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CUBIT and Percept combined workflow for
generating large meshes

CUBIT %
Percept
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CUBIT provides extensive
capabilities for preparing
geometry and generating

an initial mesh Initial Mesh Generation:

advanced meshing
https://cubit.sandia.gov  algorithms for Tri, Quad,
Tet, and Hex mesh
generation

Parallel decomposition,
refinement, smoothing, & projection



Post-Meshing Operations:
Refinement->Projection->Smoothing
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Mesh refinement workflow: Supported mesh types:

» (Generate refined meshes in  block-structured
memory from an existing  unstructured
mesh « hybrid

* Project new boundary nodes
onto geometry

« Smooth interior mesh nodes
to improve mesh quality




Post-Meshing Operator #1: Projection
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Geometry Kernel: OpenNURBS

= Open Source from
www.rhino3d.com

" Lightweight & easy to
Port

= Query operations are —_ 4
thread safe
= Supports various curves \ \\./ &
& surface definitions | & N




Parallel Kernel

Project Points on a NURBS Surface




Programming Model: MPI + Kokkos (OpenMP)

Three levels of parallelism is
required:

Knights Landing Overview ™ [k 228

L2

Core Core

1) Distributed memory
parallelism via MPI

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

5 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by | Node: 1-Socket only

2) Shared memory thread A L oo
Ievel para”elism on the : = / : - Scalar Perf: ~3x over Knights Corner
MIC device using Kokkos == 0 - TS

with OpenMP runtime Hardware:
P Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org

3) Vectorization for Vector
Processing Unit (VPU)




Programming Model: MPI + Kokkos (OpenMP)

{ // MPI distributes data to n processes
ON_Surface *surface;
ON_3dPoint *buff p;

MPI_Comm_size( MPI_COMM_WORLD, &numtasks);

if (rank == 0 ){
for(int r=1; r < numtasks; r++){

ierr = MPI_Send ( p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);
}

} else{

ierr = MP1_Recv ( buff_p, num_pnts*3, MPlI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD,
&status );

}
projection_method( surface, buff_p, num_pnts );

}

void projection_method( const ON_Surface *surface, ON_3dPoint *buff p, const int num_pnts X

// Kokkos handles thread level parallelism
Kokkos::parallel_for ( num_pnts, KOKKOS_LAMBDA(const int i ){

// OpenNURBS API for projecting a point on a surface

double u, v;

surface->GetClosestPoint( buff_p[i], &u, &v );

ON_3dPoint projected_pt = surface->PointAt( u, v );
D




Point Projection Scaling Results on KNL
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Thread Affinity on KNL
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Post-meshing Operator #2: Refinement

Structured grid refinement was a relatively simple process
» Removed pointers and references to main memory objects
» Replaced structured grid data structures with Kokkos views
= Algorithm :
= Allocate new mesh (view)
= For each block (in serial)
» For each element in old mesh (in parallel)
= [Interpolate coordinates for new mesh
» Transfer existing node coordinates




Scalability of Refinement

Sequence of meshes
« 0.5M, 4M, 33M elements 107 ¢ o1
o : - ——m— Serial 83
multiple blocks (12) F e apu :
[ — —&- — OpenMP (2) ed
— —- — OpenMP (4) d
Compare 10'k ~ ~4- — OpenMP (8) .77 Ao
. - — —¢- — OpenMP (16) T A
* serial - AR A
° GPU “g I _ ;: - : - : - ]
. threading (OpenMP) S0k el J1o°
E | cl-itF z
S ST ]
Better scalability with - $7 . .
Increasing problem size = 4 410’
Blocks were refined ! :
sequentially 10—y 0’
0.5M Elems Num Elems 33M Elems
Sandia
National —_

Laboratori



Post-Meshing Operator #3: Smoothing

Smoothing structured grids was more complex | PR
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Smoothing Pitfall: Abstract Interfaces

= Abstract mesh interface for both structured and unstructured
= high cost of kernel calls
= sub-optimal interface to structured grid
= functions not safe for threads or GPU
= Suggestion for abstract interfaces:
= designed with shared memory (Kokkos) from start
= otherwise, opt for specialized interfaces.

StructuredMesh
MeshBase <

UnstructuredMesh

Smoother<MeshBase>

* depends on many
virtual functions in
MeshType class




Smoothing Pitfall: Hardware Differences

»= Total metric (long double) was sum of individual metrics (double)
" Problematic for GPU builds as CUDA only uses up to 64 bits (double
precision) for floating point representation.
= Causes illegal memory access:
=  cudaDeviceSynchronize() error(
cudaErrorlllegalAddress): an illegal memory access was encountered

= Certain STL classes and functions are problematic on GPUs
= array, unorderedmap, vector, set, ...
= array => Kokkos::Array
= unorderedmap => Kokkos::UnorderedMap
= std::max was rewritten locally




Smoothing Pitfall: Memory Layout

= Memory layout initially caused very poor performance on the GPU
= Smoothing test case: perturbed cube followed by mesh smoothing
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Future Work

= Projection:
e Study high water mark of memory usage for different
combination of MPI ranks and Threads per rank
= Unstructured Refinement:
 More complicated algorithm than structured
 Example: determine number of new nodes
* use Kokkos map to store needed nodes
* values stored for every mesh edge/face
 map also used to interpolate new coordinates
= Smoothing:
* Investigate other smoothing algorithms (elliptic smoother)
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