
LLNL-PRES-737000
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Experiences Porting a Multiphysics Code to
GPUs
COE Performance Portability Meeting

Brian Ryujin

August 22, 2017

LLNL-PRES-737000
2

Ares is a massively parallel, multi-dimensional,
multi-physics code

Physics Capabilities:
• ALE-AMR Hydrodynamics
• High-order Eulerian

Hydrodynamics
• Elastic-Plastic flow
• 3T plasma physics
• High-Explosive modeling
• Diffusion, SN Radiation
• Particulate flow
• Laser ray-tracing
• MHD
• Dynamic mixing
• Non-LTE opacities

Applications:
• ICF modeling
• Pulsed power
• NIF Debris
• High-Explosive experiments

LLNL-PRES-737000
3

 Ares is 21 years old and ~800k lines of code
— C/C++ with 60+ libraries in C, C++ and Fortran
— Some libraries are full physics capabilities, such as SN Radiation

 Ares is used daily by an active user base on our current
supercomputers
— Cannot break or slow down current functionality
— Must be able to continue to add new functionality that users are

requesting throughout the process

 Code overall has ~5,000 mesh loops with limited hotspots
— Lagrange hydro problem runs 80+ kernels
— Grey radiation diffusion problem runs 250+ kernels
— ALE hydro problem runs 450+ kernels

 Code is mostly bandwidth bound

Porting a large, existing code comes with
additional constraints

We can only maintain a single code base, but must effectively utilize all HPC platforms

LLNL-PRES-737000
4

 We tried to adhere to some basic guiding principles
— Keep strategies relatively simple
— Leverage existing capabilities and infrastructures
— Keep concepts familiar to developers

 Overarching approach:
— Use RAJA to get code to run on the GPU
— Use Unified Memory to get mesh data onto the GPU
— 1 MPI task per GPU
— Keep all data resident on the GPU to avoid data motion

Ares strategy for Sierra

We believe our approach follows our principles, but the devil is in the details…

LLNL-PRES-737000
5

 RAJA is an abstraction layer for on-node parallelization

 Facilitates using multiple programming model backends(CUDA, OpenMP, etc)

 Designed for existing codes; allows for incremental adoption

 Built on top of standard C++11 constructs only

We use RAJA for our execution model

double* x ; double* y ;
double a;
for (int i = begin; i < end; ++i) {

y[i] += a * x[i] ;
}

C-style for-loop
double* x ; double* y ;
double a ;
RAJA::forall< exec_policy > (begin, end, [=] (int i) {

y[i] += a * x[i] ;
});

RAJA-style loop

RAJA Transformation

Execution Policy
(how loop runs: PM backend, etc.)

Pattern
(forall, reduction, scan, etc.)

RAJA Concepts
See Adam
Kunen’s talk on
Wednesday for
more details

LLNL-PRES-737000
6

 Implemented a code specific layer above RAJA
— Improves readability by giving loops additional context
— Provides an easy place to put hooks in for all our loops
— Lets us map descriptive loop classifications into machine appropriate

policies

Ares’s use of RAJA

double* x ; double* y ;
double a;
Int* ndx = domain->Zones;
for (int i = begin; i < end; ++i) {

int zone = ndx[i];
y[zone] += a * x[zone] ;

}

C-style for-loop
double* x ; double* y ;
double a ;
Domain_t* domain;
for_all_zones< parstream > (domain, [=] (int zone) {

y[zone] += a * x[zone] ;
});

RAJA-style loop

RAJA Transformation

Execution Policy
High level classification of loop

Pattern
Code specific iteration pattern

Ares Concepts
See Olga
Pearce’s talk on
Thursday for an
example

LLNL-PRES-737000
7

 After the port to RAJA, the code still looks very similar
— Lambda semantics also helped in the porting process to some degree
— There’s still a learning curve for developers to change how they’re coding, but

largely overcome after about a week or two of use

 Over 98% of our loops could be ported in a straightforward manner
— Remaining loops are serial loops that need to be reworked for performance

 RAJA’s ability to use multiple backends is an invaluable tool
— Very easy to switch between different backends (Serial, OpenMP3, CUDA)
— Serial performance is comparable to non-RAJA code
— We use CPU thread analysis tools to help track down race conditions we see

on the GPU by using the OpenMP3 execution policy
— Still waiting on some development to compare OpenMP4.5 with CUDA

 Code benefits directly from performance improvements in RAJA
— Platform specific optimizations are hidden within RAJA’s primitives
— Upgrading to new RAJA versions has been straightforward

RAJA provides us with additional flexibility at
little cost to code maintainability and familiarity

LLNL-PRES-737000
8

 Ares has ~5000 malloc calls that are each wrapped by a macro
— A call to malloc does not provide enough context to effectively use GPUs
— Some context can be inferred by existing state (e.g., allocating

temporaries)
— Some context cannot be inferred (e.g., location of data usage)

 For performance, we now have a three tiered system
— Originally used cudaMallocManaged for everything

• Worked correctly, but performed poorly
— Allocating different memory has vastly different costs

• Malloc – CPU control code
• cudaMallocManaged (UM) – For mesh data (accessed on CPU and GPU)
• cudaMalloc (cnmem memory pools) – Temporary GPU data

— Switching from a naïve single tier system to a three tier system gave a 14x
speedup on current hardware

 Plan to switch the allocation to use Umpire

Memory management strategies in Ares

See David
Beckingsale’s talk
on Umpire

LLNL-PRES-737000
9

We are seeing good speedups on our EA systems

Problem Zones
(Mzones)

Speedup 4 GPU vs
20 Power8 CPU
cores

3D Sedov 1 10X
3D Sedov +
LEOS

1 12X

2D Sedov 1 6X
3D ALE test 1.1 7X
3D Rad
Diffusion test

1.1 8X

3D Shaped
Charge (ALE,
Strength,
Slides)

1.3 6X

EA Node
20 Power 8+ CPU cores
4 NVIDIA P100 GPUs
16 GB Memory/GPU
NVLINK 1.0

Some packages are more amenable to GPUs. Increasing zone count provides a better speedup

LLNL-PRES-737000
10

Resources # of
Nodes

Runtime
(min)

Relative
speedup

576 CPU
cores

16 2825 1

1152 32 1407 2

2304 64 811 3.5

4608 128 400 7

16 GPUs 4 816 3.5

32 GPUs 8 514 5.5

64 GPUs 16 398 7.1

GPU performance is showing great promise for
ALE hydro problems

RT Mixing Layer in a
Convergent Geometry

• Octant, 37.3M zones
• 300,000 cycles
• LEOS EOS (with RAJA)
• Eulerian

CTS1 (Broadwell) vs. EA (Power8 + P100 GPUs)

With nominal zone counts, it takes 15X more CTS1 nodes to match a single EA node

LLNL-PRES-737000
11

 RAJA and Unified Memory is a viable strategy for some degree of
performance portability
— Over 98% of the loops port cleanly
— Remaining loops may require algorithmic changes for parallelization

 GPU performance tracks about what we’d expect compared to CPU

 Kernel launch overhead can become a significant portion of runtime
— Packing and unpacking MPI buffers for ghost zone exchanges is dominated by kernel

launch overhead, and can take over 25% of the runtime in moderately sized problems
— Packing and unpacking code is organized with polymorphic objects, which makes

kernel merging difficult
— Investigating techniques to queue the packing/unpacking calls without breaking the

objected oriented organization

 Dealing with our large physics libraries will be challenging
— Management of the limited amount of memory between packages
— GPU strategies for libraries must be compatible

 Running with much larger MPI tasks (30k zones/rank -> 1M zones/rank) will
force us to relearn our intuition on the code’s scaling properties

Conclusion and Future Work

LLNL-PRES-737000
12

 Jason Burmark

 Mike Collette

 Burl Hall

 Rich Hornung

 Holger Jones

 Jeff Keasler

 Olga Pearce

 Brian Pudliner

 George Zagaris

Acknowledgements

	Experiences Porting a Multiphysics Code to GPUs
	Ares is a massively parallel, multi-dimensional, multi-physics code
	Porting a large, existing code comes with additional constraints
	Ares strategy for Sierra
	We use RAJA for our execution model
	Ares’s use of RAJA
	RAJA provides us with additional flexibility at little cost to code maintainability and familiarity
	Memory management strategies in Ares
	We are seeing good speedups on our EA systems
	GPU performance is showing great promise for ALE hydro problems
	Conclusion and Future Work
	Acknowledgements
	Slide Number 13

