
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Roshan	Quadros,	Brian	Carnes,	
Madison	Brewer,	and	Byron	Hanks

DOE	Centers	of	Excellence	Performance	Portability	Meeting	
Aug	22-24,	2017	
Denver	

Scaling	Post-Meshing	Operations	
on	Next	Generation	Platforms

SAND No: SAND2017-8825 PE

Parallel decomposition,
refinement, smoothing, & projection

CUBIT

Percept

CUBIT	and	Percept	combined	workflow	for	
generating	large	meshes

Initial Mesh Generation:
advanced meshing

algorithms for Tri, Quad,
Tet, and Hex mesh

generation

CUBIT	provides	extensive	
capabilities	for	preparing	
geometry	and	generating	
an	initial	mesh
https://cubit.sandia.gov

Post-Meshing	Operations:
Refinement->Projection->Smoothing

Mesh refinement workflow:
• Generate refined meshes in

memory from an existing
mesh

• Project new boundary nodes
onto geometry

• Smooth interior mesh nodes
to improve mesh quality

Supported mesh types:
• block-structured
• unstructured
• hybrid

Post-Meshing	Operator	#1:	Projection

Geometry	Kernel:		OpenNURBS

§ Open	Source	from	
www.rhino3d.com

§ Lightweight	&	easy	to	
Port

§ Query	operations	are	
thread	safe

§ Supports	various	curves	
&	surface	definitions	

Parallel	Kernel:	
Project	Points	on	a	NURBS	Surface

Programming	Model:	MPI	+	Kokkos (OpenMP)
Three	levels	of	parallelism	is	
required:

1) Distributed	memory	
parallelism	via	MPI

2) Shared	memory	thread	
level	parallelism	on	the	
MIC	device	using	Kokkos
with	OpenMP runtime

3) Vectorization	for	Vector	
Processing	Unit	(VPU)	

Hardware:
Trinity testbed containing 72 core KNL

Image courtesy of http://www.hotchips.org

Programming	Model:	MPI	+	Kokkos (OpenMP)
{ // MPI distributes data to n processes

ON_Surface *surface;
ON_3dPoint *buff_p;
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
…
if (rank == 0){

for(int r=1; r < numtasks; r++){
…
ierr = MPI_Send (p_start, num_pnts*3, MPI_DOUBLE, r, Tag, MPI_COMM_WORLD);

}
} else{

ierr = MPI_Recv (buff_p, num_pnts*3, MPI_DOUBLE, MPI_ANY_SOURCE, Tag, MPI_COMM_WORLD,
&status);

}
projection_method(surface, buff_p, num_pnts);

}
void projection_method(const ON_Surface *surface, ON_3dPoint *buff_p, const int num_pnts){

…
// Kokkos handles thread level parallelism
Kokkos::parallel_for (num_pnts, KOKKOS_LAMBDA(const int i){

...
// OpenNURBS API for projecting a point on a surface
double u, v;
surface->GetClosestPoint(buff_p[i], &u, &v);
ON_3dPoint projected_pt = surface->PointAt(u, v);

});
}

Point	Projection	Scaling	Results	on	KNL

933.07
1108.85

10

20

40

80

160

320

640

1 10 100 1000

Ti
m
e	
(s
ec
)

Threads	per	rank

mpi_1 mpi_2 mpi_4 mpi_8 mpi_16 mpi_32 mpi_64

Speedup (MPI 32 ranks) = 28X
Speedup (MPI + Kokkos) = 77X

Thread	Affinity	on	KNL

1

10

100

1000

1 10 100 1000
Threads per KNL

Ti
m

e
(s

ec
)

Blue - Scatter
Red - Compact

Post-meshing	Operator	#2:	Refinement
Structured grid refinement was a relatively simple process
§ Removed pointers and references to main memory objects
§ Replaced structured grid data structures with Kokkos views
§ Algorithm :

§ Allocate new mesh (view)
§ For each block (in serial)

§ For each element in old mesh (in parallel)
§ Interpolate coordinates for new mesh
§ Transfer existing node coordinates

Scalability	of	Refinement

Sequence of meshes
• 0.5M, 4M, 33M elements
• multiple blocks (12)

Compare
• serial
• GPU
• threading (OpenMP)

Better scalability with
increasing problem size

Blocks were refined
sequentially

Post-Meshing	Operator	#3:	Smoothing
Smoothing	structured	grids	was	more	complex	
process	
§ compute	global	quality	metric	and	gradient
§ nonlinear	CG	optimization	with	line	search
§ communication	between	structured	blocks	

(gradients)
Example:	smoothing	a	large	cube	with	initial	
randomly	perturbed	nodes

Untangling: invalid elements Smoothing: metric/gradientUntangling: metric/gradient

§ Abstract	mesh	interface	for	both	structured	and	unstructured
§ high	cost	of	kernel	calls
§ sub-optimal	interface	to	structured	grid
§ functions	not	safe	for	threads	or	GPU

§ Suggestion	for	abstract	interfaces:	
§ designed	with	shared	memory	(Kokkos)	from	start
§ otherwise,	opt	for	specialized	interfaces.

Smoothing	Pitfall:	Abstract	Interfaces

StructuredMesh

UnstructuredMesh

Smoother<MeshBase>
• depends	on	many	

virtual	functions	in	
MeshType class

MeshBase

§ Total	metric	(long	double)	was	sum	of	individual	metrics	(double)
§ Problematic	for	GPU	builds	as	CUDA	only	uses	up	to	64	bits	(double	

precision)	for	floating	point	representation.	
§ Causes	illegal	memory	access:

§ cudaDeviceSynchronize() error(
cudaErrorIllegalAddress): an illegal memory access was encountered

§ Certain	STL	classes	and	functions	are	problematic	on	GPUs
§ array,	unorderedmap,	vector,	set,	…

§ array	=>	Kokkos::Array
§ unorderedmap =>	Kokkos::UnorderedMap

§ std::max	was	rewritten	locally

Smoothing	Pitfall:	Hardware	Differences

§ Memory	layout	initially	caused	very	poor	performance	on	the	GPU
§ Smoothing	test	case:	perturbed	cube	followed	by	mesh	smoothing

Smoothing	Pitfall:	Memory	Layout

Future	Work
§ Projection:

• Study	high	water	mark	of	memory	usage	for	different	
combination	of	MPI	ranks	and	Threads	per	rank

§ Unstructured	Refinement:
• More	complicated	algorithm	than	structured
• Example:	determine	number	of	new	nodes	

• use	Kokkos	map	to	store	needed	nodes
• values	stored	for	every	mesh	edge/face
• map	also	used	to	interpolate	new	coordinates

§ Smoothing:
• Investigate	other	smoothing	algorithms	(elliptic	smoother)

Thank	You

