : :
B E |:|*]
< 072 : ;
. . . . ; . I i
02 04 06 08 1 0 1 2 3 4 3]
Fevolutions Frequency (Gear Mesh Orders)
Fandom Resampled Series Fandom FSD Magnitude Plot
1 Gear Revolution, SPR: 256 Firsth %ear Mesh Orders, SPR: 256
02 [o 12
= 10
. Al @
S o kiR mnl A ‘\ i
E il [[|| L E 5
] o
T 02 = 4
[
T 2
-04 . , , , 7 g b _
02 04 06 08 1 0 1 2 3 4 3]
Fevolutions Frequency (zear Mesh Orders)

4) Look at Normalized Average Fast Spectral Kurtosis Image (Random Component)

% Looki ng at the spectral kurtosis after the gear nesh frequenci es have

% been renoved fromthe signal shows which frequency bands have the |argest
% spectral kurtosis and which may be optinal frequency bands for

% denpdul ation to inprove danage detection features. The fast spectral

% kurtosis images were nornalized to their maxi mum values then averaged to
% get a nore general idea of the differences not just in magnitude but

% frequency band. Some trials may experience randomtransients which have a
% very large effect on the spectral kurtosis but are not necessarily

% danmage.

%\or mal i zed Frequency
6; %N\unber of Frequency Band Scal es
true; %nclude 1/3 Frequency Bands

Fs =

[fastKurtMatrix, levels,f] = fastKurtogram shm (xRvatrix, Fs, nKScale, flagPave3);

%\ormal i ze FSK | mages to nmax val ues

for i = 1:64
fastKurtMatrix(:,:,1,iBaseline(i)) = fastKurtMatrix(:,:,1,iBaseline(i))./...
max(max(fastKurtMatrix(:,:,1,iBaseline(i))));

fastKurtMatrix(:,:,1,iDamage(i)) = fastKurtMatrix(:,:,1,iDamage(i))./...
max(max(fastKurtMatrix(:,:,1,i Damage(i))));

end

%et ermi ne Average FSK for Baseline and Daneged Conditions

f SKMeanBasel i ne = sum(fastKurtMatrix(:,:,1,1:iBaseline(end)),4)./...
| engt h(i Basel i ne);

f SKMeanDamage = sun(fastKurtMatrix(:,:,1,iDamage(1l):i Damage(end)),4)./...
| engt h(i Damage) ;

Plot FSK Images for Baseline Damage and Difference.

figure;

ax = subplot(3,1,1);

pl ot Kurt ogram shm (f SKMeanBaseline, [],[], f, levels, ax);

title({" Average Norm Fast Kurtogram Baseline'}); ylabel (' Frequency Scale');
x| abel (' Frequency (sanples/cycle)');

ax = subplot(3,1,2);

pl ot Kurt ogram shm (f SKMeanDamage, [],[], f, levels, ax);

title({" Average Norm Fast Kurtogram Damaged'}); ylabel (' Frequency Scale');
x| abel (' Frequency (sanples/cycle)')

ax = subplot(3,1,3);

pl ot Kurt ogram shm ((f SKMeanDanmage- f SKMeanBasel ine), [],[], f, levels, ax);
title({" Average Norm Fast Kurtogram Difference'})

yl abel (' Frequency Scal e'); x|l abel (' Frequency (sanples/cycle)');

% From | ooki ng at the Average Spectral Kurtosis of the Baseline Condition
% and the Damage Condition it appears that the frequency band with the nost
% kurtosis is the entire range fromO to the Nyquist frequency. So no

% denodul ation is done in this exanple.

o Average Morm. Fast Kurtogram: Baseline

[an)

& 9 0.3

E“ 1_9 02

S 26 0.1

g 3 .

LT 0 0.1 02 03 04 05
Frequency (samplesicycle)

o Average Morm. Fast Kurtogram: Damaged

]

; 83

L .

= 0.3

D 0.2

= 0.1

2

L

Frequency (samplesicycle)
Awverage Morm. Fast Kurtogram: Difference

0 02
18 0.1
2 0
28 0.1

0 (01 02 03 04 05
Frequency (samplesicycle)

Freguency Scale

5) Compute the Demodulated Enveloped Signal of the Random Component

[envel opeMatrix] = envel ope_shm (xRMatri x);

figure;

rotation = (1:size(envel opeMatrix, 1))/ gear Rati o/ sanpl esPer Rev;

pl ot (rotation, envel opeMatrix(:, 1, i Damage(i nstance)), 'r');

hol d on; plot(rotation, envel opeMatrix(:,1,iBaseline(instance)));
title(' Envel oped Signal');xlabel (' Nunber of Min Shaft Rotations');
yl abel (" Anplitude');axis tight;grid on;legend(' Damaged', ' Baseline')

% The pl ot provided shows an exanple of when inpul ses fromthe ball
% bearing elenents are actively hitting a fault.

Enveloped Signal
T I T T
055 e e - Damgged |
5 : : — Baseline
05k i

045

0.4

035

03

Amplitude

025

02

015§
(0.1
005

10 20 20 40 50
Mumber of Main Shaft Rotations

6) Look at Some Feature Types

% To be conpared are 6 damage types. The foll owi ng damage types are crest
% factor, kurtosis, and variance which are cal cul ated using the envel oped
% signal of the random conponent after gear nesh frequencies have been

% renoved. To see if any inprovenent in detectability has been achieved a
% conpari son i s nmade agai nst the sane danmge features of the raw signal
% with no processing at all which has been used in sone studies of ball
% beari ng danage.

%Conput e Matri x Damage Features

%Raw Si gnal Danmge Features

[cfRaw] = crestFactor_shm(X(:,2,:));
[statisticsFV] = statMnents_shm (X(:,2,:));
[varianceRaw] = statisticsFV(:, 2);

[kurtRaw] = statisticsFV(:,4);

%Envel ope Signal Danmage Features

[cf] = squeeze(crestFactor_shn{envel opeMatrix));
[statisticsFV] = statMments_shm (envel opeMatri x);
[variance] = statisticsFV(:, 2);

[kurt] = statisticsFV(:,4);

%l ot Danmmge Features
features = [cfRaw, cf, vari anceRaw, vari ance, kurt Raw, kurt];
featNames = {' Raw Crest Factor', ' Envel ope Crest Factor','Raw Variance', ...

' Envel ope Variance',' Raw Kurtosis', ' Envel ope Kurtosis'};

pl ot Features_shn(features,[],[],{' Raw Signal ', ' Envel ope Signal', ...
'Raw Signal','Envel ope Signal','Raw Signal', ' Envel ope Signal'}, ...
{'Crest Factor','Crest Factor','Variance','Variance', ' 'Kurtosis', ...
"Kurtosis'},[1);

Faw Signal Envelope Signal

5 20 5 10 .
[[
J J
L 4 LL 5 i
T T
o . o0 .

0 a0 100 150 0 a0 100 150

Instance Instance
Faw Signal Envelope Signal
04 - - 02 . :

ai) ai)
0 0
= =
© 1 = 1
i i
= 0 . . = .

0 a0 100 150 0 a0 100 150

Instance Instance
Faw Signal Envelope Signal
10 - - 40 - -

o o
o o
g s 1 e -
N Lo =

0 a0 100 150 0 a0 100 150

Instance Instance

7) Plot ROC Curves

% To conpare the danage features detectability statistically, receiver

% operating characteristic curves can be used to show the probability of a
% detection vs. the probability of false alarm Danage features with a high
% probability of detection to false alarmrate are optinmal detectors. From
% the ROC curves the kurtosis and creast factor of the envel oped signal

% have slightly better performance than usign the raw signal.

nunPts = [];
t hreshol dType = 'above';

figure;

for i=1:1ength(featNanes)
ax = subplot(2,3,i);

[TPR, FPR] = ROC shm (features(:,i), damageStates, [], threshol dType);
pl ot ROC_shm (TPR, FPR, 'linear', ax);

hol d on;

plot([0 1],[0 1], --k');

grid on;

axis([0 1 0 1]);
title({' Reciever Operating Characteristic:', featNanmes{i}});
end

Feciever Operating Charadkgisteer Operating Charackesmgser Operating Characteristic:

Faw Crest Factor Ernvelope Crest Factor Faw Variance

z 1 =z 1 Z 1

na]] na]

o cr o

L ok L

= = =

T 05 T 05 T 05

i i i

o o o

I I I

= = =

= : = : = : :

D / H i D "/ H i |:| / H i
0 05 1 0 05 1 0 05 1
False Positive Rate False Positive Rate False Positive Rate
Reciever Operating Charadisisteer Operating Characksdgser Operating Characteristic:

Ervelope Variance Faw Kurtosis Envelope Kurtosis

g g Ty T

T o @ : PO

o cr o L

ab] I ab] :

= = = e :

=05 = N5 = (Rl I A :

! ! ! . :

o ul o P :

fai} I T o

= = = s

= : = : = : :

D / H H [:] "/ H H [:] / H H

0 05 1 0 05 1 0 05 1

False Positive Rate False Fositive Rate False Fositive Rate

http://www.mathworks.com/products/matlab/

Condition Based Monitoring Gearbox Fault Analysis

Contents

= |ntroduction:

= Begin Gear Box Damage Analysis Script

= 1) Look at an Example Time and Frequency Series

= 2) Order Track using ARSTach and ARSAccel for further refinement.
= Compare Resampled Angualar Series and Frequency Domain Content
= 3) Look at Average Power Spectral Density for the Baseline Case

= 4) Filter XARS to get Residual, Difference and Band Pass Signal.

= Look at Average Power Spectral Density for New Signals

= 5) Look at Time Frequency Domain

= 6) Get Hoelder Series from CWTScalo

= Plot Hoelder Series in Time and Frequency Domain

= 7) Look at Some Common Feature Types

= 8) Compare Damage Features Statistically - Plot ROC Curves

Introduction:

This usage script focuses on extracting a number of damage features for gearbox diagnostics and compares them statistically to determine
which would be a good candidate for detecting worn tooth damage of a gearbox vibrations signal. Vibration signals were collected of over a
number of instances for a baseline healthy state as well as worn tooth damage state. The bearings on the main shaft used were fluid film
bearings which supported the main shaft that drove the gear box. The usage script begins by loading the vibration signals and angular
resampling the vibration signal to a specified samples per revolution of the gear shaft. The resampled signal is compared to the raw time
signal to demonstrate the improvement of the gear mesh components. The power spectral densities are looked at to see if any visible
damage has occurred between the damage state and the baseline state. The residual difference and band pass mesh signals are filtered
for the angular resampled signal using fir filtering methods which are used by various gearbox damage features. Then the script plots some
time frequency domain figures of merit to see if any useful information can be extracted. Of the four time frequency domains presented the
continuous wavelet scalogram is chosen for further processing. The Hoelder exponent is computed from the continuous wavelet scalogram
for damage detection in a later damage feature extraction method. Ten damage features are computed from the signals processed earlier
on and compared using receiver operating characteristic curves to see which have better performance for the data set.

Requires data_CBM.mat dataset.
References:
[1] Randall, Robert., Vibration-based Condition Monitoring, Wiley and Sons, 2011.

[2] Lebold, M.; McClintic, K.; Campbell, R.; Byington, C.; Maynard, K., Review of Vibration Analysis Methods for Gearbox Diagnostics and
Prognostics, Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, VA, May 1-4,
2000, p. 623-634.

SHMTools functions called:

arsTach_shm crestFactor_shm cwtScalogram_shm demean_shm dwvd_shm filter_shm firl_shm fm0_shm fm4_shm hoelderExp_shm
import_CBMData_shm IpcSpectrogram_shm m6a_shm m8a_shm na4dm_shm nb4m_shm rms_shm plotPSD_shm plotROC_shm
plotTimeFreq_shm plotScalogram_shm psdWelch_shm ROC_shm statMoments_shm stft_shm window_shm

Author: Luke Robinson

Date Created: July 25, 2013

Begin Gear Box Damage Analysis Script

clear; clc

% Load Desired Data States and Channels for Qutter Race Bearing Damage w

% Channel 2: Accel Munted on Gear box
[dat aset, dammgeStates, statelList, Fs] = inport_CBMData_shm ();

states = (statelList == 1) | (stateList == 3);
channels = [1,2]; % tachyoneter and accel

X = dataset(:, channel s, states);
danageSt at es = danageSt at es(st at es) ;
statelList = stateList(states);

i Baseline = find(stateList == 1);
i Danmage = find(stateList == 3);
[X] = denmean_shn(X);

1) Look at an Example Time and Frequency Series

ol ot instance Nunber ##
i nstance = 3;

figure;
subplot(4,1,1) %inme Series Conparison
pl ot (X(:,2,iBaseline(instance)),'b")

hol d on;
pl ot (X(:,2,i Damage(instance)), 'r')
axis tight;

xlim[1 1024]);

title('Time Series Data, First 1024 points');
x| abel (" Sanpl e');

yl abel (' Accel eration (g)');

| egend(' Basel i ne' , ' Danaged')

subpl ot (4,1, 2) %requency Donmi n Conparison

[psdMatrix, f, islsided] = psdWelch_shm (X(:,2,[iBaseline(instance), ...

i Damage(instance)]), []. [I. [1. Fs, [1);:
plot(f,psdMvatrix(:,1,1),"'b");
hol d on;
plot(f,psdMatrix(:,1,2),'r");
axis tight;
grid on;
title(' PSD Magnitude Plot');
x| abel (' Frequency (Hz)');
yl abel (' Magni tude');

=
= Time Series Data, First 1024 points
= T T T T T T T | T T T
= E‘] M ——— Baseline
g 100 200 300 400 500 600 Foo| — Damaged g
=L Sample

w10 PSD Magnitude Plot

Magnitude

600
Freqguency (Hz)

2) Order Track using ARSTach and ARSAccel for further refinement.

% The data in this exanple was retrieved froma system that had m nor speed
% fluctuations in the main shaft speed. The shaft speed variation was on
% the order or +/- 3RPM signal ARSTach uses a single pulse per rotation
% signal to resanple a tine donmain signal that nay have | arge speed

% fluctuations into a vibration signal tracked to orders of the shaft

% rotation in an equally space angul ar dormain. This inproves periodic

% frequency conponents that woul d have sneared from shaft speed

% fluctuations. The tachoneter is |ocated on the nain shaft but the gear
% box is separated by a belt drive with a gear ratio equal to 1:3.71 and
% must be accounted for to resanple to the gearbox shaft. nFilter is used
% for various anti-aliasing functionality in signal ARSTach. signal ARSTach
% by default uses a Kaiser windowed fir filter with a beta shape function
% set to 4 as its filter type.

nFilter = 255; %Anti - Alias Filter Length
12; %bDesired Sanples per Rev

[xARSMat ri xT, sanpl esPerRev] = arsTach_shm(X, nFilter, sanpl esPerRev, gearRatio);

Compare Resampled Angualar Series and Frequency Domain Content

subpl ot (4, 1, 3) %Angul ar Series Conparison
pl ot ((1: sanpl esPer Rev)/ sanpl esPer Rev, xXARSMat ri xT(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)),'b')
hol d on; plot((1:sanpl esPerRev)/sanpl esPer Rev, xARSMat ri xT(1: sanpl esPer Rev, 1, i Damage(i nstance)), 'r")
axis tight;
title({" Angul ar Resanpl ed using Tachoneter'; ...
['1 Gear Revolution, SPR ' nunRstr(sanpl esPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');

subpl ot (4, 1,4) %requency Donai n Conparison

[psdMatrix, f, islsided] = psdWel ch_shm (xARSMatri xT(:,1,[i Baseline(instance), ...
i Damage(instance)]), [], [1, []., samplesPerRev/27, []);

plot(f,psdMatrix(:,1,1),"'b");

hol d on;

plot(f,psdMatrix(:,1,2),'r");

axis tight;

grid on;

title({' PSD Magni tude Plot' ;...
['First 10 Oders SPR ' nun@str(sanpl esPerRev)]});

x| abel (' Frequency (Harnonic Orders)')

; yl abel (" Magni tude');

=

= Time Series Data, First 1024 points

*@ ﬂ]] ' ' -) T . T

T 100 200 300 400 500 600 700 Saseline

§ — Damaged U

< Sample

% w10 PSD Magnitude Plot

‘Céﬂ EJgE R ‘I ______________ PERREREe : ‘L ''''''''''' : ''''''''''''''''''''''''''' 4‘. _________________________ s P REETRCEE SRR : '''''''''''''' SRR i 1‘ 3

g 0 200 400 GO0 200 1000
Frequency (Hz)

Angular Resampled using Tachometer
1 Gear Revolution, SFR: 512

WA LLIERTE TS

0.1 0z 03 04

05 06 07 08 09 1
Revolutions

FSD Magnitude Plot
First 10 Orders SFPR: 512

Acceleration (q)
Lo

Magnitude
i
e
T
71
-

y:

0 1 2 3 4 5 4] 7 8 9
Frequency (Harmonic Orders)

3) Look at Average Power Spectral Density for the Baseline Case

% Conparing the power spectral densities it can be seen that the
% peri odi c gear nesh harnonics begin to snear and frequency energy not

% associated with the gear meshing increases as the gear teeth begin to
% wear .

% psdWel ch_shm | nput :

nWn = 2*(next pow2(si ze(xARSMat ri xT, 1)) -1);
nOvl ap = nW n*. 75;

nFFT = nW n*2;

[psdMatrix, f,islsided] = psdWelch_shm (xARSMatri xT, nWn, nOvlap, nFFT, Fs, []);

[ax] = plotPSD _shm(psdivatrix(:,:,iBaseline), 1, islsided, f, true, true, []);
axes(ax(1));

caxi s([-30, -10]);

title({' Power Spectral Density';'Baseline Condition'});

axes(ax(2));

yl abel (' Frequency (Harnonic Orders)');

[ax] = plotPSD shm(psdvatrix(:,:,iDamage), 1, islsided, f, true, true, []);
axes(ax(1));

caxis([-30, -10]);

title({' Power Spectral Density';'Wrntooth Condition'});

axes(ax(2));

yl abel (' Frequency (Harnonic Orders)');

Fower spectral Lensity
Baseline Condition

—
T
L

(=]
J
i

N
T
1

I
!
|

[N
T

Frequency (Harmonic Orders)

]
T

0 ! i i i
-G0 -60 40 220
Mean Magnitude (dB) Instances

Magnitude (dB)

—]

o

N

I

Tl

Frequency (Harmonic Orders)

(K]

0 I i I
-80 -60 40 -20
Mean Magnitude (dB)

Fower specral Lensity
Worntooth Condition

Instances

4) Filter XxARS to get Residual, Difference and Band Pass Signal.

% Filtering of the angul ar resanpl ed signal

is used to determ ne three

% traditional processed signals used in gearbox damage detection.

% signals are filtered and plotted for

% consi sts of the angul ar resanpl ed signal
% frequencies filtered out. To do this a narrow band fir filter is used and
% set to filter ate gear nmesh orders with a width of an estimate of
% first order sideband. The difference signal is simlar to the residual
% signal but its band width is set to be a little |arger
out first order sidebands.
resanpl ed signal with all
% conponents filtered out except gear mesh harnonics and the first

% residual signal filter to also filter
% pass gear mesh signal is the angul ar

% si debands.

o%-ilter Qut Drive Shaft
nGear Teeth = 27;

Fs = sanpl esPer Rev; %Cycl es/ Rev
fDrive = 1; %Cycl es/ Rev
f Har noni ¢ = nGear Teet h; %Cycl es/ Rev
f Si deBand = 1; %Cycl es/ Rev

%Constant Filtering Paraneters
nFilter = 511;

[win] = window shm ('kaiser', [nFilter,4],

conpari son. The residual signal
with the shaft and gear

[1;

t han t hat

MWagnitude (dB)

nDelay = ceil ((nFilter-1)/2);
%ilter Qut Drive Shaft Frequency
Wh = fDrive./Fs;

filterType = 'high';

[filterCoef] = firl shm(nFilter, Wh, filterType, win);
[y] = filter_shm (xARSMatri xT, filterCoef);

9%Resi dual Signal Filtering out Gear Mesh(Initialize Filter)

index = 1; Fc = index*fHarnonic; xResidual = y; filterType = 'bandstop';
filterContinue = true;
while filterContinue == true

Wh = [Fc-f Si deBand, Fc+f Si deBand] . / Fs;
[filterCoef] = firl_shm (nFilter, Wh, filterType, w n);
[xResidual] = filter_shm (xResidual, filterCoef);
index = index+1l; Fc = fHarnonic*index;
if (Fc+fSideBand)>= Fs/2; filterContinue = false; end
end
%Renove Filter Delay
xResi dual = xResi dual (1+nDel ay: end, :,:);

9% fference Signal Filtering out Gear Mesh (Initialize Filter)

index = 1; Fc = index*fHarnonic; xDifference =y; filterType = 'bandstop';
filterContinue = true;
while filterContinue == true

Wh = [Fc- 2*f Si deBand, Fc+2*f Si deBand] . / Fs;

[filterCoef] = firl_shm (nFilter, Wh, filterType, w n);
[xDifference] = filter_shm (xDifference, filterCoef);
index = index+1l; Fc = fHarnonic*index;

if (Fc+2*fSideBand)>= Fs/2; filterContinue = fal se; end

end
%Renove Filter Delay
xDi fference = xDifference(l+nDel ay:end,:,:);

%Band Pass Mesh Signal Filtering out All but Gear Mesh(lnitialize Filter)
index = 0; Fc = fHarnonic/2;, xBandPassMesh = y; filterType = 'bandstop';
filterContinue = true;

while filterContinue == true
if index ==
Wh = [.00001, Fc+(fHarnonic/2-fSideBand)]./Fs;
el se

Wh = [Fc- (f Harnoni c/ 2-fSi deBand), Fc+(f Har noni ¢/ 2- f Si deBand)] . / Fs;
end
[filterCoef] = firl_shm (nFilter, Wh, filterType, w n);
[xBandPassMesh] = filter_shm (xBandPassMesh, filterCoef);
i ndex = index+1; Fc = fHarnonic*(index+0.5);
if (((Fc+(fHarnonic/2-fSideBand))/Fs)>= 0.5);
Wh = [Fc- (fHarnonic/2-fSi deBand), Fs/ 2-.0001] ./ Fs;
[filterCoef] = firl shm(nFilter, Wh, filterType, win);
[xBandPassMesh] = filter_shm (xBandPassMesh, filterCoef);
filterContinue = fal se;
end
end
%Renmove Filter Delay
xBandPassMesh = xBandPassMesh(1+nDel ay:end,:,:);

Look at Average Power Spectral Density for New Signals

% O the four tine frequency plots shown, the continuous wavel et scal ogram
% presents the best option for detection nonlinearities in a signal. The

% gear nesh inmpul ses can be detected in the high frequency bin. By design
% conti nuous wavel et scal ograns have good frequency resolution and poor

% tinme resolution for |ow frequencies and good tine resolution but poor

% frequency resolution at high frequencies. |npulses create broad band

% noi se and this can be seen in the high frequency range of the scal ogram
% which directly corresponds to gear teeth inpacts that are extracted using
% t he Hoel der exponent. The other tine frequency plots, in order to get

% good tinme resolution the nust use snmall w ndow sizes which cause a | ot of
% snearing in the frequency content.

figure;

% ot PSD of all instances of the residual signal
[psdMatrix, f, islsided] = psdWel ch_shm (xResidual, nWn, nOvlap, nFFT, Fs, []);

ax = subplot(1,3,1);
pl ot PSD_shn{psdMatrix, 1, islsided, f, true, false, ax);
caxis([-60, -25]);
title({' Power Spectral Density: Residual Signal', ...
' Basel i ne and Wornt oot h Danmage' })
yl abel (' Frequency (Harnonic Orders)');

% ot PSD of all instances of the difference signal
[psdvatrix, f, islsided] = psdWel ch_shm (xDifference, nWn, nOvlap, nFFT, Fs, []);

ax = subplot(1,3,2);
[ax] = plotPSD _shm(psdMatrix, 1, islsided, f, true, false, ax);
caxi s([-60, -25]);
title({' Power Spectral Density: Difference Signal', ...
' Basel i ne and Wornt oot h Danage' })
yl abel (' Frequency (Harnonic Orders)');

%l ot PSD of all instances of the band pass nmesh signal
[psdMatrix, f, islsided] = psdWel ch_shm (xBandPassMesh, nWn, nOvlap, nFFT, Fs, []);

ax = subplot(1,3,3);
[ax] = plotPSD _shm(psdMatrix, 1, islsided, f, true, false, ax);
caxi s([-60, -25]);
title({' Power Spectral Density: BandPass Mesh Signal"', ...
' Basel i ne and Wornt oot h Danage' })
yl abel (' Frequency (Harnonic Orders)');

ower Spectral Density: REevhas!Sgntmll Density, Enferefipe SrahBlensity: BandFass Mesh Signa
Easeline and Worntooth Dafeggdine and Worntooth Dag@ssdine and Worntooth Damage

_75 225 -25
3 g Y
5 [-30 g -30 g =30
2Tk (135 57 135 5 7 L35
e = e
O S = = _
o G -rcnoimbca a5] P =
S L {40 2 -1-40 40 =
£ 5 £ 5 £ 5 5
=4 - 445 S 4 - 445 D 48 - 45 B
T)= = =
T 3 T 3 T 3E
o A0 2 A0 2 -50
L L L
2 2 2 B
55 -55 -55
1 1 18
|:| E3n _ |:| £ & _ |:| _
ZAGEOOT0 o0 ZEAEOCE0 o0 ZAGEOCE0 o0
Instances Instances Instances

5) Look at Time Frequency Domain

for i = 1:2
i ndex = 4;
instance = [iBaseline(index) iDamage(index)];
stateTitle = {'Baseline' 'Danaged };

nOvlap = nWn-1;

[dwdMatrix, f, t] = dwd_shm (xARSMatri xT(1: sanpl esPerRev, :,instance(i)), nWn, nOvlap, nFFT,
Fs);

%l ot Discrete Wgnere-Ville

pl ot Ti nreFreq_shm (dwdMatrix, []1, [], t, f, []1. [1);
caxi s([-30, 15]);

title({"' DWD Ti nme- Frequency Plot';char(stateTitle(i))});
yl abel (' Frequency (Cycles/Rev)');

x| abel (' Revol utions');

nmodel Order = 42;
nWn = 64;

nOvlap = nWn-1;
nFFT = nWn*2;

Fs = sanpl esPer Rev;

[l pcSpecMatrix, f, t] = | pcSpectrogram shm (xARSMatri xT(1: sanpl esPerRev, :,instance(i)),

nodel Order, nWn, ...

Fs);

nOvl ap, nFFT, Fs);

%°| ot LPC Spectrogram

pl ot Ti meFreq_shm (I pcSpecMatrix, [], [], t, f, [1, []);

caxi s([-5, 15]);

title({'LPC Spectrogram Ti me- Frequency Plot' ;char(stateTitle(i))});
yl abel (' Frequency (Cycles/Rev)');

x| abel (' Revol utions');

% stft_shm I nput:
nWn = 64;

nOvlap = nWn-1;
NnFFT = nWn*2;

Fs = sanpl esPer Rev;

[stftMatrix, f, t] = stft_shm (xARSMatri xT(1l:sanpl esPerRev, :,instance(i)), nWn, nOvlap, nFFT,

% Pl ot STFT

pl ot Ti meFreq_shm (stftMatrix, [], []1, t, f, [1, [1);
caxi s([-20, 10]);

title({" STFT Tine- Frequency Plot';char(stateTitle(i))});
yl abel (' Frequency (Cycles/Rev)');

x| abel (' Revol utions');

% cwt Scal ogram shm | nput :
Fs = sanpl esPer Rev;

fMn = [];
fMax = [];
nScal e = 256;

waveOrder = [];
waveType = [];
useAnal ytic = true;

O8/88/88/868/868/868/8/8

[scal ovatrix, f,timeVector] = cwt Scal ogram shm (xARSMat ri xT(1: sanpl esPerRev, :,instance(i)),

Fs, ...

end

fMn, fMax, nScale, waveOrder, waveType, useAnalytic);

% Pl ot CWI

pl ot Scal ogram shm (scaloMatrix, [], [], t, f, [1);
caxi s([-60, 0]);

title({" W' Scal ograni ;char(stateTitle(i))});

yl abel (' Frequency (Cycles/Rev)');

x| abel (' Revol utions');

Frequency [CyclesiRev)

. b .:I t ,:I ﬂ. " |.III|I:I::'-|l lIIII. i
1[:][:] Illl:lilllllul"'lI vl e g
4 i 11 hA

CwYD Time-Frequency Plot
Baseline

200 P ER A MR e AT e PO e

150 ,';;':';',,,'ﬁ!:}*'f:,-'."-rf': et e A A

50 5 lne

Feyolutions

.
=

Magnitude (dB)

1%

10

L
o

1
]
]

1
]
n

1
[N}
)

Frequency (Cycles/Rey)

250

200

150

P
S0

w.l"'g
g

u

LFPC Spectrogram Time-Frequency Flot

¥t

Easeline

: '"I""”*l""' ¥ "h:ﬂtw -

i | :I * II{ .I II

g Ay o

=ﬁmmmfiﬂwwnq

I m rlll

o Pl

J.I | 4| I 11 I r lm ”i I{II I I1I k" I i

L] IHII 1

i J

I -.II" II q1l III ﬂ - I.J

Iil IIIHI

] I ‘I

HHHAW

| |
03 04 05 08

Fevalutions

'l ‘i

alla !

o lwll IIJ

IIJ |
I‘II ll

44 ql.

0.7

1
0.8

il

4

Magnitude (dB)

Frequency (Cycles/Rey)

STRT Time-Frequency Flot
Baseline

250

200

150

o0

05
Fevalutions

Magnitude (dB)

CWT Scalogram
Baseline

(gp) spriubey

32.2%4
16.1695
8.1061
406375

(maxysaaAo) Aouanbald

1.02131

Fevolutions

Frequency (Cycles/Rey)

WD Time-Freguency Plot
Damaged

NI T TR T
25[:] e ::I.. |:Ih= 1 || ! {1 o
o .:II.'lI !
BURTNL A
“'%H"?"“'I ,1 '1

200 MR o B
tihe

150
100

50 F
al

0 0.z 04 0.6
Revolutions

.
=

Magnitude (dB)

Frequency (Cycles/Rey)

LFPC Spectrogram Time-Frequency Flot
Damaged

250

Y SRR m'lu' | pa | i,

| IJ | III

b Hl.ill‘ I " IIIIIllllI II | | I* ! I”II I". II 3 ‘ ¢II "
200 £W i .'s :

FII‘ ‘II Illilll

W'l I:'H " - L TERL A

150 I . & |||I||| m u LTI oan |I'" [E-:
. |:| Il Il- | I Fl' n
P
|| ' .:.p '
| L) |
|||’“ rl' 'l* H"||H i 'E ll ‘ 't
[10 BT i il T

0.1 02 03 0.4 0.5 06 07 038 0.9
Revolutions

Magnitude (dB)

Frequency (Cycles/Rey)

250

200

150

100

o0

STRT Time-Frequency Flot
Damaged

A

-illr

01 02 03

n-.,..l-'

Revolunons

10

-20

Magnitude (dB)

CWT Scalogram
Damaged

64,3352

32.2%4

16.1695

8.1061

406375

Freguency (CyclesiRey)

203723

1.02131

0.512
o1 02 03 04 05 06 07 08 09

Fevolutions

6) Get Hoelder Series from CWTScalo

% The Hoel der exponent is a neasure of the slope of the energy content in a
% time frequency domain. As high frequency energy rises and falls so too

% does the value of the Hoel der exponent. As previously stated this picks
% up on inpacts or nonlinearities in a signal that cause increases in high
% energy content. By |ooking at the frequency domain of the Hoel der

% exponent for a gear it is possible to track the inpulses of gear teeth

% and as the wear the nagnitude of these inpulses in the Hoel der donain

% wi |l begin to decay naking it useful in nmonitoring gear teeth wear.

nScal e = 64;
waveOrder = [
waveType = [];
useAnal yt =

[scal ovatrix,f,t] = cwt Scal ogram shm (xARSMatri xT, Fs, ...
fMn, fMax, nScal e, waveOrder, waveType, useAnalytic);

hoel der Matri x = hoel der Exp_shm (scal oMatri x, f);

hoel der Matri x = denean_shn{ hoel der Matri x) ;

-10

1
]
i

-30

I
o

-50

-60

Magnitude (dB)

Plot Hoelder Series in Time and Frequency Domain

[psdMatrix, f] = psdWel ch_shm (hoel derMatrix, nWn, nOvlap, nFFT, Fs, []);
psdMatrix = 10.*| oglO(psdiatri x);

figure; instance = 6;
subpl ot (2,1,1) %Angul ar Series Conparison
pl ot ((1: sanpl esPer Rev)/ sanpl esPer Rev, hoel der Matri x(1: sanpl esPer Rev, 1, i Basel i ne(i nstance)), 'b')
hol d on;
pl ot ((1: sanpl esPer Rev)/ sanpl esPer Rev, hoel der Mat ri x(1: sanpl esPer Rev, 1, i Danage(i nstance)), 'r')
axis tight;
grid on;
title({' Hoel der Exponent Series'...
["1 Gear Revolution SPR ' nun@str(sanpl esPerRev)]});
x| abel (' Revol utions');
yl abel (' Accel eration (g)');
| egend(' Basel i ne' , ' Danaged')

subpl ot (2,1, 2) %requency Donain Conparison
pl ot (f, psdMatrix(:,1,iBaseline(instance)),'b");
hol d on;
pl ot (f, psdvatrix(:,1,i Damage(i nstance)), 'r');
axis tight;
grid on;
xlim([0 5]);
title({' Hoel der PSD Magnitude Plot' ;...
["First 5 Oders SPR ' nun2str(sanpl esPerRev)]});
x| abel (' Frequency (Gear Mesh Orders)');
yl abel (" Magni tude') ;

Hoelder Exponent Series
1 Gear Revolution SPR: 512
: : : : : : . | ——— Baseline
— Damaged
LT

Acceleration (g)

0.1 0.2 0.3 0.4 05 06 0.7 0.8 09 1
Fevolutions

Hoelder PSD Magnitude Plot
First & Orders SPR: 912

Magnitude

Frequency (Gear Mesh Orders)

7) Look at Some Common Feature Types

% Several features are conpared here. Raw signal features |ike crest factor
% kurtosi s and root nean square are good at detection danage but the danage
% features suffer froma lack of l[ocalization in determi ning the cause of
% change. Increases in |oad and speed can cause a |arge change in the val ue
% of these features. FMD uses the resanpled signal and track the gear nesh
% orders which nmakes it tuned to the gear in question. FMHis simlar to
% FMD but uses the Hoel der series instead giving it inproved separation in
% t he damage features between baseline and worn tooth states. The residual
% and difference signals nmonitor changes in the frequency content other

% t han that of gear nesh harnonics and sidebands and the band pass nesh

% signal features nmonitor the kurtosis of the envel oped signal of

% primarily gear nesh harnonics.

%Raw Si gnal Danage Damage Features

[cf] = crestFactor_shm(X(:,2,:));
[statisticsFV] = statMnents_shm (X(:,2,:));
[kurt] = statisticsFV(:,4);

[rms] = rms_shm(X(:,2,:));

%Resanpl ed Signal Danmage Features

fundMeshFreq = f Harnoni ¢/ sanpl esPer Rev;

trackOrders = [1 2 3];

nFFT = [];

nBi nSearch = 3;

[fmD] = fnD_shm (xARSMatri xT, f undMeshFreq, t rackOr der s, nFFT, nBi nSear ch) ;

%Resi dual Signal Danmage Features
[fmd] = fmd_shm (xResidual);
[mBa] = nba_shm (xResi dual);
[mBa] mBa_shm (xResi dual) ;

oDi fference Signal Danmage Features

[nadmBase, nm2] = nad4m shm (xDifference(:,:,iBaseline), []);

[nadnDamage, tenp] = nad4m shm (xDifference(:,:,iDanmage), nR);
na4dm = [nadnBase; na4nDamage] ;

%Bandpass Mesh Si gnal

[nb4nBase, nR2] = nb4m shm (xBandPassMesh(:,:,i Baseline), []);

[nb4nDamage, tenp] = nb4m shm (xBandPassMesh(:,:,i Damage), nR);
nb4m = [nb4nBase; nb4nDanmage] ;

%Hoel der Si gnal Danmage Features

fundMeshFreq = f Harnoni ¢/ sanpl esPer Rev;

trackOrders = [1 2 3];

nFFT = [];

nBi nSearch = 3;

[frmH = fnO_shm (hoel der Matri x, fundMeshFreq, trackOr ders, nFFT, nBi nSear ch) ;

ol ot Danmge Features

features = [cf, kurt, rms, fnD, fm, mba, nBa, nadm nbdm f nH] ;

feat Names = {' Crest Factor','Kurtosis','Root Mean Square','FM','FM4' | ...
"MBA' , ' MBA' , ' NAMAM , ' NB4M , ' FVH };

pl ot Features_shn(features,[],[],[],featNanes,[]);

I
3
5 Feature 1 Feature 2 o Feature 3
E -5 8 04
L £ Bm T D.Sl E -
D Z 4 : = 02
'S 200 0 100 200 = 0 100 200
Instance Instance E Instance
Fegture 4 Feature 5 Feature B
5
e 4 :
0 100 200 0 100 200
Instance Instance Instance
Fegture ¥ Feature & Feature 9
= 40 = 20
< ﬁ i ”‘M
- m
= 0 = 0
200] 100 200] 100 200
Instance Instance Instance
Feature 10
100
= &0 S
0
0 100 200
Instance

8) Compare Damage Features Statistically - Plot ROC Curves

%o conpare the damage features detectability statistically, receiver
Y%operating characteristic curves can be used to show the probability of
%letection vs. the probability of false alarm Danmage features with a high
%orobability of detection to false alarmrate are optinal detectors. From
% he ROC curves the four best perform ng danage features for the data
%orovi ded were NAAM root nean square, FMD and FMH which all had perfect
%letection in this data set.

figure;
threshol dTypes = {' bel ow , ' bel ow , ' above', ' above', 'below , ' below , ...
"bel ow , ' above', ' bel ow , ' above'};

for i=1:1ength(featNanes)
ax = subplot(2,5,i);
[TPR, FPR] = ROC shm (features(:,i), damageStates, [], threshol dTypes{i});

pl ot ROC shm (TPR, FPR, 'linear', ax);
hol d on;

plot ([0 1],[0 1], " --k");

grid on;

axis([0 1 0 1]);
title({' Reciever Operating Characteristic:',featNames{i}});

end

_rest Factor
1

0.5

True Positive Rate

0
0051

True Positive Rate

Kurtosis Koot Mean Square

1

0.5

0
005 1

True Positive R ate

1

0.5

i

0
005 1

True Positive Rate

1

0.5

F1A0

[t -

0
005 1

True Positive Rate

1

0.5

Reciever OperattmrEhardnperakaniEhar anensier EhardperslaniEharanbenstng Characteri
FI

0
005 1

Falze FPositive Hatlse Fositive Heatse Fositive Hatise FPositive Hebse Positive Rate

MG A
1

0.5

True Positive Rate

0
0051

True Positive R ate

1

0.5

MS A

0
0051

True Positive R ate

1

0.5

AL

fottii— o

0
0051

True Positive Rate

1

0.5

MNE4N

0
0051

True Positive R ate

1

0.5

Feciever OperatierEhardnter sl iEhar antansher ERaraiperabeg Ehar anbenstiag Character

FMH

frttti— e

0
0051

False Fositive Hatlse Fositive Hetse Fositive Hatise Fositive Hebse Positive Rate

http://www.mathworks.com/products/matlab/

Example Usage: Sensor Diagnostics

Contents

= Introduction

= Load Raw Data

= Feature Extraction

= Sensor Status Classification

= Plotting Results

Introduction

The goal of this example is to perform the piezoelectric sensor diagnostic process to check the operational status of piezoelectric sensors in
SHM applications. Both sensor fractures and debonding between the sensor and a host structure can be automatically identified. The basic
principle of this technique is to track the chagnes in capacitance value of piezoelectric materials for sensor diagnostics. Because the
capacitance is temperature senstive, this algorithm uses an array of sensors to instaneously establishs a baseline, which can be robust
against temperature variations.

The data sets are measured from twelve piezoelectric patches (1/2 inch diameter) installed on a thin (1/8th thickness) aluminum plates.
Three of the senosrs were improperly installed, one with 80% debonding, two with sensor fracture. The following process shows the
identification of these faulty sensors

Requires dataSensorDiagnostic.mat dataset.
References:

Overly, T.G., Park, G., Farinholt, K.M., Farrar, C.R. "Piezoelectric Active-Sensor Diagnostics and Validation Using Instantaneous Baseline
Data," IEEE Sensors Journal, in press.

Park, G., Farrar, C.R., Rutherford, C.A., Robertson, A.N., 2006, "Piezoelectric Active Sensor Self-diagnostics using Electrical Admittance
Measurements," ASME Journal of Vibration and Acoustics, 128(4), 469-476.

Park, G., Farrar, C.R., Lanza di Scalea, F., Coccia, S., 2006, "Performance Assessment and Validation of Piezoelectric Active Sensors in
Structural Health Monitoring," Smart Materials and Structures, 15(6), 1673-1683.

Park, S., Park, G., Yun, C.B., Farrar, C.R., 2009, "Sensor Self-Diagnosis Using a Modified Impedance Model for Active-Sensing Structural
Health Monitoring," International Journal of Structural Health Monitoring, 8(1),71-82.

SHMTools functions called:

sdFeat ure_shm
sdAut ocl assi fy_shm
sdPl ot _shm

Author: Tim Overly, Gyuhae Park

Date: August 20th, 2009

Load Raw Data

Additionally you can load sd_ex.mat file, which are composed of all healthy sensors.

| oad(' dat aSensor Di agnostic. mat');

Feature Extraction

sl ope=sdFeat ur e_shn(sd_ex_br oken);

Sensor Status Classification

[Sensor _status, data_for_plotting]=sdAutocl assify_shn(sl ope, 0.02)

Sensor_status =

1. 0000 0 9. 1757
2. 0000 0 9.4774
3. 0000 2. 0000 7.2611
4. 0000 0 9. 2205
5. 0000 0 9.2718
6. 0000 1. 0000 10. 5018
7. 0000 0 9. 3875
8. 0000 0 9. 3981
9. 0000 0 9. 2593
10. 0000 2. 0000 8. 6806
11. 0000 0 9. 0976
12. 0000 0 9.5094

data for_plotting =

A [12x5 doubl €]
pos: 9
ave: 9.3108e-09
list: {[2x1 double] [6]}

The first column of Sensor_status is the sensor id number.

In the second column, 0: health sensors, 1: De-bonded sensors, 2: broken sensors.
The third column shows the capactive value of each sensor in nF.

The second output (data_for_plotting) is used for graphically illustrating the results.
Plotting Results

sdPl ot _shnm(dat a_f or _pl otti ng)

1
e - o L =I o) -

(9 uonelraQ plepuels

11 12

10

Sensor Number

=
n

=
=

n

=

1
n

L
o

N
o

B H=cithy senosrs
I Erolen sensors
I De-bonded sensors

1 2 3 4 5 5] T 8 3 o 11 12
Sensor Number

Percent Deviation of Sensor Status (%)
)
]

1
[
[y |

The first figure shows the outcome of the automated identification process based on Overly et al. Sensors 3,6,10 are identified faulty and
the remaining sensors are healthy.

The second figures show the quantitative results. Blue bars are healthy sensors, red bars are broken sensors, and magenta bars are
debonded sensors. This figure shows the percent deviations from the mean values of the healthy sensors.

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

National Instruments DAQ for Ultrasonic Active
Sensing

Contents

Introduction
Clear Instrumentation
Initialize NI-SWITCH

Set NI-SCOPE Options

Initialize and Configure N1-SCOPE
Set NI-FGEN Options

Initialize and Configure NI-FGEN
Construct Excitation Signal
Prepare Excitation Waveform
Prepare AO/Al Syncronization
Build pair list

Run Multiplex Session
Reset instrumentation

Introduction

In this example we acquire a set of ultrasonic wave propagation data using National
Instruments hardware. In particular, we interface with an NI-FGEN device for high
speed waveform actuation, an NI-SCOPE device for high speed digitizing, and an
NI-SWITCH device for multiplexing among a set of actuating and sensing
transducers. NI-TCLK is invoked to syncronize the highspeed actuation and sensing.

Here, we implement an array of five piezo-electric discs which are each capable of
both actuation and sensing. In in each run, the switch connects one transducer to
the NI-FGEN waveform generator, and a second transducer to an NI-SCOPE
digitizer. We then generate an 80 kHz gaussian modulated sine wave at the
actuation transducer, and acquire the incident response wave at the sensing
transducer after it has propogated through the structure. The switch then connects
the next actuator-sensor pair in lineup, and the process repeats. A wideband
amplifier is connected in line with the waveform generator in order to provide
sufficient power to the transducers.

The idea behind this sensing scheme is that given some baseline response when
the structure is in a known "healthy" condition, the introduction of damage
(cracking, corosion, etc) will lead to changes in the response due to mechanisms
such as scattering and/or damping.

For structural health monitoring, the next step is to carry out a feature extraction
procedure. The example example_activeSensingFeature demonstrates an
appropriate feature extraction procedure for the type of active sensing data
acquired here.

Requires Instrument Control Toolbox

Data sets can be downloaded from:

http://institute.lanl.gov/ei

References:

file:///C|/Users/211074/Documents/SHMToolsDoc/example_activeSensingFeature.html
http://institute.lanl.gov/ei

WWW.Ni.com

R. Andrew Swartz, Eric Flynn, Daniel Backman, R. Jason Hundhausen, and Gyuhae
Park. Active piezoelectric sensing for damage identification in honeycomb aluminum
panels. In Proceedings of the IMAC-XXIV. SEM, 2006.

SHMTools functions called:

Nl _SWTCH I nit_shm

NI _SCOPE_Set Opti ons_shm
NI _SCOPE_| ni t Confi g_shm
NI _FGEN Set Opti ons_shm
NI _FGEN I ni t Config_shm
get GausMbdSi n_shm

Nl _FCGEN PrepWave_shm

NI _TCLK_SyncPrep_shm

bui I dPai rLi st_shm

NI _mul tipl exSessi on_shm

Author: Eric Flynn
Date Created: June 22, 2009

Clear Instrumentation
instrreset();

Initialize NI-SWITCH

Initialize NI-SWITCH switch device. "devicelD" must correspond to the ID assigned
to the switch device in NI-MAX.

devi cel D=" Swi tch' ;
ni Swi t chHandl e=NI _SW TCH I nit _shm(devi cel D);

Set NI-SCOPE Options

Assign analog input options. "devicelD" must correspond to the ID assigned to the
digitizer device in NI-MAX.

devicelD="Digitizer';
channel Li st =0;

nm nSanpl eRat e=2e7;

m nNunPt s=100000;

ni ScopeOpti ons=Nl _SCOPE_Set Opti ons_shn(devi cel D, channel Li st, mi nSanpl eRat e, m nNunPt s) ;
Initialize and Configure NI-SCOPE
Initialize analog input and apply settings

[ni ScopeHandl e, ni ScopeOpti ons] =Nl _SCOPE | ni t Config_shm(ni ScopeOpti ons);
Set NI-FGEN Options

Assign analog output options. "devicelD" must correspond to the ID assigned to

the function generator device in NI-MAX.

devi cel D=' FGen' ;

channel Nun=0; _

sanpl gRat e=ni ScopeOpti ons. act ual Sanpl eRat e;
gai n=6;

ni FgenOpt i ons=NI _FCGEN_Set Opt i ons_shm(devi cel D, channel Num sanpl eRat e, gai n) ;
Initialize and Configure NI-FGEN
Initialize analog output and apply settings

ni FgenHandl e=NI _FGEN | ni t Confi g_shm(ni FgenOpti ons) ;
Construct Excitation Signal

Construct an 80kHz Gaussian-modulated sinusoid for excitation

cent er Fr eq=80000;

sanpl eRat e=mi nSanpl eRat e;
nor mBandwi dt h=. 25;

nunPoi nt s=[] ;

[gausMbdSi n, nunPoi nt s] =get GausMbdSi n_shn{ cent er Fr eq, sanpl eRat e, nor mBandw dt h, nunPoi nt s) ;

Plot Excitation Signal

figure

t:?o: nunPoi nt s- 1) / sanpl eRat e;
pl ot (t, gausvbdSi n) ;
title('Excitation Signal');
xIabeIE'Time‘);

yl abel (" Vol ts")

Excitation Signal

0.8

“olts

a 0.5 1 1.5

Tirne y “IEI'4

Prepare Excitation Waveform

Send the excitation waveform to the analog output hardware

wavef or megausMbdSi n;
NI _FGEN_PrepWave_shm(ni FgenHandl e, wavef or m ni FgenOpti ons) ;

Prepare AO/AIl Syncronization

Use NI-TCLK to syncronize the output and input

sessi onl=ni FgenHandl e;
sessi on2=ni ScopeHandl e;

ni Tcl kSyncHandl e=NI _TCLK _SyncPrep_shn{ sessi onl, sessi on2);

Build pair list

Construct a list of transducer pairs for pitch-catch based actuating and sensing

channel s=[0 1 2 3];

i sBi Di rectional =f al se;

i sSPi tchCat ch=true;

i sPul seEcho=f al se;

pai r Li st =bui | dPai r Li st _shn(channel s, i sBi Di rectional , i sPitchCatch, i sPul seEcho)

pairList =

0 0 0 1 1 2
1 2 3 2 3 3

Run Multiplex Session

Cycle through all one-directional actuator/sensor pair combinations, actuating and
sensing for each. Average five waveforms for each, and pause 50 ms between
measurements. The output channel sepparation corresponds to an NI PXI-2527
switch in dual 16x1 2-wire mode.

nunber O Aver ages=5;
del ay=50;
out put ChSep=16;

[wavef orms] =Nl _rul ti pl exSessi on_shn(ni Tcl kSyncHandl e, ni Swi t chHandl e, ni ScopeHandl e,
ni ScopeQpti ons, pairlist, number Of Aver ages, del ay, out put ChSep);

Plot waveforms acquired from pairs 1, 5 and 8

figure
t:?O | engt h(wavef orns) - 1) / sanpl eRat e* 1000;
subplot (3,1, 1);
pl ot (t, maveforns(1), ;
titlef Aqui r ed Vﬁveforns
ylim([-.25 .25]);
subplot (3,1, 2);
plot(t,maveforns(:,4),'r');
yl abel (' Vblts'i;
ylim([-.25 .25]);
subpl ot (3,1, 3);
pl ot (t, veforns(:,G),'g');
xlabel(ns');
ylim([-.25 .25])
Aguired Waveforms
I:Iz [T T T T T T T T T]
0
02F | .

a 0.5 1 1.5 2 245 3 35 4 4.5 5

=
s
T
1

“Wolts
[}

=
]
T
|

o
]
T
|

ms

Reset instrumentation

instrreset;

Published with MATLAB® 7.5

Ultrasonic Active Sensing Feature Extraction

Contents

= [ntroduction

= Configuration Parameters

= Load Data and DAQ Parameters
= Collect Border Line Segments into One Array
= Extract Data for Sensor Subset

= Build Contained Grid of Points

= Propogation Distance to Points

= Propogation Distance to Boundary
= Line of Sight

= Distance Compare

= Estimate Group Velocity

= Distance 2 Index

= Difference

= Incoherent Matched Filter

= Extract Subset

= Apply Logic Filters

= Sum Dimensions

= Fill 2D Map

= Plot 2D Map

Introduction
In this example we load in a raw set of active sensing data, process it according to the geometry of the plate structure, and extract features

relative to the presence of damage.

The test structure was a 0.01 inch concave-shaped plate approximately 48 inches on one side. The plate was instrumented with 32
piezoeletric tranducers which served as both actuators and sensors to form 492 actuator-sensor pairs. Damage was simulated using a two
inch neodymium magnet.

The data acquisition system cycled through the actuator-sensor pairs, one at a time, inducing a gaussian windowed sinusoid at the actuator
and sensing the propogated wave at the sensor. This was done once before damage was applied and then again after damage. It is
assumed that the damage modifies the received waveform through scattering.

This example builds an array of points on the structure for detecting damage at. Individual features are then extracted from the measured
waveforms by estimating the wave group velocity and establishing line-of-sight contraints. The final result is a map of the sums of the
feature vectors at each point on the structure.

For proper structural health monitoring, the features produced in this example need to be used to build and test against a statistical model in
order to decide the damage state of the structure.

Requires data_example_ActiveSense.mat dataset.
SHMTools functions called:

pl ot Bor der _shm

pl ot Sensors_shm

bui | dCont ai nedGri d_shm
propagati onDi st 2Poi nts_shm
get PropDi st 2Boundary_shm
sensor Pai r Li nef Si ght _shm
i ncoher ent Mat chedFi | ter _shm
esti mat eG oupVel ocity_shm
di st ance2l ndex_shm

extract Subsets_shm

fl exLogi cFilter_shm

sumvul t Di ms_shm
fill2DVap_shm

pl ot 2DMvap_shm

Author: Eric Flynn

Date Created: June 22, 2009

Configuration Parameters

Select subset (or all) of sensors to process (0-31)

sensor Subset=[0 2 5 7 11 12 15 17 19 21 24 25 27 28 30];

Resolution, in inches, of imaging on plate

PA Spaci ng=. 5;

Sample actuator-sensor pair index for plotting

sanpl ePai r | =4;

Make the figure backgrounds white for publishing

set (0, ' Defaul tFigureColor',[1 1 1]);

Load Data and DAQ Parameters

Load the data

| oad(' dat a_exanpl e_ActiveSense. mat' , ' wavef ornBase', ' wavefornifest', ' sensorlLayout', 'pairList', ...
"borderStruct', ' sanpl eRate', "' actuati onWaveforn , ' damagelLocation');

Collect Border Line Segments into One Array

The line segments defining the border are stored as a structure of arrays. Combine them into a single array by concatinating them.

bor der Conb=st ruct Cel | 2Mat _shn{ border Struct);

Plot the boundaries, sensors, and damage location

figure
axi sHandl e=axes;

axi sHandl e=pl ot Bor der _shn(bor der Conb, axi sHandl e) ;
pl ot Sensor s_shn{ sensor Layout , axi sHandl e) ;

hol d on

dp=pl ot (damagelLocation(1),

| egend(dp, ' Danege Location');

xl abel ("in");

danmgelocation(2),

Cxr'

’

" Mar ker Si ze', 15, 'LineWdth', 4);

ylabel ("in");
hol d of f
2o
@ @ x Damage Location
a0+
® @
25+
® ® O
201
® ® xO
S 15F
o © © W B WO B O
i) ¢ € & ¢
. ¢ &) ¢ ¢ 6 6D
5 L L 1 L I
-10 0 10 20 30 410 a0
in
Extract Data for Sensor Subset
Extract the data relevent to the chosen subset of sensors
[pai rLi st Sub, sensorLayout Sub, wavefor nBaseSub, wavefornTest Sub] = reduce2Pair Subset _shm ..

(sensor Subset ,

Plot an example waveform

sensor Layout ,

pai r Li st, wavef or rBase, wavef orniest);

figure

pl ot (wavef or nBaseSub(:, sanpl ePairl,1)); hold on
pl ot (wavef or nTest Sub(:, sanplePairl, 1), 'r")

| egend(' Baseline','Test');

x|l abel ("n");

yl abel (" Vol ts');

axis tight;

hol d of f

02

, -
Easeling
Test

015

01 r .

005 ,
|

Yolts

I ‘
-0.05

201 i

-015

1 1 1 1 1 1 1 1 1
1000 2000 2000 4000 5000 6000 7000 8000 9000 10000
fn

Plot the chosen subset of sensors

figure

axi sHandl e=pl ot Bor der _shn{ bor der Conb, gca) ;
pl ot Sensor s_shn{ sensor Layout Sub, axi sHandl e) ;
x|l abel ("in");

ylabel ("in");

hol d of f

35

@ ®
A0+
o5k]
® @
20+
0
Z 15
ol @ B O ©
| & ¢d
N & &) ¢ o
-5 1 1 1 1 1 |
=10 0 10 20 an 40 a0

in

Build Contained Grid of Points

Construct uniform list of points of interest (POIs)

xSpaci ng=P0d Spaci ng;
ySpaci ng=PO Spaci ng;

[poi ntList, pointMsk, xMatrix, yMatrix] = buil dContai nedGid_shm(borderStruct, xSpacing, ySpacing);

Plot grid of points

figure
p! ot Bor der _shn{ bor der Conb, gca); hold on
pl ot (pointList(1,:),pointList(2,:)," k.");

axi s equal ;
xl abel ("in");
ylabel ("in");

hol d of f;

301
\ A
30 % \
\ |
| |
2% % a.
4 S,
\
20 %
=
- 'e.
15
10
5]
0
| | | | | | 1 | |
0 4] 10 15 20 25 30 35 40 45
In
Propogation Distance to Points
Calculate propogation distance from transducer pairs to POIs
pr opDi st ance=pr opagat i onDi st 2Poi nt s_shn{ pai r Li st Sub, sensor Layout Sub, poi nt Li st);
Propogation Distance to Boundary
Calculate the propogation distance from transducer pairs to boundaries
[propDi st, m nPropDi st] = get PropDi st 2Boundary_shm(pai r Li st Sub, sensor Layout Sub, border Conb);
Line of Sight
Determine line of sight from transducer pairs to POIs
[pai rLi neCF Si ght sensor Li neXF Si ght] sensor Pai r Li nef Si ght _shm (pai rLi st Sub, sensor Layout Sub,
poi ntLi st, border Conb);
Plot the line of sight points for the sample pair
[si ngl ePair,

pai r Layout]

reduce2Pai r Subset _shm(pai r Li st Sub(:,

sanpl ePairl),

sensor Layout Sub,

pairListSub,[]1,[]1);

figure

pl ot (poi ntList(1, pairLi neX* Si ght (sanpl ePairl,:)), pointList(2,pairLineCSight(sanplePairl,:)), b.")
| egend(' Line of Sight');

xl abel ("in");

ylabel ("in");

hol d on

p!l ot Bor der _shn{ bor der Conb, gca) ;

pl ot Sensors_shn{ pai r Layout, gca) ;

35 T T T T T

?ﬂ + Line of Sight

30

25

20

£ 15

10

in

Distance Compare

Compare the distance to the POls to the distance to the nearest boundary

di st ance=pr opDi st ance;
maxDi st ance=m nPropDi st ;
di st anceAl | owance=0;

[bel owivaxDi st ance] =bsxfun(@t , di st ance- di st anceAl | owance, maxDi st ance) ;

Estimate Group Velocity

Estimate the Group Velocity of the Wave

Filter the waveforms

wavef or nFwavef or nrBaseSub;
mat chedWavef or mract uat i on\avef or m
filteredWavef or n2=i ncoher ent Mat chedFi | t er _shn(wavef or m mat chedWavef orn ;

Calculate the group velocity

wavef or mefi | t er edWavef or n2;
act uati onW dt h=l engt h(act uat i onWavefornj;
l'ineOF Sight=[];

[est Speed, speedList]=estimateG oupVel ocity_shnm(waveform pairListSub, sensorlLayoutSub, sanpleRate,
actuationWdth, |ineCSight);

Distance 2 Index

Translate propogation distances to waveform indices using group velocity

wavespeed=est Speed,;
of f set =act uati onWaveform

i ndi ces=di st ance2l ndex_shn(propDi st ance, sanpl eRat e, wavespeed, of f set) ;

Difference

Subtract the baseline waveforms from the test waveforms
dat aDi f f er ence=wavef or nifest Sub- wavef or nBaseSub;
Plot sample waveform difference

figure

pl ot (dataDi fference(:,sanplePairl, 1))
| egend(' Test - Baseline');

xl abel ("' n");

yl abel (" Vol ts');

0.06 T
— Test- Baseline

0.04

0.02

Wolts
L]

-0.02

-0.04

1
5000

10000

-0.06 . . .
2000 4000 G000

Incoherent Matched Filter

Apply incoherent matched filter to waveform difference

wavef or mrdat abDi f f er ence;
mat chedWavef or nFact uat i onWavef or m

filteredWavef or nwi ncoher ent Mat chedFi | t er _shm(wavef or m mat chedWavef orm ;

Plot sample filtered waveform difference

figure
pl ot (filteredWaveforn(:, sanplePairl, 1))

| egend(' Test - Baseline');

xl abel (' n");
yl abel (' Vol ts');

— Test- Baseline

25

Valts
o

0.5

1 1
0 2000 4000 G000

Extract Subset

Extract the matched filter value for each POI using time of flight indices

data=fil teredWaveform
start| ndi ces=i ndi ces;
subset Lengt h=1;

dat aSubset =ext r act Subset s_shn{ dat a, st art | ndi ces, subset Lengt h) ;

Apply Logic Filters

Zero-out contributions from transducer pairs without line of sight

dat a=dat aSubset ;
| ogi cFi |l t er=pai rLi neC Si ght;

[filteredData]=flexLogicFilter_shm(data,logicFilter);

Zero-out contributions from transduer pairs that are closer to a boundary than the POIs

data=fil teredDat a;
| ogi cFi |l t er =bel owmVaxDi st ance;

1
5000

10000

[filteredData]=flexLogicFilter_shm(data,!|ogicFilter);

Sum Dimensions

Sum across transducer pairs for each POI

data=filteredDat a;
di mensions=[1 2];

dat aSumssumul t Di ms_shm(dat a, di nensi ons) ;

Fill 2D Map

Translate POI list into 2D Map using mask
dat alD=dat aSum
mask=poi nt Mask;

dat aMap2D=fi | | 2DVap_shn(dat alD, mask) ;

Plot 2D Map

Plot 2DmMap of POI levels

sensor Layout =sensor Layout Sub;

figure
axi sHandl e=pl ot 2DVap_shn(xMat ri x, yMat ri x, dat aMap2D, gca) ;

axi sHandl e=pl ot Bor der _shm(bor der Conb, axi sHandl e) ;
axi sHandl e=pl ot Sensor s_shn(sensor Layout , axi sHandl e) ;
xl abel ("in");

ylabel ("in");

1 1
= =
[T %

1
=
L]

[

=

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Example Usage: Assemble a Custom Detector

Contents
= |ntroduction
= Calling the assembly routine.
= Assembling a Nonparametric routine.
= Assembling a Semiparametric routine.
= Assembling a Parametric routine

= Using the assembled detectors.

Introduction

In this example we show how to assemble a custom detector from the various functions available in the library. This is simple: one just
needs to call the "assembleOutlierDetector" which then walks the user through the available routines by category. The three main categories
are: Nonparametric detectors, Semiparametric detectors, and Parametric detectors. So let's try this.

Author: Samory Kpotufe

Date Created: August 21, 2009

Calling the assembly routine.

This can be done from any directory. It takes a default parameter "dirBase" which should be a directory containing subdirectories
corresponding to the main categories of detectors described above. If this parameter is not provided then, the directory containing the file
"assembleOutlierDetector.m" is used.

Assembling a Nonparametric routine.
These are based on kernel density estimation, and we'd be asked to choose a kernel method. The available kernel methods are in
"NonParametricDetectors/Kernels". We present an excerpt of the call sequence below.

assenbl eCut | i er Det ect or _shm(' NonPar ani)

Di rBase was not provided, we'll be using the follow ng base
directory:
/ home/ sanor y/ Resear ch/ LANL/ Sof t war ePack/

Types of detectors are:

[1] Non paranetric detectors
[2] Semi paranetric detectors
[3] Paranetric detectors

Enter a type (nunber): 1
You chose to assenble a non paranetric detector.

Options for <learning nethods, scoring nmethods> pairs are:
[1] <l earnKernel Density_shm m scoreKernel Density_shm n»

Choose one (nunber): 1

| ear nKer nel Densi ty_shm argunents are:

[1] Xtrain
[2] H

[3] kernel Fun
[4] bs_net hod

Sel ect an argunent (nunber) to set, or wite 0 to continue: 3
Enter a value for argument "kernel Fun": @panechni kovKernel _shm

Sel ect an argunent (nunber) to set, or wite 0 to continue: 4
Enter a value for argument "bs_nethod": 2

Sel ect an argunent (nunmber) to set, or wite O to continue: 0O
Done, assenbled training routine:
"/ horre/ sanory/ Resear ch/ LANL/ Sof t war ePack/ / Assenbl edDet ect or s/
trai nDet ect or _NonParam ni',
to be used with "detectCQutlier" detection routine.

Assembling a Semiparametric routine.

These routines work by first partitioning the data, then learning a parametric model on each partition (the available parametric model now is
a multi-dimensional Gaussian). The user will be given a list a partitioning method. These can be found in
"SemiParametricDetectors/PartitioningAlgorithms".

Assembling a Parametric routine

This is the simplest type to assemble. The user is just given a list of the available paremetric routines and given the option to set their
parameters.

Using the assembled detectors.

The just assembled detector would be save in the directory "AssembledDetectors" which is at the same level as the file
"assembleOutlierDetector.m".

The assembled detectors are training routines to be used in conjunction with the detection routine 'detectOutlier_shm'. Each of the
assembled routines have the same function signatures and can be used the same way as the default 'trainOutlierDetector' routine. In the
two examples default usage and default thresholding, the calls to ‘trainOutlierDetector' can be replaced by calls to any of the custom
routines we just assembled.

Published with MATLAB® R2013a

file:///C|/Users/211074/Documents/SHMToolsDoc/exampleDefaultUsage.html
file:///C|/Users/211074/Documents/SHMToolsDoc/exampleDefaultThresholdingUsage.html
http://www.mathworks.com/products/matlab/

Example Usage: How to Use the Default Detectors

Contents
= [ntroduction
= Load data
= Train a model over the undamaged data
= Test on the saved model and threshold.

= Report the detector's performance.

Introduction

Here we show how to get started with using the default mechanism provided to the user. There are two important functions:
trainOutlierDetector_shm, and detectOutlier_shm. The first is used to learn a model (mixture of Gaussians) over the training data, this model
is saved in the working directory and used by subsequent calls to detectOutlier. Also a threshold is passed to the detection routine. In this
example we show a different way to select the threshold besides the default way shown in the default usage example.

The data used in this example is from the 3-story structure. More details about the data sets can be found in 3-Story Data Sets.
Requires data3SS4.mat dataset.
SHMTools functions called:

ar Mbdel _shm
trainQutlierDetector_shm
detectQutlier_shm

Author: Samory Kpotufe

Date Created: August 19, 2009

Load data

The data here is in the form of time series in a 3 dimensional matrix (time, sensors, instances) and also a state vector representing the
various environmental conditions under which the data is collected.

| oad(' dat a3SS. mat ') ;
For this example, we will break each 8192 point time series into 4, 2048 point time series.

tineData = zeros(2048, 5, 680);

tineDat aStates = zeros(1, 680);

for i=1:4
tineData(:,:,i:4:680)=dataset ((1+2048*(i-1)):(2048*i),:,:);
tineDataStates(:,i:4:680)=states(:,:);

end

Extract some features using your favorite function, but first pick N of the instances (each time series reading over all sensors). Each
instance is then transformed into a feature vector: the returned matrix has the form (instances, features).

file:///C|/Users/211074/Documents/SHMToolsDoc/exampleDefaultUsage.html

N = 680;

I dx randper m(si ze(ti neData, 3));

ldx = 1dx(1: N);

Xdata = arMddel _shm(tineData(:, :, 1dx));
Xstates = tinmeDataStates(!dx);

Now set 80% of states 1:9 aside as the training data, these states correspond to undamaged readings. We'll then test on the remaining
20% of 1:9 and on the "damaged" states 10:17.

Idx = logical (isnenber(Xstates, [1:9]));

Xundamaged = Xdata(ldx, :);

nUndamaged = si ze(Xundanmaged, 1);

nTrain = round(0. 8*nUndanaged) ;

Xtrain = Xundanmaged(1l: nTrain, :);

Xtest = [Xundamaged(nTrai n+1: nUndamaged, :); Xdata(~ldx, :)];
nTest = size(Xtest, 1);

Now set labels for the test data, O corresponds to undamaged, and 1 to damaged.

number of undamaged in test.

nTest _0 = nUndanmaged - nTrai n;

test labels

testlLabels = [zeros(nTest_0, 1); ones(nTest -nTest_0, 1)];

Train a model over the undamaged data

The call below will learn a mixture of k gaussians, and select a threshold over the likelihoods values of the feature vectors under the learned
distribution. The threshold is selected as follows: first a 'normal’ distribution is learned over the likelihood values of the feature vectors; then
the threshold is picked so that 0.9 (confidence) mass of the learned distribution is above the threshold. Any distribution supported by the
‘mle’ function can be used.

k = 5;

confidence = 0.9;

di st For Scores = 'normal ' ;

trainQutlierDetector_shm(Xtrain, k, confidence, [], distForScores);

kkkkhkhkhkkkhkkhkhkhkxkkhkhkk*k TRA' N DA'VA(E DETEC"’(R LR R R S
Start |earning nodel of undanaged conditions ----

Learning treshold at the 90.00 percent cutoff ----

The threshold picked is 78.33

Learning a confidence nodel

Saving the nodels into nodel file UndamagedModel . mat

Test on the saved model and threshold.

Note that we can also specify our threshold and many other parameters, see the help on detectOutlier.

[results, confidences, scores] = detectQutlier_shn{(Xtest);

EE R R S S EETECT QJTL' ER EE R R S 2 o O S I O
Loadi ng nodels in nodel file UndanagedModel . mat
Start test on n= 392 data points of dinension D = 25

Threshol d used: 78.3327 ... Anything over : 0.90 likelihood of danmage will be flagged as "1 =
Danmage"

Report the detector's performance.

Various error rates

Total Err = sum(results ~= testlLabel s)/nTest;

fal sePositiveErr = sum(results(1l:nTest_0) ~= 0)/nTest_0;

fal seNegativeErr = sum(results(nTest_0+1:end)~=1)/(nTest - nTest_0);

fprintf('\n Total error: 9%.2f\n False Positive rate: 9%.2f\n Fal se Negative rate: 9%.2f\n',
Total Err, falsePositiveErr, falseNegativeErr);

Total error: 0.09
Fal se Positive rate: 0.38
Fal se Negative rate: 0.03

Compute ROC curve
[truePositives, fal sePositives] = ROC shn(scores,testLabels);
Now plot the curve

figure;

pl ot (fal sePositives, truePositives);
x| abel (' fal sePositives');

yl abel (' truePositives');

title('ROC curve');

truePositives

09

0.3

0.7

06

0.5

0.4

0.3

0z

0.1

ROC curve

0.1

0.2

0.3

| |
0.4 0.5
falseFositivas

0.6

07

0.8

09

http://www.mathworks.com/products/matlab/

Outlier Detection based on Nonlinear Principal Component Analysis

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling for Feature Classifiction

= Plot Damage Indicators

Introduction

The goal of this example usage is to discriminate time histories from undamaged and damaged condition based on outlier detection. The
first four statistical moments are used as damage-sensitive features and a machine learning algorithm based on nonlinear principal
component analysis (NLPCA) is used to create damage indicators (Dls) invariant for feature vectors from normal structural condition and
that increase when feature vectors are from damaged structural conditions.

Data sets from Channel 5 of the 3-story structure are used in this example usage. More details about the data sets can be found in 3-Story
Data Sets.

Requires Neural Networking Toolbox and data3ss.mat dataset.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

Sohn, H., Worden, K., & Farrar, C. R. (2002). Statistical Damage Classification under Changing Environmental and Operational Conditions.
Journal of Intelligent Material Systems and Structures , 13 (9), 561-574.

Kramer, M. A. (1991). Nonlinear Principal Component Analysis using Autoassociative Neural Networks. AIChE Journal , 37 (2), 233-243.
SHMTools functions called:

ar Mbdel _shm
| ear nNLPCA_shm
scor eNLPCA _shm

Author: Eléi Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set composed of acceleration time histories:

| oad(' dat a3SS. mat ') ;

Plot one acceleration time history (Channel 5) from four state conditions:

states=[1 7 10 14];
figure
for i=1:4

subplot(2,2,i)

pl ot (dataset (:, 5, states(i)*10), ' k")

title(['State# ,nunRstr(states(i))])

if i==3]| i==4,xlabel (' Coservations'); end

if i==11]| i==3, ylabel('Acceleration (g)'); end
set(gca, ' YTick',-2:2,"Xlim ,[21 8192], ' Ylim ,k [-2 2])

end

Statedt StatedtT

"

Acceleration (q)
]

-1
-2 : : : : -2 : : : :
2000 4000 6000 =000 2000 4000 6000 =000
Statedt10 Statedt14
2 : 3 :

1

1
1

Acceleration (q)
]

1
[

2000 4000 s000 8000 2000 4000 s000 8000
Cbservations Cbservations

Extraction of Damage-Sensitive Features

The first four statistical moments (mean, standard deviation, skewness and kurtosis) are extracted from each time history and stored into a
feature vector. Note that the data for the training process is not used later in the test process.

Estimation of the statistical moments:
[st at Monent s] =st at Monent s_shn{dataset(:,5,:));

Training data (undamaged feature vectors):

clear |earnData
for i=1:9;

|l earnData(i*9-8:i*9,:)=stat Monents(i*10-9:i*10-1,:);
end

Test data (9 undamaged and 8 damaged feature vectors):

scor eDat a=st at Monent s(10: 10: 170, :) ;

[n n=size(scoreData);

Plot test data:

| abel s{1} =" Mean' ; |abel s{2}="Std"; |abels{3}="Skewness'; |abels{4}="Kurtosis';

figure

pl ot (1: m scoreData(1:9,:),"'.-k',1: mscoreData(10:17,:),".-r")
title('First Four Statistical Mnments of the Test Data')

x| abel (' Features')

yl abel (" Ampl i tude')

set (gca, ' XTick', 1:4,"' XTickLabel',labels,"Xlim ,[0 5])

text(2, 3.5, " Undamaged' , ' Color','k', "' EdgeCol or','k','BackgroundColor',6 " 'w)
text(2,3.2, Damaged','Color','r', "' EdgeCol or','k', ' BackgroundColor',6 'w)
grid on

First Four Statistical Moments of the Test Data

4 ! ! !
35 Undamaged -
: Damaged| | '
3_ ...]
A5k G _
o 2_ ..]
] . . . ! .
= : : : E
ﬁ ’]5_ : _
£ | ' : :
*] ...]
05 _ SRR (/R |
[:]_ ..]
5k _
y i i ; ;
hean Std Skewness Kurtosis
Featuras

Statistical Modeling for Feature Classifiction

The NLPCA-based machine learning algorithm is used to create Dls invariant under feature vectors from the undamaged structural
condition. The two nodes at the bottleneck layer represent the changes in mass and stiffness. Four nodes are assumed in both mapping
layers.

Training:

[model] =l ear nNLPCA_shn{ | ear nDat a, 2, 4) ;

Scoring:

[DI] =scor eNLPCA _shm scor eDat a, nodel) ;

Plot Damage Indicators

Threshold based on the 95% cut-off over the training data:

[threshol d] =scor eNLPCA_shn{ | ear nDat a, nodel) ;
t hreshol d=sort (-threshol d);
UCL=t hr eshol d(round(| engt h(t hreshol d)*0. 95));

Plot Dls:

figure;

bar(1:9,-DI (1:9),"'k"); hold on; bar(10:17,-Dl (10:17),"'r")

title(' Danage Indicators of the Test Data')

x|l abel ({' State Condition','[Undanaged(1-9) and Danaged (10-17)]'})
ylabel (" DI''s Anplitude')

set(gca, ' Xlim ,[0 n+1], "' XTick', 1:n,"' XTi ckLabel ', 1:n)

line('XData',[0 n+1], 'YData',[UCL UCL], 'Color','b','LineWdth',1,'LineStyle ,'-.")
| egend(' Undanaged' , ' Danaged')
grid on

Damage Indicators of the Test Data

0.3 T T T | ! T T T) ! T | T T T T T
oo [Undamaged
I O =maged

07k

Dl's Amplitude

1T 2 3 4 &5 6 7 8 9 10 11 12 13 14 1% 16 17

State Condition
[Undamaged(1-2) and Damaged (10-177]

Note that the performance of this algorithm can be improved by changing the architecture of the network, such as by increasing the number
of nodes in the mapping layers.

See also:

Outlier Detection Based on the Factor Analysis Model

Outlier Detection Based on Principal Component Analysis
Outlier Detection Based on the Singular Value Decomposition

Outlier Detection Based on the Mahalanobis Distance

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Outlier Detection based on Factor Analysis

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling for Feature Classifiction

= Plot Damage Indicators

Introduction

The goal of this example usage is to discriminate time histories from undamaged and damaged condition based on outlier detection. The
parameters from an autoregressive (AR) model are used as damage-sensitive features and a machine learning algorithm based on the
factor analysis (FA) model is used to create damage indicators (DIs) invariant for feature vectors from normal structural condition and that
increase when feature vectors are from damaged structural condition.

Data sets from Channel 5 of the 3-story structure are used in this example usage. More details about the data sets can be found in 3-Story
Data Sets.

Requires data3SS.mat dataset.
References:

Kullaa, J. (2003). Is Temperature Measurement Essential in Structural Health Monitoring? Proceedings of the 4th International Workshop on
Structural Health Monitoring 2003: From Diagnostic & Prognostics to Structural Health Monitoring (pp. 717-724). DEStech Publications, Inc.

SHMTools functions called:

ar Mbdel _shm
| ear nFact or Anal ysi s_shm
scor eFact or Anal ysi s_shm

Author: Elé6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set conposed of acceleration tinme histories:
| oad(' dat a3SS. mat');

Plot one acceleration time history from four state conditions:

states=[1 3 11 16];
figure

for i=1:4

subplot(2,2,i)

pl ot (dataset(:, 5, states(i)*10), ' k')

title([' State# ,nunRstr(states(i))])

if i==3 || i==4,xlabel (" Cbservations'); end

if i==11]| i==3, ylabel('Acceleration (g)'); end
set(gca, ' YTick',-2:2,"Xlinml,[1 8192],"'Ylinm, [-2 2])

end

Statedt] State#3
2 : 2 :
o
5
I
[
I
[
[
=1
-7 : : : : -7 : : : :
2000 4000 6000 s000 2000 4000 6000 s000
Stated11 Statett16
2 : 2 :
o
IS
I
[
I
[
[
=1
-7 : : : : -7 : : : :
2000 4000 6000 =000 2000 4000 6000 =000
Observations Observations

Extraction of Damage-Sensitive Features

AR parameters are extracted from acceleration time histories. It is assumed an AR(15) model. The order of the model was picked from the
lower-bound of the range given by the optimization methods available in this package. (For more details see example usage)

AR model order:

ar Or der =15;

Estimation of the AR parameters:

[ar Par anmet er s] =ar Mbdel _shm(dataset(:,5,:), arOrder);

Training data (undamaged feature vectors):

clear |earnData
for i=1:9;

| earnData(i*9-8:i*9,:)=arParaneters(i*10-9:i*10-1,:);
end

Test data (9 undamaged and 8 damaged feature vectors):

scor eDat a=ar Par anet er s(10: 10: 170, :) ;

Plot test data:

figure
pl ot (1: arOrder, scorebData(1:9,:),"'.-k',1l:arOder,scorebData(10:17,:),".-r")

title(["AR(' , numRstr(arCOrder),') Paraneters fromthe Test Data'])
x| abel (' AR Paraneters')

yl abel (" Ampl i tude')

set(gca, ' XTick',l:arOder," Xlim ,[1 arCOrder])

M1, 1: 9) =" Undamaged' ; M 2, 1: 7) =' Damaged' ;

| egend([line("color', " k");line("'color','r')],M;

AR(15) Parameters from the Test Data

3 T T T T T T T T T T T T T
— Undamaged

— Damaged

Amplitude

| | |
1T 2 3 4 5 g 7T & 9 10 11 12 13 14 15
AR Parameters

Note: The curves in the figure above correspond to 17 feature vectors from the undamaged (State#1-9) and damaged conditions (State#10-
17).

Statistical Modeling for Feature Classifiction

The FA-based machine learning algorithm is used to create Dls invariant under feature vectors from the undamaged condition. In this case,
two unobserved variables are assumed to quantify the influence of the operational and environmental variations (the changes in mass and
stiffness).

Training:

[rodel] =l ear nFact or Anal ysi s_shm(| earnbDat a, 2, ' t honson') ;

War ni ng: Some uni que variances are zero.

Scoring:

[DI] =scor eFact or Anal ysi s_shn{ scor eDat a, nodel) ;

Plot Damage Indicators

Threshold based on the 95% cut-off over the training data:

[t hreshol d] =scor eFact or Anal ysi s_shn{(| ear nDat a, nodel) ;
t hreshol d=sort (-threshol d);
UCL=t hr eshol d(round(| engt h(t hreshol d)*0. 95));

Plot Dls:

figure;

bar(1:9,-Dl(1:9),"'k"); hold on; bar(10:17, -Dl (10:17), " 'r")

title(' Danage Indicators of the Test Data')

xl abel ({' State Condition','[Undanmaged(1-9) and Damaged (10-17)]'})

ylabel ("DI""'s Anplitude')

line(' XData',[0 17+1], ' YData',[UCL UCL], 'Color',"'b','LineWdth' ,1,'LineStyle ,"'-.")
set (gca, ' XTick',1:1ength(Dl))

| egend(' Undamaged' , ' Damaged')

grid on

Damage Indicators of the Test Data

18 T T T T ! T T T T ! T | T T T T T
oo o0 s [Undamaged
I O amaged

’16—----; -

= =
[HiCY

=
=

Dl's Amplitude

1T 2 3 4 & 6 7 8 9 10 11 12 13 14 15 16 17

State Condition
[Undamaged(1-2) and Damaged (10-177]

The figure shows that the FA-based machine learning algorithm is able to discriminate all the damaged state conditions. However, it cannot
avoid one false-positive indication of damaged (State#4). Note however that this result can be improved by increasing either the number of
unobserved variables or the number of feature vectors in the training data.

See also:

Outlier Detection Based on Nonlinear Principal Component Analysis
Outlier Detection Based on Principal Component Analysis

Outlier Detection Based on the Singular Value Decomposition

Outlier Detection Based on the Mahalanobis Distance

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Outlier Detection based on Principal Component Analysis

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling for Feature Classifiction

= Outlier Detection

Introduction

The goal of this example usage is to discriminate time histories from undamaged and damaged condition based on outlier detection. The
root mean square (RMS) errors of an autoregressive (AR) model are used as damage-sensitive features and a machine learning algorithm
based on the principal component analysis (PCA) is used to create damage indicators (DIs) invariant for feature vectors from normal
structural condition and that increase when feature vectors are from damaged structural condition.

Data sets of an array of sensors (Channel 2-5) of the base-excited three story structure are used in this example usage. More details about
the data sets can be found in 3-Story Data Sets.

Requires data3SS.mat dataset.
References:

Figueiredo, E., Park, G., Figueiras, J., Farrar, C., & Worden, K. (2009). Structural Health Monitoring Algorithm Comparisons using Standard
Data Sets. Los Alamos National Laboratory Report: LA-14393.

SHMTools functions called:

ar Mbdel _shm
| ear nPCA_shm
scor ePCA_shm

Author: Elé6i Figueiredo

Date: September 01, 2009

Load Raw Data

Note that the data sets are composed of acceleration time histories from Channel 2-5.

Load data set:

| oad(' dat a3SS. nat');
dat a=dataset(:,2:5,:);

[t mn]=size(data);

Plot time history from the baseline condition (Channel 2-5):

| abel {1} =" Channel 2'; |abel {2}="Channel 3'; |abel{3}=" Channel 4';
| abel {4} ="' Channel 5';

figure
for i=1:m
subplot(2,2,i)
plot(1:t,data(:,i,1), k' ,t+1l:t*2,data(:,i,91), -.r")

title([label{i}])
set(gca, ' YTick' ,-2:2,'Xlim,[1t*2], Ylim, [-2.5 2.5])

if i==3 || i==4, xlabel('Observations'); end
if i==11]| i==3, ylabel('Acceleration (g)'); end
end

Channel 2 Channel 3

Acceleration (q)

o000 10000 15000 o000 10000 15000

Zhannel 4 Channel 5

Acceleration (q)

5000 10000 15000 5000 10000 15000
CDbservations CDbservations

The figure above plots time histories from State#1 (baseline condition, black) and State#10 (lowest level of damage, red) in concatenated
format.

Extraction of Damage-Sensitive Features

This section returns the RMS errors of an AR(15) model of Channels 2-5 in concatenated format. This way, any condition is classified based
on a feature vector composed of features from all sensors.

AR model order:

ar Or der =15;

Estimation of AR Parameters:

[ar Par anet er s RMBE] =ar Model _shn{ dat a, ar Or der) ;

Training Data:

cl ear | earnData
for i=1:09;

| earnData(i*9-8:i*9,:)=RVBE(i*10-9:i*10-1,:);
end

Test Data:

scor eDat a=RMSE(10: 10: 170, :) ;

[n m =size(scoreData);

Plot test data:

figure

plot(1: mscoreData(1:9,:)',"'*--k',l: mscorebata(10:17,:)"," " *--r")
title('Features fromall Sensors in Concatenated Format for the Test Data')
x| abel (' Channel ")

yl abel (' RVBE')

set(gca, ' Xlim ,[0 mtl], ' XTick',1l:m "' XTickLabel ', 2:5)

text(3.7,0.30, "' Undamaged' , ' Col or','k', ' EdgeColor','k', ' ' BackgroundColor',"'w)
text(3.7,0.27,"' Damaged', ' Color','r',"'EdgeColor',"'k', " ' BackgroundColor',' 'w)
grid on

Features from all Sensaors in Concatenated Format for the Test Data
0.35 T T T T

O3 --------------------- --------------------- -------------- Undémaged ------- .

Darﬁaged
0.25 :

0z

RMSE

015

0.1

0.05

Statistical Modeling for Feature Classifiction

The PCA-based machine learning algorithm is used to normalize the features and to reduce each feature vector to a score (also called DI).

[rodel] =l ear nPCA_shn(| ear nDat a) ;

[DI] =scor ePCA_shn(scor eDat a, nodel) ;

Outlier Detection

Threshold based on the 95% cut-off over the training data:

[t hreshol d] =scor ePCA_shn(| ear nDat a, nodel) ;
t hreshol d=sort (-t hreshol d);
UCL=t hr eshol d(round(| engt h(t hreshol d)*0. 95));

Plot Dls:

figure

bar(1:9,-DI(1:9),"'k"); hold on; bar(10:17,-DI (10:17),"'r")

title('Damage Indicators fromthe Test Data')

set(gca, ' Xlim ,[0 n+l1], ' XTick', 1:n)

line('XData' ,[0 n+1], 'YData',[UCL UCL]," Color',"'b','LineWdth' ,1,'LineStyle ,'-.")
xl abel (' State Condition [Undanaged(1-9) and Damaged (10-17)]")

ylabel ("DI");
| egend(' Undamaged' , ' Danaged')
grid on

Damage Indicators from the Test Data

oo s o0 I Undamaged
I D amaged

0 _ i

15_....5 _
')

m— i SN | | . -

1T 2 3 4 5 6 7 8 9 101112 13 14 15 16 17
State Condition [Undamaged(1-9) and Damaged (10-177]

The figure above shows that the approach for damage detection, based on PCA-based machine learning algorithm along with the RMS
errors of an AR(15) model from Channel 2-5, is able to discriminate the undamaged (1-9) and damaged (10-17) state conditions without
any false-negative and false-positive indications of damage.

See also:

Outlier Detection based on Nonlinear Principal Component Analysis
Outlier Detection based on the Factor Analysis Model

Outlier Detection based on the Singular Value Decomposition

Outlier Detection based on the Mahalanobis Distance

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Outlier Detection based on Singular Value Decomposition

Contents
= |ntroduction
= Load Raw Data
= Extraction of Damage-Sensitive Features
= Statistical Modeling for Feature Classifiction

= Receiver Operating Characteristic Curve

Introduction

The goal of this example usage is to discriminate time histories from undamaged and damaged condition based on outlier detection. The
parameters from an autoregressive (AR) model are used as damage-sensitive features and a machine learning algorithm based on the
singular value decomposition (SVD) technique is used to create damage indicators (Dls) invariant for feature vectors from normal structural
condition and that increase when feature vectors are from damaged structural condition. Additionally, the receiver operating characteristic
(ROC) curve is applied to evaluate the performance of the classification algorithm. In this example usage each time history of the data sets
is split into four segments in order to increase the number of instances available.

Data sets from Channel 5 of the base-excited three story structure are used in this example usage. More details about the data sets can be
found in 3-Story Data Sets.

Requires data_3ss4.mat dataset.
SHMTools functions called:

ar Mbdel _shm

| ear nSVD_shm
scoreSVD_shm
ROC_shm

Author: Eléi Figueiredo

Date: September 01, 2009

Load Raw Data

In this case each time history of the original data (Channel 5) is split into four segments.

Load acceleration time histories from Channel 5:

| oad(' dat a3SS. nat');
br eakPoi nt =400;

For this example, we will break each 8192 point time series into 4, 2048 point time series.

ti meData = zeros(2048, 1, 680);
for i=1:4

tineData(:,:,i:4:680)=dataset ((1+2048*(i-1)):(2048*i),5,:);
end

Plot one segment of one acceleration time history from four state conditions:

states=[1 7 10 14];
figure
for i=1:4

subplot(2,2,i)

plot(tinmeData(:,1,states(i)*10), " k')

title(['State# ,nunRstr(states(i))])

if i==3 || i==4,xlabel (' Coservations'); end

if i==1 || i==3, ylabel (' Acceleration (g)'); end

set(gca, ' YTick',-2:2,"Xlim,[1 length(tinmeData)]," Ylim, K [-2 2])

end

Statedt StatedtT

"

Acceleration {q)
=

-1
-7 : : : : -7 : : : :
500 1000 1500 2000 500 1000 1500 2000
Statett10 Statedt14
2 : 2 :

Acceleration (q)
[} —=

1
1

1
[

500 1000 1500 2000 500 1000 1500 2000
Observations Observations

Extraction of Damage-Sensitive Features

Extraction of the AR(15) model parameters from the segments of acceleration time histories. The order of the model was picked from the
lower-bound of the range given by the optimization methods available in this package. (For more details see example)

Set AR model order:

ar Or der =15;

Estimation of AR parameters:

[ar Par anmet er s] =ar Model _shm(ti meDat a, ar Or der) ;

Training feature vectors:

| ear nDat a=ar Par anet er s(1: breakPoi nt, :);

Test feature vectors:

scor eDat a=ar Par anet er s;

[n n=size(arParaneters);

Statistical Modeling for Feature Classifiction

In the context of data normalization process, the SVD-based machine learning algorithm is used to create DIs invariant under feature
vectors from undamaged structural conditions.

Training:

[model] =l ear nSVD_shn(| ear nDat a, 0) ;

Scoring:

[DI'] =scor eSVD_shn{ scor eDat a, nodel) ;

Normalization procedure:

Dl n=scal eM nMax_shn(-DI, 1, [O0,1]);

Plot Dls:

figure

bar (1: br eakPoi nt, DI n(1: breakPoint), ' k');

hol d on;

bar (br eakPoi nt +1: n, DI n(br eakPoi nt +1: end), 'r')

title('Damage Indicators (Dis) fromthe Test Data')

x| abel ([" Structural Condition [Undamaged(1l-', nunRstr(breakPoint),"') and Danaged
(", nun2str(breakPoint+1),"'-", nun2str(n), ")]'1])

ylabel ("DI''s Anmplitude')

set(gca, ' XLim ,[0 n+1])

| egend(' Undanmaged' , ' Damaged')

Damage Indicators (DIs) from the Test Data

1 T T T T

09

0.8

Q.7

06

0.5

Dl's Amplitude

0.4

03

0z

0.1

0
a 100 200 300 400

Receiver Operating Characteristic Curve

Flag all the instances:

flag(1l: breakPoi nt, 1)=0; fl ag(breakPoint+1:n, 1)=1;
Run ROC curve algorithm:

[TPR, FPR] =ROC_shn(DI, fl ag) ;
Plot ROC curve:

figure

plot (FPR TPR,"'.-b")

title('ROC Curve for the Test Data')
x| abel (' Fal se Alarm - FPR)

yl abel (' True Detection - TPR)

hol d on

T I T
B rdaraged
N Damaged

500 600
Structural Condition [Undamaged(1-400) and Damaged (401-6507]

line('XData',[0 1], 'YData',[O0 1],"'Color','k','LineWdth',6 1,'LineStyle','-.")

set(gca, ' XTick',0:0.2:1," YTick',0:0.2:1)

ROC Curve for the Test Data
1 T T T T

True Detection - TPR

| |
0 0.2 0.4 06 0.3 1
False Alarm - FFR

The ROC curve in the figure above shows that there is no linear threshold able to discriminate all the undamaged and damaged instances,
when using the AR(15) parameters as damage-sensitive features and the SVD-based machine learning algorithm. Note that the diagonal

line divides the ROC space in areas of good (left) or bad (right) classification. Note that the optimal point (no false negatives/positives) is in
the upper-left corner of the plot.

See also:

Outlier Detection based on Nonlinear Principal Component Analysis
Outlier Detection Based on the Factor Analysis Model

Outlier Detection Based on Principal Component Analysis

Outlier Detection Based on the Mahalanobis Distance

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Outlier Detection based on Mahalanobhis Distance

Contents

= |ntroduction

= Load Raw Data

= Extraction of Damage-Sensitive Features

= Statistical Modeling for Feature Classifiction

= Outlier Detection

Introduction

The goal of this example usage is to discriminate undamaged and damaged structural state conditions based on outlier detection. The
parameters from an autoregressive (AR) model are used as damage-sensitive features and a machine learning algorithm based on the
Mahalanobis distance is used to create damage indicators (DIs) invariant for feature vectors from normal structural condition and that
increase when feature vectors are from damaged structural conditions.

Data sets of an array of sensors from Channel 2-5 of the base-excited three story structure are used in this example usage. More details
about the data sets can be found in 3-Story Data Sets.

Requires data3SS.mat dataset.

References:

Worden, K., & Manson, G. (2000). Damage Detection using Outlier Analysis. Journal of Sound and Vibration , 229 (3), 647-667.
SHMTools functions called:

ar Mbdel _shm
| ear nMahal anobi s_shm
scor eMahal anobi s_shm

Author: El6i Figueiredo

Date Created: September 01, 2009

Load Raw Data

Load data set:

| oad(' dat a3SS. mat ') ;
dat a=dat aset (:, 2:5,:);

[t]=size(data, 1);

Plot time histories (Channel 2-5) from State#1 (baseline condition) and State#16:

| abel {1} =" Channel 2'; |abel {2}="Channel 3'; |abel{3}=" Channel 4'; |abel {4}=" Channel 5';

figure
for i=1:4;

subplot(2,2,i)
plot(1:t,data(:,i,1), k' ,t+1l:t*2,data(:,i,151), ' -.r")
title([label{i}])

set(gca, ' YTick',-2:2,"Xlinml,[2 t*2],"'Ylinm,[-2.5 2.5])

if i==3 || i==4, xlabel('Data Points'); end
if i==1 || i==3, ylabel (' Acceleration (g)'); end
end

Zhannel 2 Channel 3

Acceleration (q)

000 10000 15000 000 10000 15000

Zhannel 4 Zhannel

Acceleration {q)

5000 10000 15000 5000 10000 15000
Data Points Data Points

The figure above plots time histories from State#1 (baseline condition, black) and State#16 (damaged with simulated operational changes,
red) in concatenated format.

Extraction of Damage-Sensitive Features

This section estimates the AR(15) model parameters from the time histories of Channels 2-5 and plot the feature vectors for each instance
(or condition).

AR model order:

ar Or der =15;

Estimation of AR Parameters:

[ar Par anet er s] =ar Mbdel _shn{ dat a, ar Or der) ;

Training Data:

cl ear | earnData
for i=1:09;

| earnData(i*9-8:i*9,:)=arParaneters(i*10-9:i*10-1,:);
end

Test Data:

scor eDat a=ar Par anet er s(10: 10: 170, :) ;

[n nm =size(scoreData);

Plot test data:

figure

plot(1: mscoreData(1:9,:)', ' k',1l: mscorebata(10:17,:)"',"'r")
title(' Feature Vectors Conpose of AR Paraneters from Channel 2-5")
| egend(' Undamaged' , ' Danaged')

x|l abel (' AR Paraneters in Concatenated Format')

yl abel (" Anpl i tude')

w=8;

set(gca, ' Xlim,[1 m,"YLinl,[-wwW)

M1, 1: 9) =" Undanaged' ; M 2, 1: 7) =' Danaged' ;

| egend([line('color',"k");line('color',"'r')],M;

h(l)=line([m4, mM4],[-ww, color', k', "lineStyle',"-.");
h(2)=line([m4*2; M4*2] ,[-w w, 'color',"k',"lineStyle' ,"-.");
h(3)=line([m4*3; mM4*3],[-ww,' 'color',"k',"lineStyle' ,"-.");

text (4, -7,' Channel 2','Color',"'k',"'EdgeColor',"'k',"'BackgroundColor',"'w)
text (18, -7, ' Channel 3','Color',"'k','EdgeColor',"'k',"'BackgroundColor',"'w)
text (33,-7,' Channel 4','Color',"'k', "' EdgeColor',"'k',"'BackgroundColor'," 'w)
text (48,-7,' Channel 5','Color',"'k',"'EdgeColor','k',"'BackgroundColor'," 'w)

Feature Vectors Compose of AR Farameters from Channel2-5

8 T I T | T | T
i i — Undamaged
6l | | — Damaged
i i i
i i i
Ar i N i .
i i i
i i i
2 i | ¥ .
[} 4 B ' :
g J i J w
= 0t — i AP A ry | A A
2 = YATA |} A
= . . o ——
=T | f | M | i =
2t ! | | .
i | i
i i i
AT |) | i
i i i
| : : :
Channel 2 | Channel 3 | |Channel 4 | Channel 5
g 1 l 1 I 1 I 1
10 20 30 40 50 60

AR Parameters in Concatenated Format

Statistical Modeling for Feature Classifiction

The Mahalanobis-based machine learning algorithm is used to normalize the features and reduce each feature vector into a score.

[rodel] =l ear nMahal anobi s_shn{ | ear nDat a) ;

[DI] =scor eMahal anobi s_shn{ scor eDat a, nodel) ;

Outlier Detection

Threshold based on the 95% cut-off over the training data:

[t hreshol d] =scor eMahal anobi s_shn{ | ear nDat a, nodel) ;
t hreshol d=sort (-t hreshol d);
UCL=t hr eshol d(round(| engt h(t hreshol d)*0. 95));

Plot Dls:

figure

bar(1:9,-DI(1:9),"'k"); hold on; bar(10:17,-DI (10:17),"'r")

set(gca, ' Xlim ,[0 n+l1], ' XTick', 1:n)

line('XData',[0 n+1],'YData',[UCL UCL], ' Color','b','Linewdth' ,1,'LineStyle ,'-.")
x| abel (' State Condition [Undamaged(1-9) and Damaged (10-17)]')

ylabel ("Dl ");

| egend(' Undamaged' , ' Danaged')
grid on

T T T T T
b s Il Undamaged
asloioioioio i s | I Damaged

25_
15 F i bt TR T

nsl...

ol i i
1T 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

State Condition [Undamaged(1-9) and Damaged (10-177]

The figure above shows that the approach for damage detection, based on Mahalanobis distance along with the AR(15) parameters from
Channel 2-5, is able to discriminate all the undamaged (1-9) and damaged (10-17) state conditions.

See also:

Outlier Detection based on Nonlinear Principal Component Analysis
Outlier Detection based on the Factor Analysis Model

Outlier Detection based on Principal Component Analysis

Outlier Detection based on the Singular Value Decomposition

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

Example Usage: Direct Use of Semi-Parametric Routines

Contents

= [ntroduction

= Load data

= Train a model over the undamaged data
= Pick a threshold from the training data.
= Test the detector

= Report the detector's performance.

Introduction

Here we show how to directly use the Semiparametric routines while bypassing the "trainOutlierDetector" routine.

The data used in this example is from the 3-story structure. More details about the data sets can be found in 3-Story Data Sets.
Requires data3SS4.mat dataset.

SHMTools functions called:

ar Mbdel _shm
| ear nSemi Par anet ri cModel _shm
scoreGW shm

Author: Samory Kpotufe

Date Created: August 19, 2009

Load data

The data here is in the form of time series in a 3 dimensional matrix (time, sensors, instances) and also a state vector representing the
various environmental conditions under which the data is collected.

| oad(' dat a3SS. mat ') ;
For this example, we will break each 8192 point time series into 4, 2048 point time series.

ti meData = zeros(2048, 5, 680);

ti meDat aStates = zeros(1, 680);

for i=1:4
tinmeData(:,:,i:4:680)=dataset ((1+2048*(i-1)):(2048*i),:,:);
tineDataStates(:,i:4:680)=states(:,:);

end

Extract some features using your favorite function, but first pick N of the instances (each time series reading over all sensors). Each
instance is then transformed into a feature vector: the returned matrix has the form (instances, features).

N = 400;

I dx = randpern(si ze(tineData, 3));

ldx = 1dx(1: N);

Xdata = arModel _shrm(tineData(:, :, 1dx));
Xstates = tineDataStates(!dx);

Now set 80% of states 1:9 aside as the training data, these states correspond to undamaged readings. We'll then test on the remaining
20% of 1:9 and on the "damaged" states 10:17.

I dx = logical (i snenber(Xstates, [1:9]));

Xundamaged = Xdata(ldx, :);

nUndanaged = si ze(Xundanmaged, 1);

nTrain = round(0. 8*nUndanaged) ;

Xtrain = Xundamaged(1l:nTrain, :);

Xtest = [Xundamaged(nTrai n+1: nUndamaged, :); Xdata(~ldx, :)];
nTest = size(Xtest, 1);

Now set labels for the test data, O corresponds to undamaged, and 1 to damaged.

number of undamaged in test.

nTest _0 = nUndamaged - nTrai n;

test labels

testLabels = [zeros(nTest_0, 1); ones(nTest -nTest_0, 1)];

Train a model over the undamaged data

The next call learns a mixture of k gaussians over the undamaged data and returns the parameters of this model in dModel. The partition
function is one of those in "SemiParametricDetectors/PartitioningAlgorithms/* or should have the same behavior as one of those functions
(including signature). The "MMFun" is a Mixture Model function from "SemiParametricDetectors/ParametricMixtures" or should have the

same behavior.

partitionFun = @Medi ans_shm

MVFun = @ ear nGVM _shm

k = 5;

dModel = | ear nGMVBeni Par anet ri cMbdel _shm(Xtrain, partitionFun,Kk);

Pick a threshold from the training data.

We will first obtain the "scores" over the training data, that is the log-likelihoods that are given by the learned distribution. Then we learn a
distribution of these scores, and pick a threshold so that 90% of the training data (undamaged data) has scores above this threshold
(according to the distribution of scores).

l'i kel i hoods = scoreGwM shm(Xtrain, dMbdel);
learn a normal distribution over the scores

model _p = m e(likelihoods, 'distribution', "normal');

pick the threshold

confidence = 0.9;
threshold = icdf (' nornal', 1-confidence, nodel_p(1), nodel _p(2));

Test the detector

Now the detector consists simply of getting the distribution of scores over the test data, under the distribution learned on the undamaged
training data (dModel). We simply flag a test point as "damaged” whenever it falls below our threshold.

Test scores

scores = scoreGwWsen Par anet ri cModel _shm(Xt est, dModel) ;

Results contains a 1 whenever we think the point is damaged, a 0 otherwise.

results = scores <= threshol d;

Report the detector's performance.

Various error rates

Total Err = sun(results ~= testlLabel s)/nTest;

fal sePositiveErr = sum(results(1:nTest_0) ~= 0)/nTest_O0;

fal seNegati veErr = sunm(results(nTest_0+1: end)~=1)/(nTest - nTest_0);

fprintf('\n Total error: 9%.2f\n False Positive rate: %.2f\n Fal se Negative rate: 9%.2f\n',
Total Err, falsePositiveErr, falseNegativeErr);

Total error: 0.14
Fal se Positive rate: 0.57
Fal se Negative rate: 0.04

ROC curve

[truePositives, fal sePositives] = ROC shm(scores,testLabels);

Now plot the curve

figure;

pl ot (fal sePositives, truePositives);
x|l abel (' fal sePositives');

yl abel (' truePositives');

title(' ROC curve');

truePositives

ROC curve

| |
0.4 0.6
falseFositivas

0.3

http://www.mathworks.com/products/matlab/

Example Usage: Direct Use of Non-Parametric Routines

Contents

= [ntroduction

= Load data

= Train a model over the undamaged data
= Pick a threshold from the training data.
= Test the detector

= Report the detector's performance.

Introduction

Here we show how to directly use the Nonparametric routines while bypassing the "trainOutlierDetector" routine.

The data used in this example is from the 3-story structure. More details about the data sets can be found in 3-Story Data Sets.
Requires data3SS4.mat dataset.

SHMTools functions called:

ar Mbdel _shm
| ear nKer nel Densi ty_shm
scor eKernel Density_shm

Author: Samory Kpotufe

Date Created: August 19, 2009

Load data

The data here is in the form of time series in a 3 dimensional matrix (time, sensors, instances) and also a state vector representing the
various environmental conditions under which the data is collected.

| oad(' dat a3SS. mat ') ;
For this example, we will break each 8192 point time series into 4, 2048 point time series.

ti meData = zeros(2048, 5, 680);

ti meDat aStates = zeros(1, 680);

for i=1:4
tinmeData(:,:,i:4:680)=dataset ((1+2048*(i-1)):(2048*i),:,:);
tineDataStates(:,i:4:680)=states(:,:);

end

Extract some features using your favorite function, but first pick N of the instances (each time series reading over all sensors). Each
instance is then transformed into a feature vector: the returned matrix has the form (instances, features).

N = 400;

I dx = randpern(si ze(tineData, 3));

ldx = 1dx(1: N);

Xdata = arModel _shrm(tineData(:, :, 1dx));
Xstates = tineDataStates(!dx);

Now set 80% of states 1:9 aside as the training data, these states correspond to undamaged readings. We'll then test on the remaining
20% of 1:9 and on the "damaged" states 10:17.

I dx = logical (i snenber(Xstates, [1:9]));

Xundamaged = Xdata(ldx, :);

nUndanaged = si ze(Xundanmaged, 1);

nTrain = round(0. 8*nUndanaged) ;

Xtrain = Xundamaged(1l:nTrain, :);

Xtest = [Xundamaged(nTrai n+1: nUndamaged, :); Xdata(~ldx, :)];
nTest = size(Xtest, 1);

Now set labels for the test data, O corresponds to undamaged, and 1 to damaged.

number of undamaged in test.

nTest _0 = nUndamaged - nTrai n;

test labels

testLabels = [zeros(nTest_0, 1); ones(nTest -nTest_0, 1)];

Train a model over the undamaged data

The next call learns a nonparametric distribution over the data. We supply a kernel function to use, from one in
"NonParametricDetectors/Kernels", or any other function with similar behavior and signature. Next we instruct the learner to do bandwidth
selection through cross-validation by setting bs_method to 2 and H to []. If an actual bandwidth matrix H is passed in, this will be used
instead.

ker nel Fun = @panechni kovKer nel _shm

H=1[1];
bs_net hod = 2;
dMbdel = | earnKernel Density_shm(Xtrain, H, kernel Fun, bs_method);

Pick a threshold from the training data.

We will first obtain the "scores" over the training data, that is the log-likelihoods that are given by the learned distribution. (Note that every
'learn’ function has a corresponding 'score’ function, see the example in direct use of semi-parametric).Then we learn a distribution of these
scores, and pick a threshold so that 90% of the training data (undamaged data) has scores above this threshold (according to the
distribution of scores).

l'i kel i hoods = scoreKernel Density_shn(Xtrain, dMdel);

learn a normal distribution over the scores

model _p = m e(likelihoods, "distribution', '"normal"');

pick the threshold

confidence = 0.9;
threshold = icdf (' nornal', 1-confidence, nodel _p(1), nodel _p(2));

Test the detector

Now the detector consists simply of getting the distribution of scores over the test data, under the distribution learned on the undamaged
training data (dModel). We simply flag a test point as "damaged” whenever it falls below our threshold.

Test scores

scores = scoreKernel Density_shm(Xtest, dMbdel);

Results contains a 1 whenever we think the point is damaged, a 0 otherwise.

results = scores <= threshol d;

Report the detector's performance.

Various error rates

Total Err = sun(results ~= testlLabel s)/nTest;

fal sePositiveErr = sum(results(1:nTest_0) ~= 0)/nTest_O0;

fal seNegati veErr = sunm(results(nTest_0+1: end)~=1)/(nTest - nTest_0);

fprintf('\n Total error: 9%.2f\n False Positive rate: %.2f\n Fal se Negative rate: 9%.2f\n',
Total Err, falsePositiveErr, falseNegativeErr);

Total error: 0.13
Fal se Positive rate: 0.48
Fal se Negative rate: 0.04

ROC curve

[truePositives, fal sePositives] = ROC shm(scores,testLabels);

Now plot the curve

figure;

pl ot (fal sePositives, truePositives);
x|l abel (' fal sePositives');

yl abel (' truePositives');

title(' ROC curve');

truePositives

09

0.3

0.7

06

0.5

0.4

0.3

0z

0.1

ROC curve

0z

| |
0.4 06 0.3
falseFPositives

http://www.mathworks.com/products/matlab/

Example Usage: Fast Metric Kernel Density Estimation

Contents

= Introduction

= Training data

= Build the model

= Test data

= Score on the test points

= Naive kernel density estimation

= Plot the estimated densities

Introduction

Distance metrics play an important role in nonparametric density estimation. In kernel density estimation, the notion of distance used is the
Euclidean 12 norm: the density at a point x is roughly estimated as the proportion of points that fall in a Euclidean ball B(x, h) divided by the
volume of this ball. Instead of using a Euclidean ball, we might use a different metric which we deem more "natural" for our particular
application. Here we show how to use the "Fast Metric Kernel Estimation" modules to accomplish this. These modules are implemented
using a so-called "cover-tree" data structure which enables fast estimation of the density at x. The datastructure allows us to avoid
computing the distance from x to every training point (in order to identify the points that fall in the ball B(x, h)), and instead arranges the
training points hierarchically in covers so that one only need to check the distances to some of the points. Note that this is a large
datastructure and needs to reside in memory if we want to obtain speedups, otherwise loading time becomes the bottleneck.

We note however that in Matlab, matrix operations are usually faster that loops, and this fact can be used to compute L2 distances faster
by taking advantage of its relation to inner products. The modules in "Fast Metric Kernel Estimation" therefore are mainly useful when using
a distance metric that cannot be implemented fast through matrix operations.

To learn more on cover tree type datastructures, we refer the user to the following references on fast proximity search methods.

References: Samory Kpotufe. Fast, smooth and adaptive regression in metric spaces. NIPS 2009. A. Beygelzimer, S. Kakade, and J.
Langford. Cover trees for nearest neighbors. ICML, 2006. R. Krauthgamer and J. Lee. Navigating nets: Simple algorithms for proximity
search. SODA, 2004.

SHMTools functions called:

| ear nFast Met ri cKer nel Density_shm
scor eFast Metri cKernel Density_shm
| kDi st _shm

netri cKernel _shm

Author: Samory Kpotufe

Date Created: January 7, 2010

Training data

The data will be drawn out of a mixture of two gaussians in R"2.

D= 2;
= 700;

3
I

Xtrain = [4*randn(m 2, D); 5*randn(m2, D) - repmat([15 0], m2, 1)];

Build the model

Here we build two models, one using an I1 metric, and the other using an 12 Euclidean metric and later compare the results.

not supplying h forces learner to pick bandwidth through cross validation

h =11;

by default kernelType = 1

ker nel Type = 2;

kernel function to use

distMetric = @kDi st_shm

The model contains the cover tree datastructure, the learned h and a copy of Xtrain.

fast L1Model = | earnFast Metri cKernel Density_shm(Xtrain, h, kernel Type, distMetric);

Now the 12 model

distMetric = @2Di st_shm
fast L2Model = | earnFast Metri cKernel Density_shm(Xtrain, h, kernel Type, distMetric);

Test data

We pick uniformly from a grid over the R"2 plane

[x y] = meshgrid([-40:40]);
n = size(x, 1);
t = 1;
for i=1:n
for j =1:n
X(t,) = [x(i, j), y(i, i)l
t = t+1;
end
end

Score on the test points

The scoring functions below will return the log of the density at each test point. We record the time to compare it against the naive way of
doing kernel density estimation, i.e. by computing the distance to all training points.

tic;
fastL1Z = scoreFast MetricKernel Density_shn(X, fastL1Model);

fast L1Ti mre = toc;

fastL2Z = scoreFast Metri cKernel Density_shn(X, fastL2Mdel);

Naive kernel density estimation

Now we do the estimation by the "naive" implementation where we just compute the distance to all points and use a kernel, using a
bandwidth parameter h = 6 (pre-picked as a good one over this particular data). Here again we use the 11 distance of earlier.

h = 6;
nai veL1Z = zeros(size(X 1), 1);
tic;

for i=1:size(X 1)

dist = | kDi st_shm(X(i, :), Xtrain);

wei gt hs = netricKernel _shn{(dist/h);

nai velL1Z(i) = (1/(n*h~D))*sunm(wei gt hs);
end
nai veL1Ti me = toc;

fprintf('\nfast L1 Tine: 9. 2f s, naive L1 Tinme: %.2f s\n', fastL1Ti ne, naivelLlTi ne);

fast L1 Tinme: 2.53 s, naive L1 Tine: 11.83 s

Plot the estimated densities

Put Z in the right format for meshing, and plot.

for i=1:n
for j =1:n
I 1z(i, j) = exp(fastL1iz(t)) ;
t = t+1;
end
end

for i=1:n
for j =1:n
| 2z(i, j) = exp(fastL2z(t)) ;
t = t+1;
end
end

for i=1:n
for j =1:n
nai vez(i, j) = exp(naivelLlz(t)) ;
t = t+1;
end
end

figure;

mesh(x, y, 11z);
xl abel (" X');
ylabel ("Y');

z|l abel (' density');

title('Fast L1 estimate');

figure;

mesh(x, y, |2z);
x| abel (" X');
ylabel (" Y');

z|l abel (' density');

title('Fast L2 estimate');

figure;

mesh(x, y, naivez);

xl abel (' X");

yl abel (" Y');

zl abel (' density');
title('Naive estimate');

20

#fﬁi‘*
4
¥

i
“!‘

Fast L1 estimate

i

e
Y

A
IR

40

20

Fast L? estimate

20

% 10
5 ﬁﬁ‘ﬁ
i II!I'.,-*I
.%‘4* o
2.
B AR
il A i;“\ I
o JI S .
*ﬁ*fﬁﬁ'*i'ﬂ‘ﬁ*‘ 40

20

Maive estimate

A
i Ak
? H ""1 [‘I\t\\:ﬂ.‘

'*fiiff"rﬁ.*ﬂﬂ::%‘h

.’ J
= J‘rf.q.ﬁ. . ¢.

A

m»'}

20

20

Published with MATLAB® R2013a

http://www.mathworks.com/products/matlab/

	ExampleUsagesCover
	index
	Local Disk
	Example Usages

	threeStoryDataSet
	Local Disk
	Base-Excited 3-Story Structure Data Sets

	cbmDataSet
	Local Disk
	Conditioned-Based Monitoring Example Data Set for Rotating Machinery

	example_DAQ_ARModel_Mahalanobis
	Local Disk
	DAQ plus AR Parameters plus Mahalanobis Distance

	exampleOutlierDetectionParametricDistribution
	Local Disk
	Outlier Detection based on Chi-Squared Distribution for Undamaged State

	exampleDLAR
	Local Disk
	Damage Location using AR Parameters from an Array of Sensors

	exampleDLARX
	Local Disk
	Damage Location using ARX Parameters from an Array of Sensors

	exampleARModelOrder
	Local Disk
	Appropriate Autoregressive Model Order

	example_ModalOSP
	Local Disk
	Optimal Sensor Placement Using Modal Analysis Based Approaches

	exampleModalFeatures
	Local Disk
	Data Normalization for Outlier Detection using Modal Properties

	example_CBM_Bearing_Analysis
	Local Disk
	Condition Based Monitoring Ball Bearing Fault Analysis

	example_CBM_Gear_Box_Analysis
	Local Disk
	Condition Based Monitoring Gearbox Fault Analysis

	exampleSensorDiagnostics
	Local Disk
	Example Usage: Sensor Diagnostics

	example_NI_multiplex
	Local Disk
	National Instruments DAQ for Ultrasonic Active Sensing

	exampleActiveSensingFeature
	Local Disk
	Ultrasonic Active Sensing Feature Extraction

	exampleAssembleCustomDetector
	Local Disk
	Example Usage: Assemble a Custom Detector

	exampleDefaultDetectorUsage
	Local Disk
	Example Usage: How to Use the Default Detectors

	exampleNLPCA
	Local Disk
	Outlier Detection based on Nonlinear Principal Component Analysis

	exampleFactorAnalysis
	Local Disk
	Outlier Detection based on Factor Analysis

	examplePCA
	Local Disk
	Outlier Detection based on Principal Component Analysis

	exampleSVD
	Local Disk
	Outlier Detection based on Singular Value Decomposition

	exampleMahalanobis
	Local Disk
	Outlier Detection based on Mahalanobis Distance

	exampleDirectUseOfSemiParametric
	Local Disk
	Example Usage: Direct Use of Semi-Parametric Routines

	exampleDirectUseOfNonParametric
	Local Disk
	Example Usage: Direct Use of Non-Parametric Routines

	exampleFastMetricKernelDensity
	Local Disk
	Example Usage: Fast Metric Kernel Density Estimation

