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Parallel decomposition,
refinement, smoothing, & projection

CUBIT

Percept

CUBIT	and	Percept	combined	workflow	for	
generating	large	meshes

Initial Mesh Generation: 
advanced meshing 

algorithms for Tri, Quad, 
Tet, and Hex mesh 

generation

CUBIT	provides	extensive	
capabilities	for	preparing	
geometry	and	generating	
an	initial	mesh
https://cubit.sandia.gov



Post-Meshing	Operations:
Refinement->Projection->Smoothing

Mesh refinement workflow:
• Generate refined meshes in 

memory from an existing 
mesh

• Project new boundary nodes 
onto geometry

• Smooth interior mesh nodes 
to improve mesh quality

Supported mesh types:
• block-structured
• unstructured
• hybrid



Post-Meshing	Operator	#1:	Projection



Geometry	Kernel:		OpenNURBS

§ Open	Source	from	
www.rhino3d.com

§ Lightweight	&	easy	to	
Port

§ Query	operations	are	
thread	safe

§ Supports	various	curves	
&	surface	definitions	



Parallel	Kernel:	
Project	Points	on	a	NURBS	Surface



Programming	Model:	MPI	+	Kokkos (OpenMP)
Three	levels	of	parallelism	is	
required:

1) Distributed	memory	
parallelism	via	MPI

2) Shared	memory	thread	
level	parallelism	on	the	
MIC	device	using	Kokkos
with	OpenMP runtime

3) Vectorization	for	Vector	
Processing	Unit	(VPU)	

Hardware: 
Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org



Programming	Model:	MPI	+	Kokkos (OpenMP)
{ // MPI distributes data to n processes

ON_Surface *surface;
ON_3dPoint *buff_p;
MPI_Comm_size( MPI_COMM_WORLD, &numtasks);
…
if ( rank == 0 ){

for( int r=1; r < numtasks; r++){
…
ierr = MPI_Send ( p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);

}
} else{

ierr = MPI_Recv ( buff_p, num_pnts*3, MPI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD, 
&status );

}
projection_method( surface, buff_p, num_pnts );

}
void projection_method( const ON_Surface *surface, ON_3dPoint *buff_p, const int num_pnts ){

…
// Kokkos handles thread level parallelism
Kokkos::parallel_for ( num_pnts, KOKKOS_LAMBDA(const int i ){

...
// OpenNURBS API for projecting a point on a surface 
double u, v;
surface->GetClosestPoint( buff_p[i], &u, &v );
ON_3dPoint projected_pt = surface->PointAt( u, v );

});
}



Point	Projection	Scaling	Results	on	KNL
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Thread	Affinity	on	KNL
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Post-meshing	Operator	#2:	Refinement
Structured grid refinement was a relatively simple process
§ Removed pointers and references to main memory objects
§ Replaced structured grid data structures with Kokkos views
§ Algorithm :

§ Allocate new mesh (view)
§ For each block (in serial)

§ For each element in old mesh (in parallel)
§ Interpolate coordinates for new mesh
§ Transfer existing node coordinates



Scalability	of	Refinement

Sequence of meshes
• 0.5M, 4M, 33M elements
• multiple blocks (12)

Compare
• serial
• GPU
• threading (OpenMP)

Better scalability with 
increasing problem size

Blocks were refined 
sequentially



Post-Meshing	Operator	#3:	Smoothing
Smoothing	structured	grids	was	more	complex	
process	
§ compute	global	quality	metric	and	gradient
§ nonlinear	CG	optimization	with	line	search
§ communication	between	structured	blocks	

(gradients)
Example:	smoothing	a	large	cube	with	initial	
randomly	perturbed	nodes

Untangling: invalid elements Smoothing: metric/gradientUntangling: metric/gradient



§ Abstract	mesh	interface	for	both	structured	and	unstructured
§ high	cost	of	kernel	calls
§ sub-optimal	interface	to	structured	grid
§ functions	not	safe	for	threads	or	GPU

§ Suggestion	for	abstract	interfaces:	
§ designed	with	shared	memory	(Kokkos)	from	start
§ otherwise,	opt	for	specialized	interfaces.

Smoothing	Pitfall:	Abstract	Interfaces

StructuredMesh

UnstructuredMesh

Smoother<MeshBase>
• depends	on	many	

virtual	functions	in	
MeshType class

MeshBase



§ Total	metric	(long	double)	was	sum	of	individual	metrics	(double)
§ Problematic	for	GPU	builds	as	CUDA	only	uses	up	to	64	bits	(double	

precision)	for	floating	point	representation.	
§ Causes	illegal	memory	access:

§ cudaDeviceSynchronize() error( 
cudaErrorIllegalAddress): an illegal memory access was encountered

§ Certain	STL	classes	and	functions	are	problematic	on	GPUs
§ array,	unorderedmap,	vector,	set,	…

§ array	=>	Kokkos::Array
§ unorderedmap =>	Kokkos::UnorderedMap

§ std::max	was	rewritten	locally

Smoothing	Pitfall:	Hardware	Differences



§ Memory	layout	initially	caused	very	poor	performance	on	the	GPU
§ Smoothing	test	case:	perturbed	cube	followed	by	mesh	smoothing

Smoothing	Pitfall:	Memory	Layout



Future	Work
§ Projection:

• Study	high	water	mark	of	memory	usage	for	different	
combination	of	MPI	ranks	and	Threads	per	rank

§ Unstructured	Refinement:
• More	complicated	algorithm	than	structured
• Example:	determine	number	of	new	nodes	

• use	Kokkos	map	to	store	needed	nodes
• values	stored	for	every	mesh	edge/face
• map	also	used	to	interpolate	new	coordinates

§ Smoothing:
• Investigate	other	smoothing	algorithms	(elliptic	smoother)



Thank	You


