Portability Initiatives for Scientific
Computing and Simulation:
Molecular Dynamics as a Case

Study

Arnold Tharrington
Ada Sedova

Oak Ridge National Laboratory
National Center for Computational Sciences

Scientific Computing Group

ORNL is managed by UT-Battelle #‘OAK RIDGE
for the US Department of Energy al Labor ACILITY

Introduction

* The goal of the talk is to provide beneficial portability insights. These
Insights are derived from our effort to develop a performance portable
molecular dynamics (MD) library.

 Targeted platforms:
— CUDA HPC architectures
« ORNL’s Summit - IBM POWER9 and NVIDIA Volta GPUs

— Later will target Intel Xeon Phi HPC architectures
« Argonne’s Aurora - 3rd Generation Intel Xeon Phi

— What about future HPC architectures?

%OAK RIDGE CONPUTING

1 Labo

What Is a Performance Portable Algorithm?

* Achieves “acceptable” performance across a variety of HPC
architectures

- Requires “minor” modifications when porting to novel HPC
architectures
 Design characteristics

— A consistent, unified front-end interface for the computational scientist to
use

— Machine-level specifics and optimizations are contained in back-end to
facilitate retargeting new architectures

&OAK RIDGE ggﬁ%@jﬁng

I Labor

he Molecular Dynamics Algorithm:

Given a system on N atoms with
positions ry, 1y, ..., Iy and an Algorithmic Steps
interacting potential V.

Given an starting S (= - =
y“ Conﬁguration R(t) at R(t) - {rl(t)xrz (t), '";rN(t)}
~ time t
I I
/, v ;- - T T T == ===== . .
E: = 0 This step is ~80%
> , |
Pre, Calculate the forces at |, Fy(t) = — 7 V(R(£))| of the total
N / 'me | y computational time
0 & . Integrate to solve for ry(t+At) = s
e 7, R(t+At) 27y(t) — Ty(t — At) + —F (1)
N
Z
R(t) = (1 (1), T (t), -, Tu(t » Calculate the relevant
&) = (8,72 ®), -, Ty (D) \ properties at time t+At
. . a ¢ t+At > t, R(t+AL) — R(1),
V(R) mem—y F;(t) = — 57 VR(®) etc.
r;
* Repeat

% OAK RIDGE | i

National Laboratory | FACILITY

Molecular Dynamics: Non-bonded-Forces Calculation iIs
the Bottleneck

« Long-range electrostatic interactions
forces

— Limited by scaling of the FFTW in the PME
calculation

— Solution: Implement a performance portable
long-range electrostatic solver library (Multilevel
Summation Method)

» Short-range 2 body (pair-wise) forces

— Computational complexity is O(N) where N is
the number of atoms

— Solution: Implement a performance portable
short range force solver for the Lennard-Jones
particle interactions

*OAK RIDGE | &ifine

National Laboratory | FACILITY

Preliminaries - What can | realistically do with my
given resources?

* One has performance profiled the application with near as close to
production status.

— Discover computational bottlenecks
— Discover the dominant data structures within these computational bottlenecks
— |s the application even suitable for acceleration?

Nonexisting Code

* We choose to write our libraries in C and C++

— Provides the best chance of compiling and running on many operating
systems using various compilers

— Used a portable subset of C/C++
« Used C/C++ subset that works well with compiler directive-based accelerator kernels
* Avoided exotic and experimental features of C/C++

— Allows for a long-term conversation with the computer science community
 Profilers, debuggers, and other development tools

% OAK RIDGE | i

National Laboratory | FACILITY

Library API?

- Spatial Decomposition

— Electrostatic Solver
* |Input atom charges and positions
* Returns forces

— Nonbonded interactions

* Much more difficult

— Atom positions, interaction parameters,
excluded interactions, modified interactions,
etc.

— Trying to replicate ease of use like
FFTW library

% OAK RIDGE | e

National Laboratory | FACILITY

Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

Q — simple array of IR — simple array of - = = - - Data structures on CPU
charges on CPU ::atomlc positions

The Accelerator Device
Wrapper is actually an API
between the CPU and
Accelerator Device

ITO Charges on device g Device is C++ Class

i I—— R 1 allocated on the

~ - device which
performs the

HPC Compute Device ggmgﬂtgtldoer:/i%g HPC
(Summit GPUs)

% OAK RIDGE | ieiesreir

National Laboratory | FACILITY

Accelerator Device

« Accelerator device abstracts the programming model
— Hand written CUDA kernels
— In the future, KOKKQOS, RAJA

— 10 years from now, who knows. | just have to satisfy the accelerator device
API

 Do’s for CUDA kernels

— Simple 1D contiguous arrays whose shapes and sizes are mostly known at
compile time — elemental data types

— Classes and structures that contain simple elemental data types
— Aligned and coalesced accesses
— Minimize the data transfers between CPU and GPU. It is oppressive!

* Don’ts for CUDA kernels
— Data structures that involve pointer chasing (e.g. linked lists) $,0AK RIDGE |

CCCCCCCCC
I Labo

Summary

* Profile application a close to production status as possible

« Separation of algorithm interface from its implementation
— Program to an interface, not an implementation

* |If coding goals and resources permit, try using an accelerated library
or OpenACC

— Other alternatives are KOKKOS, RAJA, etc.

 Avoid exotic data types
— Simple plain old data

&OAK RIDGE ggﬁ%@jﬁng

1 Labo

Additional References

1. Mooney JD. Bringing portability to the software process. Dept. of Statistics and Comp.
Sci., West Virginia Univ., Morgantown WV. 1997.

2 Mooney JD. Developing Portable Software. In: IFIP Congress Tutorials 2004 Jul 27 (pp.
55-84).

3. Schach SR. Object-oriented and classical software engineering. Boston: McGraw-Hill
Higher Education; 2011.

4. https://www.openacc.org

5. Computational and data-enabled science and engineering. https://www.nsf.gov

6. Tedre M, Denning PJ. Shifting Identities in Computing: From a Useful Tool to a New
Method and Theory of Science. In: Informatics in the Future 2017 (pp. 1-16). Springer,
Cham.

7. Kale V, Solomonik E. Parallel sorting pattern. In: Proceedings of the 2010 Workshop on
Parallel Programming Patterns 2010 Mar 30 (p. 10). ACM.

8. Jocksch A, Hariri F, Tran TM, Brunner S, Gheller C, Villard L. A bucket sort algorithm for
the particle-in-cell method on manycore architectures. In: International Conference on
Parallel Processing and Applied Mathematics 2015 Sep 6 (pp. 43-52). Springer
International Publishing.

9. Cheng J, Grossman M, McKercher, T. CUDA C Programming. Indianapolis: John Wiley
& Sons, Inc.; 2014 OAK RIDGE | &t

National Laboratory | FACILITY

https://www.openacc.org/

Additional Slides

% OAK RIDGE | isiossae

National Laboratory | FACILITY

Existing Code

* Try an accelerated CUDA library
— One may need to restructure data to a form amenable to the library

 Try a directive based approach like OpenACC

— One may need to restructure data to a form amenable to the GPU execution
model

 Be forewarned!
— Data restructuring may then become the new bottleneck
— Strongly advise significant code refactorization with respect to its data

structures
« Generally results in better CPU performance too

— Be aware of data reuse on the GPU to minimize CPU<GPU transfer costs

EEEEEEEEE
COMPUTING

&OAK RIDGE

1 Labo

Overview of GPU Programming Model

The threads within a thread block
- are grouped in execution units of 32
threads called a warp — single

CUDA thread CUDA core instruction multiple data (SIMD)

Warp of Warp of
32 threads 32 threads
A A
/ | | IR | 1
Thread block Streaming 0 1 N-1
Multiprocessor (SM) 4 4

////// ////// float rea =y,

output_array[threadlD] = area;
CUDA kernel
OAKRIDGE
Grid ationa aboratory

LEADERSHIP
COMPUTING
FACILITY

he Molecular Dynamics Algorithm:

Given a system on N atoms with

positions ry, I, ..., Iy and an Integrate Newton's law (by

; . : finite difference methods) Equations of motion
interacting potential V.
y . _ P1(t + Ab) ~ 27 (t) — T4 (t — AD) +At2F ()
4 mis—7r4«+=F Tr X LT —-7Tr — —
1 dtz 1 1 1 1 1 my 1
T
’ d? Atz
S my——7, = F, r2(t + At) = 27, (t) — 7r2(t — At) + —F,(¢)
e, dt m;
0 X éz AL?
\A. ?2 mNW?N _ F’N T'N(t+At) = er(t) —rN(t—At) +m_NFN(t)
Z

R(t) = {#1(8), T2 (®), -, Fn(t)}

. - i
V(R) =) F;(t) = — Fry V(R(1))

% OAK RIDGE | i

National Laboratory | FACILITY

GPU Programming Data Structures/Algorithm Major
Requirements

* Minimize the data transfers between CPU and GPU. It is oppressive!
* Memory Accesses Need To Be Aligned!
 Memory Accesses Need To Be Contiguous!

What about Compiling?

* How do we plan to ensure that one can compile a reasonably
performant code across various HPC architectures?

% OAK RIDGE | i

National Laboratory | FACILITY

Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures
1
I

Q — simple array of 1R — simple array of - = = — - Data structures on CPU

charges on CPU ::atomic positions

The Accelerator Device
Wrapper is actually an API
between the CPU and
Accelerator Device

KLP - Kernel Launch The Accelerator
Pa : Device contains a
' i | class, MLP, that
=~ - controls the various
parameters that

HPC Compute Device gg:}gﬂ'nt;necgemel S
(Summit GPUs) '

~

&OAK RIDGE | &ifine

National Laboratory | FACILITY

