
Slide 1U N C L A S S I F I E D

Performance Portable Halo and Center
Finding in HACC

Li-Ta Lo
Jon Woodring
Chris Sewell
Adrian Pope

Katrin Heitmann

DOE COE Meeting
August 24, 2017

Presenter
Presentation Notes
Content Slide Notes
“UNCLASSIFIED” marking of slides is not a security requirement and may be deleted from the Slide Master (View › Master › Slide Master). In general, slides should be marked “UNCLASSIFIED” if there is potential for confusion or misinterpretation of something that could be deemed classified. For guidance on marking slides containing classified and unclassified controlled information, see the Protecting Information Web site at http://int.lanl.gov/security/protectinfo/.

Slide 2U N C L A S S I F I E D

Halo and Halo Center

• Friends of Friends Halo
– Connect each particle to other

particles within a linking length
– Two particle end up in the same Halo

if there is a chain of friends between
them

• Most Connected Particle (MCP)
– The particle within in a Halo with the

most friends

• Most Bound Particle (MBP)
– The particle within the Halo with

lowest potential
– Generally not the same as MBP

Slide 3U N C L A S S I F I E D

Un-Accelerated Halo Finding in HACC

• Particles are distributed to compute nodes according to
their domain decomposition.

• Overload zone are defined so the largest halo will be
fully contained within one single node.

• Each node executes a KD-Tree based halo finding
algorithm to find halos.

• Parallel halo finder merges the halos found such that a
unique set of halo is reported.

Slide 4U N C L A S S I F I E D

Accelerated Halo Finding in HACC

• Particles are distributed to compute nodes according to
their domain decomposition.

• Overload zone are defined so the largest halo will be
fully contained within one single node.

• Each node executes a performance portable halo finding
algorithm to find halos.

• Parallel halo finder merges the halos found such that a
unique set of halo is reported.

Slide 5U N C L A S S I F I E D

Performance Portability through Parallel
Primitives
• Parallel algorithms provided by the Thrust library

– A large subset has been standardized as C++17 parallel
algorithm library.

Algorithm Example
Sort [5 4 2 1 3] -> [1 2 3 4 5]
Transform(+1) [5 4 2 1 3] -> [6 4 3 2 4]
Inclusive Scan [5 4 2 1 3] -> [5 9 11 12 15]
Exclusive Scan [5 4 2 1 3] -> [0 5 9 11 12]
Reduce(+) [5 4 2 1 3] -> 15
Binary Search Needles: [4 3 1 0 2]

Haystack: [0 0 2 4 8]
Upper bound: [3 4 2 2 3]

Slide 6U N C L A S S I F I E D

Performance Portability through Parallel
Primitives
• Parallel algorithms provided by the Thrust library

– The most important/useful/difficult part were left out.

Algorithm Example
Sort By Key Keys: [0 2 0 1 1] -> [0 0 1 1 2]

Values: [5 4 2 1 3] -> [5 2 1 3 4]
Inclusive Scan By Key Keys: [0 0 1 1 1]

Values: [5 4 2 1 3] -> [5 9 2 3 6]
Exclusive Scan By Key Keys: [0 0 1 1 1]

Values: [5 4 2 1 3] -> [0 5 0 2 3]
Reduce(+) By Key Keys: [0 0 1 1 1] -> [0 1]

Values: [5 4 2 1 3] -> [9 6]

Slide 7U N C L A S S I F I E D

Halo Finder Algorithm: Parallel Connected
Component

Linking Length

1

2

3

4

5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Initialize

Parallel Edge Connection

Pointer Jumping

Slide 8U N C L A S S I F I E D

Halo Finder Algorithm: Computing Edge

• If we define an edge exists between pairs of particles within linking
length, connected component algorithms give the correct FoF Halo.

• However, it requires O(n^2) of space and time.
• We can improve the algorithm by binning particles into bins with

edge length equal to linking length.
– Each particle only need to search the 27 neighbor cells.
– Use a sparse representation of bins and pointers to the particles

in the bins.
– Pointers are store as three groups of neighbor bins thus only 9

pointers rather than 27.

Slide 9U N C L A S S I F I E D

Binning Particles

Slide 10U N C L A S S I F I E D

Center Finding Algorithms

• Most Connected Particle can be found by counting the
number of friends within the 27 bins. A segmented max
scan can then determine the particular particle with most
friends within each halo.

• Most Bound Particle can be found by first calculating its
potential within each halo. Followed up by a similar
approach as MCP to find the particle with minimum
potential.

Slide 11U N C L A S S I F I E D

MBP Center Finding

Slide 12U N C L A S S I F I E D

Results on Moonlight

FOF + MBP: ~4.9x faster than original with 16 rpn
FOF + MCP: ~2.5x faster than original with 16 rpn

Slide 13U N C L A S S I F I E D

Result on Stampede with Xeon Phi

Slide 14U N C L A S S I F I E D

Max runtime in for center finding on Mira,
Cooley and Theta (in seconds)

Stage Mira Cooley
(GPU)

Theta Thrust
(Multi-Core
KNL)

Theta (Single
Core)

Center Finder 1794.900 131.45 73.815 461.390

• Performance study conducted by Thomas D. Uram, Chris Sewell
and Adrian Pope

• Cooley is more 10x faster on Cooley’s GPU (K80) than Mira’ CPU
• More than 1.7x faster on Theta’s KNL than Cooley’s GPU

	Performance Portable Halo and Center Finding in HACC
	Halo and Halo Center
	Un-Accelerated Halo Finding in HACC
	Accelerated Halo Finding in HACC
	Performance Portability through Parallel Primitives
	Performance Portability through Parallel Primitives
	Halo Finder Algorithm: Parallel Connected Component
	Halo Finder Algorithm: Computing Edge
	Binning Particles
	Center Finding Algorithms
	MBP Center Finding
	Results on Moonlight
	Result on Stampede with Xeon Phi
	Max runtime in for center finding on Mira, Cooley and Theta (in seconds)

