
NEKBONE
PERFORMANCE
PORTABILITY

August 23, 2017

SUDHEER CHUNDURI
RONALD RAHAMAN
SCOTT PARKER
ARGONNE NATIONAL LABORATORY

§ Spectral element CDF Solver for:
– Unsteady incompressible Navier-Stokes
– Low mach number flows

– Heat transfer and species transport
– Incompressible magnetohydrodynamics

§ Code:
– Open source

• https://github.com/Nek5000/Nek5000

– Written in Fortran 77 and C
– MPI for parallelization

§ Features:
– Highly scalable, scales to over a million processes

– High order spatial discretization using spectral elements
– High order semi-implicit time stepping

2

WHAT IS NEK5000?

§ Nekbone is a mini-app derived from Nek5000
– Originally developed by Katherine Heisey,Paul Fischer

§ Nek5000 is complicated to setup, run, and modify.
– Nekbone is simpler and enables more rapid investigations

§ Nekbone represents significant kernels in Nek5000
– Large percentage of the work in Nek5000
– Solve Poisson problem similar to pressure solve in Nek5000

– Represents key kernels and operation mix from Nek5000
• matrix-matrix multiplication
• inner products
• nearest neighbor communication
• MPI_Allreduce

§ Implemented using:
– Fortran 77, C, MPI, OpenMP, OpenACC

§ Used for:
– DOE machine acquisitions: CORAL systems
– Exascale co-design activities: DOE FastForward, DesignForward

– Programming model expoloration

§ Available at:
– https://cesar.mcs.anl.gov/content/software/thermal_hydraulics (Original)
– https://asc.llnl.gov/CORAL-benchmarks/ (CORAL)

– https://repocafe.cels.anl.gov/repos/nekbone/ (OpenMP)
– https://github.com/Nek5000/Nekbone/tree/cuda-openacc (OpenACC)

3

WHAT IS NEKBONE?

https://cesar.mcs.anl.gov/content/software/thermal_hydraulics
https://asc.llnl.gov/CORAL-benchmarks/
https://repocafe.cels.anl.gov/repos/nekbone/
https://github.com/Nek5000/Nekbone/tree/cuda-openacc

• solveM
• glsc3

• AllReduce
• add2s1
• ax

• ax_e
• local_grad3

• (3x) mxm
• wr-ws-wt
• local_grad3_t

• (3x) mxm
• (2x) add2

• gs_op
• add2s2

• glsc3
• AllReduce

• add2s2
• add2s2
• glsc3

• AllReduce
4

NEKBONE IN A NUTSHELL

• gs_gather
• pw_exec

• pw_exec_recvs
• MPI_Irecv

• gs_scatter
• pw_exec_sends

• MPI_Isend
• comm_wait
• gs_gather

• gs_scatter

Memory Bandwidth Intensive
Floating Point Intensive
Network Intensive
Memory Operation Intensive
Wrapper routines

So
lv

er
 (C

G
)

• solveM
• glsc3

• AllReduce
• add2s1
• ax

• ax_e
• local_grad3

• (3x) mxm
• wr-ws-wt
• local_grad3_t

• (3x) mxm
• (2x) add2

• gs_op
• add2s2

• glsc3
• AllReduce

• add2s2
• add2s2
• glsc3

• AllReduce
5

NEKBONE IN A NUTSHELL (SINGLE NODE)

• gs_gather
• pw_exec

• pw_exec_recvs
• MPI_Irecv

• gs_scatter
• pw_exec_sends

• MPI_Isend
• comm_wait
• gs_gather

• gs_scatter

Memory Bandwidth Intensive
Floating Point Intensive
Network Intensive
Memory Operation Intensive
Wrapper routines

So
lv

er
 (C

G
)

Function Routine
(major)

Data Code Loads Stores FPOps

solveM copy z,r z(i)=r(i) N N 0

glsc3 r,c,z t=t+r(i)*c(i)*z(i) 3N 0 3N

add2s1 p,z p(i)=C*p(i)*z(i) 2N N 2N

local_grad3 mxm (3) p,ur,dxm1 N 0 6NxN

wrwswt g,ur,us,ut ur(i)=g(1,i)*ur(i)+g(2,i)*us(i)+g(3,i)*ut(i)
us(i)=g(2,i)*ur(i)+g(4,i)*us(i)+g(5,i)*ut(i)
ut(i)=g(3,i)*ur(i)+g(5,i)*us(i)+g(6,i)*ut(i)

6N 0 15N

local_grad3_t mxm (3) w,ur,dxtm1 0 N (6Nx+2)N

gs_op Pt-2-pt Gather Scatter communication

add2s2 x,p x(i)=x(i)+C*p(i) 2N N 2N

6

NEKBONE COMPUTE PERFORMANCE MODEL

7

HARDWARE COMPARISON

KNL P100 GPU

Cores/SMX 64 56

SIMD DP Width 8 32

Clock Speed [MHz] 1100 1329

Peak f32 [TFlop/s] 4.5 9.3

Peak f64 [TFlop/s] 2.25 4.7

Peak DGEMM [Tflops/s] 1.9 4.5

Memory (IPM) [GB] 16 16

IPM Bandwidth [GB/s] ~600 732

STREAM Bandwidth [GB/s] 488 574

L1 cache [kB]/ (Core/SMX) 32(D) +32(I) 64 (L1/Tex.)

L2 cache [MB] 32 4

TDP [W] 215 250

INTEL XEON PHI KNIGHTS LANDING (7230) AND NVIDIA TESLA P100-16

P100 has 2.4x DGEMM rate of KNL

P100 has 1.2x STREAM rate of KNL

8

NEKBONE PEFORMANCE ON KNL

Small MXM
Implementation

% of peak
DGEMM
efficiency

Naive 18

Unrolled 26

XSMM 51

• Using single core, time increases
linearly with problem size

Solver time for different problem sizes

• Using 64 cores, time is roughly
flat until problem has enough
parallelism to fill all cores

• Using 64 cores, time increases
linearly with problem size for
large enough problems

9

NEKBONE PERFORMANCE ANALYSIS ON KNL

Routine Time (s) % Solve
time

GB/s GFlop/s % of peak

solveM 2.90E-2 3.7 462.5 0 95

glsc3 1.56E-1 20.2 351.2 43.9 72

add2s1 4.23E-2 5.4 475.6 39.6 97

local_grad3 8.31E-2 10.7 969.6 51

wrwswt 1.28E-1 16.5 314.1 98.1 64

local_grad3_t 1.09E-1 14.1 754.4 40

gs_op 8.89E-2 11.5

add2s2 1.23E-2 16.02 480.3 40.0 98

• Memory bandwidth intensive
kernels obtain 64-95% of
STREAM

• Compute intensive kernels
obtains 40-51% of peak
DGEMM rate

• Memory operation intensive
kernels are ~10% of
runtime, no efficiency model
yet

• Network performance is not
investigated

§ Simple changes:
– Added OpenACC Parallel Loop pragma before loop
– Functions:

• glsc3, add2s2, add2s1 (single loop bandwidth bound kernels)

§ Moderately complex changes:
– Manually inlined functions and merged loop nests
– Added OpenACC Parallel Loop with Collapse to resulting outer loops
– Functions:

• local_grad, wrwswt, local_grad_t

§ Complex changes:
– Serial data structure describing gather/scatter operations augmented to enable parallelism

• Required for any form of shared memory parallelism including OpenMP implementation for CPU

– Loops restructured to utilize new data structures
– Added OpenACC loop on outer loop driving gather and scatter
– Functions:

• gs_gathe, gs_scatter

10

OPENACC CODE CHANGES

11

NEKBONE PERFORMANCE ON P100 & KNL
Solver time for different problem sizes

Sufficient DOF required to efficiently

utilize cores occurs at different

problem sizes for CPU and GPU

GPU performance lags CPU for small

problem sizes

For largest DOF GPU performance

exceeds naïve CPU implementation

Further room to optimized GPU

performance with optimized small

matrix multiply, may exceed CPU

performance

code time

KNL- naive 1.12

KNL- unroll 0.91

KNL- xsmm 0.75

P100 0.98

12

NEKBONE PERFORMANCE ANALYSIS ON P100

Routine Time (s) %
Solve
time

Model
GB/s

Profiled
GB/s

Model
GFLops

Profiled
GFlops

% Peak

glsc3 9.23E-2 7.9 656.54 545.31 109.4 109.42 95%

add2s1 3.61E-2 3.1 558.20 512.81 46.5 46.52 89%

local_grad3
+ wrwswt 3.35E-1 28.7 160.41 187.01 278.2 278.22 6%

local_grad3
_t 2.96E-1 25.4 136.00 85.04 272.00 272.00 6%

gs_op 5.56E-2 4.8

add2s2 1.09E-1 9.3 554.37 512.36 46.5 46.20 89%

• Model GB/s are within 8-10 % of profiles (except glsc3, which is 20% greater)
• Model GFlops/s are within 0.03% of profiles

• Memory bandwidth
intensive kernels
obtain 89-95% of
STREAM, better than
KNL

• Compute intensive
kernels obtains 6% of
peak DGEMM rate,
worse than KNL

CONCLUSIONS AND NEXT STEPS
Conclusions:
• Nekbone performance on KNL and P100:

• Kernels efficiencies are comparable on both for un-optimized kernels
• Higher small matrix multiply efficiencies require architecture specific routines
• Lowest time to solution was on KNL with optimized matrix multiply, performance is 1.3x P100

• GPU optimized small matrix multiply could yield ~2.5x improvement in solve time on P100
• P100 could show 1.9x better performance than KNL

• Nekbone portability:
• “Single source” portability can be achieved with low performance on both architectures
• OpenACC can be used performance portably for the memory bandwidth intensive routines

• Architecture specific small matrix multiply are required for optimal performance on either architecture

Next Steps:
• Optimize small matrix multiply operations for GPU

• Merge OpenMP and OpenACC branches
• Convert OpenACC directives to OpenMP 4.5

• Look at other portability frameworks RAJA, Kokkos

13

www.anl.gov

QUESTIONS?

§ Glsc3 – added OpenACC Parallel Loop pragma before loop

§ Add2s2 - added OpenACC Parallel Loop pragma before loop

§ Add2s1 - added OpenACC Parallel Loop pragma before loop

§ Local_grad, wrwswt, local_grad_t
– Inlined mxm calls
– Merged 3 mxm loops
– Inlined local_grad and local_grad_t
– Merged local_grad and wrwswt
– Outer loop uses ACC Parallel Loop with Collapse

§ gs_gather & gs_scatter
– Serial data structure modified to express parallelism for gather/scatters
– OpenACC loop on over outer loop driving gather and scatter

15

OPENACC CODE CHANGES

OUTLINE
1. Nek5000 description (Scott)
2. Nekbone description (Scott)
3. Nekbone code overview (Scott)
4. Nekbone performance model (Scott)
5. KNL and P100 hardware comparison (?)
6. KNL (table or plot) for opt vs. unoptimized (Sudheer)
7. KNL comparison vs perf model and rate limit identification (Sudheer)
8. code mods for OpenACC (Scott)
9. P100 perf comparison with KNL (Ron/Sudheer)
10. P100 comparison vs perf model and rate limit identification (Ron/Sudheer)
11. Strong scaling limit discussion[Sudheer]
12. Summary of how portable[Scott]

17

cg() [loop 1 -> numCGIterations]
• solveM() [z(i) = r(i)]
• glsc3() [inner product]

• AllReduce()
• add2s1() [a(i) = c*a(i)+b(i)]
• ax()

• ax_e()
• local_grad3() [gradient]

• (3x) mxm()
• wr-ws-wt [wx(i) = f(g,ur,us,ut)]
• local_grad3_t() [gradient]

• (3x) mxm()
• (2x) add2()

• add2s2() [a(i) = a(i) + c*b(i)]
• glsc3() [inner product]

• AllReduce
• add2s2() [a(i) = a(i) + c*b(i)]
• add2s2() [a(i) = a(i) + c*b(i)]
• glsc3() [inner product]

• AllReduce

18

NEKBONE IN A NUTSHELL (OPENMP)
• Bandwidth Bound
• Compute Bound

§ Point to Point Communication

– 26 send/receives per rank

• 8 vertex values sent/received (8 Bytes per message, for 512x16 case)

• 12 edges sent/received (128 Bytes per message, for 512x16 case)

• 6 faces sent/received (16,384 Bytes per message, for 512x16 case)

§ Collective Communication

– Calls MPI_Allreduce 3 times per CG iteration

– 8 Byte (1 double) reduction per call

– 24 bytes per iteration

21

NEKBONE COMMUNICATION

Rank
s

Thread
s

TFlops

512 64 9.5

1024 64 18.9

2048 64 36.9

4096 64 73.9

8192 64 150.5

16384 64 291.1

32768 64 606.9

49152 64 900.8

22

NEKBONE SCALING ON MIRA
Grid Points per thread: ~10k
FLOP Rate: 9% of peak
Parallel Efficiency: 99%

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

0 10000 20000 30000 40000 50000

Ideal Actual

Nodes

TF
lo

ps

Weak Scaling Performance of Nekbone

23

TYPICAL RATIOS ON REPRESENTATIVE BG/Q RUNS

Ratio Value
FLOPS/(Bytes Loaded & Stored) 0.94

Loaded Bytes/ Stored Bytes 4

FLOPS/AllReduce 158,000,000

FLOPS/Pt2Pt Byte 4,744

FLOPS/MPI-Message 9,111,545

Routine Type Percentag
e

Memory Bound 45%

Compute Bound 35%

Point to Point
Comm.

18%

Collective Comm. 2%

§ Adding OpenMP:
– Relatively straightforward: 90% trivial, 10% required detailed understanding
– Basic approach: partition element across threads

• Easy:
– Add a single OMP parallel region at top of cg() routine
– Modify routines (add2s2, glsc3, axi, etc) to take a range of elements as an arg
– Modify routines to use locally declared work arrays (ax_e)

• A bit more complex:
– Restructure gather/scatter maps for parallel execution
– Add synchronization and barriers around communication operations (gs_aux,

pw_exec)

§ Impact:
– Little impact on compute performance
– Little impact on memory usage
– Some impact on communication performance, most noticeable at large scale

• Eliminates some data copies to/from MPI buffers
• Fewer messages sent

– Provides opportunity to overlap communication and computation

24

ADDING OPENMP TO NEKBONE

§ Nekbone is up and running on KNL
– Simulations and estimates of performance based on KNL specs
– Run on pre-release KNL hardware
– Performance as expected based on compute performance model
– Tuning use of AVX-512 instructions

• Utilizing LIBXSMM for matrix multiplication

25

NEKBONE ON KNL

§ System designers need representative applications to study
– HPC has unique characteristics

§ In comparison to Nek5000 Nekbone is:
– More easily configurable

• Number of spectral elements per rank
• Polynomial order of element

– Quicker to run
• Run time is adjustable over a wide range
• Typical run time is a few seconds

– Allows multiple cases in one run
• A range of elements can be specified
• A range of polynomial orders can be specified

– More easily instrumented
– More easily modified

• Has ~8K lines of code vs 60k lines of code for Nek5000
• Re-implemented using other programming models: OpenMP, OpenACC, CUDA

26

WHY NEKBONE?

