
ORNL is managed by UT-Battelle 

for the US Department of Energy

Portability Initiatives for Scientific 
Computing and Simulation: 
Molecular Dynamics as a Case 
Study

Arnold Tharrington

Ada Sedova

Oak Ridge National Laboratory

National Center for Computational Sciences

Scientific Computing Group



2 Presentation name

Introduction

• The goal of the talk is to provide beneficial portability insights. These 
insights are derived from our effort to develop a performance portable 
molecular dynamics (MD) library.

• Targeted platforms: 

– CUDA HPC architectures

• ORNL’s Summit - IBM POWER9 and NVIDIA Volta GPUs

– Later will target Intel Xeon Phi HPC architectures

• Argonne’s Aurora - 3rd Generation Intel Xeon Phi

– What about future HPC architectures?



3 Presentation name

What is a Performance Portable Algorithm?

• Achieves “acceptable” performance across a variety of HPC 
architectures

• Requires “minor” modifications when porting to novel HPC 
architectures

• Design characteristics

– A consistent, unified front-end interface for the computational scientist to 
use 

– Machine-level specifics and optimizations are contained in back-end to 
facilitate retargeting new architectures



4 Presentation name

The Molecular Dynamics Algorithm: 

Given a system on N atoms with 
positions r1, r2, …, rN and an 
interacting potential V. 

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑽 𝑹 𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

𝒙

𝒚

𝒛

𝒓𝟏

𝒓𝟐

𝒓𝑵

𝓞

Calculate the forces at 
time t

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

Given an starting 
configuration R(t) at 
time t

• Integrate to solve for 
R(t+t)

• Calculate the relevant 
properties at time t+t

• t+t  t , R(t+t)  R(t), 
etc.

• Repeat

This step is ~80% 
of the total 
computational time

Algorithmic Steps

𝒓𝑵 𝒕 + ∆𝒕 ≈

𝟐𝒓𝑵 𝒕 − 𝒓𝑵 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝑵
𝑭𝑵 𝒕



5 Presentation name

Molecular Dynamics: Non-bonded-Forces Calculation is 
the Bottleneck

• Long-range electrostatic interactions 
forces 

– Limited by scaling of the FFTW in the PME 
calculation

– Solution: Implement a performance portable 
long-range electrostatic solver library (Multilevel 
Summation Method)

• Short-range 2 body (pair-wise) forces 

– Computational complexity is O(N) where N is 
the number of atoms

– Solution: Implement a performance portable 
short range force solver for the Lennard-Jones 
particle interactions



6 Presentation name

Preliminaries - What can I realistically do with my 
given resources?

• One has performance profiled the application with near as close to 
production status.

– Discover computational bottlenecks

– Discover the dominant data structures within these computational bottlenecks

– Is the application even suitable for acceleration?



7 Presentation name

Nonexisting Code

• We choose to write our libraries in C and C++

– Provides the best chance of compiling and running on many operating 
systems using various compilers 

– Used a portable subset of C/C++

• Used C/C++ subset that works well with compiler directive-based accelerator kernels

• Avoided exotic and experimental features of C/C++

– Allows for a long-term conversation with the computer science community

• Profilers, debuggers, and other development tools



8 Presentation name

Library API? 

• Spatial Decomposition

– Electrostatic Solver

• Input atom charges and positions

• Returns forces

– Nonbonded interactions

• Much more difficult

– Atom positions, interaction parameters, 
excluded interactions, modified interactions, 
etc.

– Trying to replicate ease of use like 
FFTW library 



9 Presentation name

Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

HPC Compute Device
(Summit GPUs)

Accelerator 
Device

Accelerator Device Wrapper

Direct Kernel

Q – simple array of 
charges on CPU 

R – simple array of 
atomic positions 
on CPU

Data structures on CPU

The Accelerator 
Device is C++ Class 
allocated on the 
device which 
performs the 
computation on HPC 
compute device

R – Positions on device

Q - Charges on device

The Accelerator Device 
Wrapper is actually an API 
between the CPU and 
Accelerator Device



10 Presentation name

Accelerator Device

• Accelerator device abstracts the programming model

– Hand written CUDA kernels

– In the future, KOKKOS, RAJA

– 10 years from now, who knows. I just have to satisfy the accelerator device 
API 

• Do’s for CUDA kernels

– Simple 1D contiguous arrays whose shapes and sizes are mostly known at 
compile time – elemental data types

– Classes and structures that contain simple elemental data types

– Aligned and coalesced accesses

– Minimize the data transfers between CPU and GPU. It is oppressive!

• Don’ts for CUDA kernels

– Data structures that involve pointer chasing (e.g. linked lists)



11 Presentation name

Summary

• Profile application a close to production status as possible

• Separation of algorithm interface from its implementation

– Program to an interface, not an implementation

• If coding goals and resources permit, try using an accelerated library 
or OpenACC

– Other alternatives are KOKKOS, RAJA, etc.

• Avoid exotic data types

– Simple plain old data



12 Presentation name

Additional References

1. Mooney JD. Bringing portability to the software process. Dept. of Statistics and Comp. 
Sci., West Virginia Univ., Morgantown WV. 1997.

2. Mooney JD. Developing Portable Software. In: IFIP Congress Tutorials 2004 Jul 27 (pp. 
55-84).

3. Schach SR. Object-oriented and classical software engineering. Boston: McGraw-Hill 
Higher Education; 2011.

4. https://www.openacc.org

5. Computational and data-enabled science and engineering. https://www.nsf.gov

6. Tedre M, Denning PJ. Shifting Identities in Computing: From a Useful Tool to a New 
Method and Theory of Science. In: Informatics in the Future 2017 (pp. 1-16). Springer, 
Cham.

7. Kale V, Solomonik E. Parallel sorting pattern. In: Proceedings of the 2010 Workshop on 
Parallel Programming Patterns 2010 Mar 30 (p. 10). ACM.

8. Jocksch A, Hariri F, Tran TM, Brunner S, Gheller C, Villard L. A bucket sort algorithm for 
the particle-in-cell method on manycore architectures. In: International Conference on 
Parallel Processing and Applied Mathematics 2015 Sep 6 (pp. 43-52). Springer 
International Publishing.

9. Cheng J, Grossman M, McKercher, T. CUDA C Programming. Indianapolis: John Wiley 
& Sons, Inc.; 2014

https://www.openacc.org/


13 Presentation name

Additional Slides



14 Presentation name

Existing Code

• Try an accelerated CUDA library

– One may need to restructure data to a form amenable to the library

• Try a directive based approach like OpenACC

– One may need to restructure data to a form amenable to the GPU execution 
model

• Be forewarned!

– Data restructuring may then become the new bottleneck

– Strongly advise significant code refactorization with respect to its data 
structures

• Generally results in better CPU performance too

– Be aware of data reuse on the GPU to minimize CPUGPU transfer costs



15 Presentation name

Overview of GPU Programming Model

CUDA thread

Thread block

Grid

CUDA core

CUDA device

Streaming 
Multiprocessor (SM)

0 1 N-1

float y = input_array[threadId];
float area = y*y;
output_array[threadID] = area;

…

The threads within a thread block 
are grouped in execution units of 32
threads called a warp – single 
instruction multiple data (SIMD)

…

Warp of
32 threads

Warp of
32 threads

…

CUDA kernel



16 Presentation name

The Molecular Dynamics Algorithm: 

Given a system on N atoms with 
positions r1, r2, …, rN and an 
interacting potential V. 

𝑹(𝒕) = 𝒓𝟏(𝒕), 𝒓𝟐(𝒕),⋯ , 𝒓𝑵(𝒕)

𝑽 𝑹 𝑭𝒊(𝒕) = −
𝝏

𝝏𝒓𝒊
𝑽(𝑹(𝒕))

𝒙

𝒚

𝒛

𝒓𝟏

𝒓𝟐

𝒓𝑵

𝓞

𝒎𝟐

𝒅𝟐

𝒅𝒕𝟐
𝒓𝟐 = 𝑭𝟐

𝒎𝟏

𝒅𝟐

𝒅𝒕𝟐
𝒓𝟏 = 𝑭𝟏

𝒎𝑵

𝒅𝟐

𝒅𝒕𝟐
𝒓𝑵 = 𝑭𝑵

.

.

.

𝒓𝟏 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝟏 𝒕 − 𝒓𝟏 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝟏
𝑭𝟏 𝒕

𝒓𝟐 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝟐 𝒕 − 𝒓𝟐 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝟐
𝑭𝟐 𝒕

𝒓𝑵 𝒕 + ∆𝒕 ≈ 𝟐𝒓𝑵 𝒕 − 𝒓𝑵 𝒕 − ∆𝒕 +
∆𝒕𝟐

𝒎𝑵
𝑭𝑵 𝒕

.

.

.

Integrate Newton’s law (by 
finite difference methods) Equations of motion



17 Presentation name

GPU Programming Data Structures/Algorithm Major 
Requirements

• Minimize the data transfers between CPU and GPU. It is oppressive!

• Memory Accesses Need To Be Aligned! 

• Memory Accesses Need To Be Contiguous!



18 Presentation name

What about Compiling?

• How do we plan to ensure that one can compile a reasonably 
performant code across various HPC architectures?



19 Presentation name

Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

HPC Compute Device
(Summit GPUs)

Accelerator 
Device

Accelerator Device Wrapper

Direct Kernel

Q – simple array of 
charges on CPU 

R – simple array of 
atomic positions 
on CPU

Data structures on CPU

The Accelerator 
Device contains a 
class, KLP, that 
controls the various 
parameters that 
control the kernel’s 
performance.

KLP – Kernel Launch 
Parameters

The Accelerator Device 
Wrapper is actually an API 
between the CPU and 
Accelerator Device


