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Introduction

* The goal of the talk is to provide beneficial portability insights. These
Insights are derived from our effort to develop a performance portable
molecular dynamics (MD) library.

 Targeted platforms:
— CUDA HPC architectures
« ORNL’s Summit - IBM POWER9 and NVIDIA Volta GPUs

— Later will target Intel Xeon Phi HPC architectures
« Argonne’s Aurora - 3rd Generation Intel Xeon Phi

— What about future HPC architectures?
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What Is a Performance Portable Algorithm?

* Achieves “acceptable” performance across a variety of HPC
architectures

- Requires “minor” modifications when porting to novel HPC
architectures
 Design characteristics

— A consistent, unified front-end interface for the computational scientist to
use

— Machine-level specifics and optimizations are contained in back-end to
facilitate retargeting new architectures
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he Molecular Dynamics Algorithm:

Given a system on N atoms with
positions ry, 1y, ..., Iy and an Algorithmic Steps
interacting potential V.

Given an starting S (= - =
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~ time t
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E: = 0 This step is ~80%
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N / 'me | y computational time
0 & . Integrate to solve for ry(t+At) = s
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* Repeat
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Molecular Dynamics: Non-bonded-Forces Calculation iIs
the Bottleneck

« Long-range electrostatic interactions
forces

— Limited by scaling of the FFTW in the PME
calculation

— Solution: Implement a performance portable
long-range electrostatic solver library (Multilevel
Summation Method)

» Short-range 2 body (pair-wise) forces

— Computational complexity is O(N) where N is
the number of atoms

— Solution: Implement a performance portable
short range force solver for the Lennard-Jones
particle interactions
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Preliminaries - What can | realistically do with my
given resources?

* One has performance profiled the application with near as close to
production status.

— Discover computational bottlenecks
— Discover the dominant data structures within these computational bottlenecks
— |s the application even suitable for acceleration?



Nonexisting Code

* We choose to write our libraries in C and C++

— Provides the best chance of compiling and running on many operating
systems using various compilers

— Used a portable subset of C/C++
« Used C/C++ subset that works well with compiler directive-based accelerator kernels
* Avoided exotic and experimental features of C/C++

— Allows for a long-term conversation with the computer science community
 Profilers, debuggers, and other development tools
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Library API?

- Spatial Decomposition

— Electrostatic Solver
* |Input atom charges and positions
* Returns forces

— Nonbonded interactions

* Much more difficult

— Atom positions, interaction parameters,
excluded interactions, modified interactions,
etc.

— Trying to replicate ease of use like
FFTW library
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Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures

Q — simple array of IR — simple array of - = = - - Data structures on CPU
charges on CPU ::atomlc positions

The Accelerator Device
Wrapper is actually an API
between the CPU and
Accelerator Device

ITO Charges on device g Device is C++ Class

i I—— R 1 allocated on the

~ - device which
performs the

HPC Compute Device ggmgﬂtgtldoer:/i%g HPC
(Summit GPUs)
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Accelerator Device

« Accelerator device abstracts the programming model
— Hand written CUDA kernels
— In the future, KOKKQOS, RAJA

— 10 years from now, who knows. | just have to satisfy the accelerator device
API

 Do’s for CUDA kernels

— Simple 1D contiguous arrays whose shapes and sizes are mostly known at
compile time — elemental data types

— Classes and structures that contain simple elemental data types
— Aligned and coalesced accesses
— Minimize the data transfers between CPU and GPU. It is oppressive!

* Don’ts for CUDA kernels
— Data structures that involve pointer chasing (e.g. linked lists) $,0AK RIDGE |
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Summary

* Profile application a close to production status as possible

« Separation of algorithm interface from its implementation
— Program to an interface, not an implementation

* |If coding goals and resources permit, try using an accelerated library
or OpenACC

— Other alternatives are KOKKOS, RAJA, etc.

 Avoid exotic data types
— Simple plain old data
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Existing Code

* Try an accelerated CUDA library
— One may need to restructure data to a form amenable to the library

 Try a directive based approach like OpenACC

— One may need to restructure data to a form amenable to the GPU execution
model

 Be forewarned!
— Data restructuring may then become the new bottleneck
— Strongly advise significant code refactorization with respect to its data

structures
« Generally results in better CPU performance too

— Be aware of data reuse on the GPU to minimize CPU<GPU transfer costs
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Overview of GPU Programming Model

The threads within a thread block
- are grouped in execution units of 32
threads called a warp — single

CUDA thread CUDA core instruction multiple data (SIMD)

Warp of Warp of
32 threads 32 threads
A A
/ | | IR | 1
Thread block Streaming 0 1 N-1
Multiprocessor (SM) 4 4

////// ////// float rea =y,

output_array[threadlD] = area;
CUDA kernel
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he Molecular Dynamics Algorithm:

Given a system on N atoms with

positions ry, I, ..., Iy and an Integrate Newton's law (by

; . : finite difference methods) Equations of motion
interacting potential V.
y . _ P1(t + Ab) ~ 27 (t) — T4 (t — AD) +At2F ()
4 mis—7r4«+=F Tr X LT —-7Tr — —
1 dtz 1 1 1 1 1 my 1
T
’ d? . . . . Atz
S my——7, = F, r2(t + At) = 27, (t) — 7r2(t — At) + —F,(¢)
e, dt m;
0 X éz AL?
\A. ?2 mNW?N _ F’N T'N(t+At) = er(t) —rN(t—At) +m_NFN(t)
Z

R(t) = {#1(8), T2 (®), -, Fn(t)}

. - i
V(R) =) F;(t) = — Fry V(R(1))
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GPU Programming Data Structures/Algorithm Major
Requirements

* Minimize the data transfers between CPU and GPU. It is oppressive!
* Memory Accesses Need To Be Aligned!
 Memory Accesses Need To Be Contiguous!



What about Compiling?

* How do we plan to ensure that one can compile a reasonably
performant code across various HPC architectures?
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Separate the Interface and the Implementation

Direct Algorithmic Step Data Structures
1
I

Q — simple array of 1R — simple array of - = = — - Data structures on CPU

charges on CPU ::atomic positions

The Accelerator Device
Wrapper is actually an API
between the CPU and
Accelerator Device

KLP - Kernel Launch The Accelerator
Pa : Device contains a
' i | class, MLP, that
=~ - controls the various
parameters that

HPC Compute Device gg:}gﬂ'nt;necgemel S
(Summit GPUs) '

~
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