Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Scaling Post-Meshing Operations
on Next Generation Platforms

~ Roshan Quadros, Brian Carnes,
' Madison Brewer, and Byron Hanks

DOE Centers of Excellence Performance Portability Meeting
Aug 22-24, 2017
Denver

ST,

\DENERGY r—— m Laboratories SAND No: SAND2017-8825 PE
Sandia National Laboratories is a multi mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

CUBIT and Percept combined workflow for
generating large meshes

CUBIT %
Percept

e N iy Iy o o Ry e N e W gy R W Ry SRR

CUBIT provides extensive
capabilities for preparing
geometry and generating

an initial mesh Initial Mesh Generation:

advanced meshing
https://cubit.sandia.gov algorithms for Tri, Quad,
Tet, and Hex mesh
generation

Parallel decomposition,
refinement, smoothing, & projection

Post-Meshing Operations:
Refinement->Projection->Smoothing

N\
i

NN

\VAVAV/

/N

v,
KX

NN
NN

Vave
AV
avavy

VAVAVAY

/\

VAV
N

\VAYA

AV
AV

JAVAN

LA
S
5
S22

/AN
%V

sv‘v‘ﬂﬂ
S
AV
v
AL

N/
\V4

VAN
LLG
SAA

AN

VA
TAVAN

!
7

NWAVA

Wl

\

7

N
KIS
o
=
AN
N\ /\

</
==

Aé“'
ZAVAN

N

AARER
SVAYaYaTY

7]
g}
AVAVAN

Mesh refinement workflow: Supported mesh types:

» (Generate refined meshes in block-structured
memory from an existing unstructured
mesh « hybrid

* Project new boundary nodes
onto geometry

« Smooth interior mesh nodes
to improve mesh quality

Post-Meshing Operator #1: Projection

processor id
0.000e+00 3. 10.5 1.400e+01

5 7
M|IIIIIIIII|IIIIIIIII|1“

Geometry Kernel: OpenNURBS

= Open Source from
www.rhino3d.com

" Lightweight & easy to
Port

= Query operations are —_ 4
thread safe
= Supports various curves \ \\./ &
& surface definitions | & N

Parallel Kernel

Project Points on a NURBS Surface

Programming Model: MPI + Kokkos (OpenMP)

Three levels of parallelism is
required:

Knights Landing Overview ™ [k 228

L2

Core Core

1) Distributed memory
parallelism via MPI

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

5 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by | Node: 1-Socket only

2) Shared memory thread A L oo
Ievel para”elism on the : = / : - Scalar Perf: ~3x over Knights Corner
MIC device using Kokkos == 0 - TS

with OpenMP runtime Hardware:
P Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org

3) Vectorization for Vector
Processing Unit (VPU)

Programming Model: MPI + Kokkos (OpenMP)

{ // MPI distributes data to n processes
ON_Surface *surface;
ON_3dPoint *buff p;

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

if (rank == 0){
for(int r=1; r < numtasks; r++){

ierr = MPI_Send (p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);
}

} else{

ierr = MP1_Recv (buff_p, num_pnts*3, MPlI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD,
&status);

}
projection_method(surface, buff_p, num_pnts);

}

void projection_method(const ON_Surface *surface, ON_3dPoint *buff p, const int num_pnts X

// Kokkos handles thread level parallelism
Kokkos::parallel_for (num_pnts, KOKKOS_LAMBDA(const int i){

// OpenNURBS API for projecting a point on a surface

double u, v;

surface->GetClosestPoint(buff_p[i], &u, &v);

ON_3dPoint projected_pt = surface->PointAt(u, v);
D

Point Projection Scaling Results on KNL

-mpi_ 1 -=mpi 2 -=mpi 4 -empi 8 -e—mpi 16 -e—mpi 32 =-e—mpi 64

1108.85

933.07 A ~e—__

640

Speedup (MPI 32 ranks) = 28X

320 Speedup (MPI + Kokkos) = 77X

Time (sec)
® o
o o

N
o

N
o

SO

SN
o

1 10 100 1000

Threads per rank

Thread Affinity on KNL

1000
Blue - Scatter
Red - Compact
100
2 10
|_
1 | | |
1 10 100 1000

Threads per KNL

Post-meshing Operator #2: Refinement

Structured grid refinement was a relatively simple process
» Removed pointers and references to main memory objects
» Replaced structured grid data structures with Kokkos views
= Algorithm :
= Allocate new mesh (view)
= For each block (in serial)
» For each element in old mesh (in parallel)
= [Interpolate coordinates for new mesh
» Transfer existing node coordinates

Scalability of Refinement

Sequence of meshes
« 0.5M, 4M, 33M elements 107 ¢ o1
o : - ——m— Serial 83
multiple blocks (12) F e apu :
[— —&- — OpenMP (2) ed
— —- — OpenMP (4) d
Compare 10'k ~ ~4- — OpenMP (8) .77 Ao
. - — —¢- — OpenMP (16) T A
* serial - AR A
° GPU “g I _ ;: - : - : -]
. threading (OpenMP) S0k el J1o°
E | cl-itF z
S ST]
Better scalability with - $7 . .
Increasing problem size = 4 410’
Blocks were refined ! :
sequentially 10—y 0’
0.5M Elems Num Elems 33M Elems
Sandia
National —_

Laboratori

Post-Meshing Operator #3: Smoothing

Smoothing structured grids was more complex | PR
i g g]
process ; PR
o o . | e 7
= compute global quality metric and gradient o A o
. U E - - P E
= nonlinear CG optimization with line search ¢ A l 7 oM Elems
. . ~ e
"= communication between structured blocks 3 | - ©7 o
10' p v/ <10
(gradients) S :
. TR PR Phd ~ - - OMP-01 |-
Example: smoothing a large cube with initial - ~ a— - OMP-04 |-
10° Ve _ — -ll— - OMP-16 J10°
randomly perturbed nodes - - @--0GPU]
L T
§a :“ gm'- -ucg ;,.:;10— \\ -Ilzg
z -z J10% \\ 140z
0 T . T \‘\ H10°
'ID 2.3 I(el:’iollons -:IO 510 6]0 0 2l0 |(en:|n|ons f:.'! 80 0o 5’0 l';IO 1.:10 I(eeraagloniso 300 350 400
Untangling: invalid elements Untangling: metric/gradient Smoothing: metric/gradient

Smoothing Pitfall: Abstract Interfaces

= Abstract mesh interface for both structured and unstructured
= high cost of kernel calls
= sub-optimal interface to structured grid
= functions not safe for threads or GPU
= Suggestion for abstract interfaces:
= designed with shared memory (Kokkos) from start
= otherwise, opt for specialized interfaces.

StructuredMesh
MeshBase <

UnstructuredMesh

Smoother<MeshBase>

* depends on many
virtual functions in
MeshType class

Smoothing Pitfall: Hardware Differences

»= Total metric (long double) was sum of individual metrics (double)
" Problematic for GPU builds as CUDA only uses up to 64 bits (double
precision) for floating point representation.
= Causes illegal memory access:
= cudaDeviceSynchronize() error(
cudaErrorlllegalAddress): an illegal memory access was encountered

= Certain STL classes and functions are problematic on GPUs
= array, unorderedmap, vector, set, ...
= array => Kokkos::Array
= unorderedmap => Kokkos::UnorderedMap
= std::max was rewritten locally

Smoothing Pitfall: Memory Layout

= Memory layout initially caused very poor performance on the GPU
= Smoothing test case: perturbed cube followed by mesh smoothing

25F
20 F
15 F

——F—— LayoutRight
——+——— LayoutLeft

10

(6]
T ———

Time (seconds)

| | | | ! | | | a1
- 40 60 80 100

Intervals per Edge

Future Work

= Projection:
e Study high water mark of memory usage for different
combination of MPI ranks and Threads per rank
= Unstructured Refinement:
 More complicated algorithm than structured
 Example: determine number of new nodes
* use Kokkos map to store needed nodes
* values stored for every mesh edge/face
 map also used to interpolate new coordinates
= Smoothing:
* Investigate other smoothing algorithms (elliptic smoother)

Thank You

