
LLNL-PRES-737000
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Experiences Porting a Multiphysics Code to 
GPUs
COE Performance Portability Meeting

Brian Ryujin

August 22, 2017



LLNL-PRES-737000
2

Ares is a massively parallel, multi-dimensional, 
multi-physics code

Physics Capabilities:
• ALE-AMR Hydrodynamics
• High-order Eulerian 

Hydrodynamics
• Elastic-Plastic flow
• 3T plasma physics
• High-Explosive modeling
• Diffusion, SN Radiation
• Particulate flow
• Laser ray-tracing
• MHD
• Dynamic mixing
• Non-LTE opacities

Applications:
• ICF modeling
• Pulsed power
• NIF Debris
• High-Explosive experiments
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 Ares is 21 years old and ~800k lines of code
— C/C++ with 60+ libraries in C, C++ and Fortran
— Some libraries are full physics capabilities, such as SN Radiation

 Ares is used daily by an active user base on our current 
supercomputers
— Cannot break or slow down current functionality
— Must be able to continue to add new functionality that users are 

requesting throughout the process

 Code overall has ~5,000 mesh loops with limited hotspots
— Lagrange hydro problem runs 80+ kernels
— Grey radiation diffusion problem runs 250+ kernels
— ALE hydro problem runs 450+ kernels

 Code is mostly bandwidth bound

Porting a large, existing code comes with 
additional constraints

We can only maintain a single code base, but must  effectively utilize all HPC platforms
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 We tried to adhere to some basic guiding principles
— Keep strategies relatively simple
— Leverage existing capabilities and infrastructures
— Keep concepts familiar to developers

 Overarching approach:
— Use RAJA to get code to run on the GPU
— Use Unified Memory to get mesh data onto the GPU
— 1 MPI task per GPU
— Keep all data resident on the GPU to avoid data motion

Ares strategy for Sierra

We believe our approach follows our principles, but the devil is in the details…
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 RAJA is an abstraction layer for on-node parallelization

 Facilitates using multiple programming model backends(CUDA, OpenMP, etc)

 Designed for existing codes; allows for incremental adoption

 Built on top of standard C++11 constructs only

We use RAJA for our execution model

double* x ; double* y ;
double a;
for ( int i = begin; i < end; ++i )  {

y[i] += a * x[i] ;
}

C-style for-loop
double* x ; double* y ;
double a ;
RAJA::forall< exec_policy > ( begin, end, [=] (int i) {

y[i] += a * x[i] ;
}  );

RAJA-style loop

RAJA Transformation

Execution Policy
(how loop runs: PM backend, etc.)

Pattern
(forall, reduction, scan, etc.)

RAJA Concepts
See Adam 
Kunen’s talk on 
Wednesday for 
more details
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 Implemented a code specific layer above RAJA
— Improves readability by giving loops additional context
— Provides an easy place to put hooks in for all our loops
— Lets us map descriptive loop classifications into machine appropriate 

policies

Ares’s use of RAJA

double* x ; double* y ;
double a;
Int* ndx = domain->Zones;
for ( int i = begin; i < end; ++i )  {

int zone = ndx[i];
y[zone] += a * x[zone] ;

}

C-style for-loop
double* x ; double* y ;
double a ;
Domain_t* domain;
for_all_zones< parstream > ( domain, [=] (int zone) {

y[zone] += a * x[zone] ;
}  );

RAJA-style loop

RAJA Transformation

Execution Policy
High level classification of loop

Pattern
Code specific iteration pattern

Ares Concepts
See Olga 
Pearce’s talk on 
Thursday for an 
example
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 After the port to RAJA, the code still looks very similar
— Lambda semantics also helped in the porting process to some degree
— There’s still a learning curve for developers to change how they’re coding, but 

largely overcome after about a week or two of use

 Over 98% of our loops could be ported in a straightforward manner
— Remaining loops are serial loops that need to be reworked for performance

 RAJA’s ability to use multiple backends is an invaluable tool
— Very easy to switch between different backends (Serial, OpenMP3, CUDA)
— Serial performance is comparable to non-RAJA code
— We use CPU thread analysis tools to help track down race conditions we see 

on the GPU by using the OpenMP3 execution policy
— Still waiting on some development to compare OpenMP4.5 with CUDA

 Code benefits directly from performance improvements in RAJA
— Platform specific optimizations are hidden within RAJA’s primitives
— Upgrading to new RAJA versions has been straightforward

RAJA provides us with additional flexibility at 
little cost to code maintainability and familiarity
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 Ares has ~5000 malloc calls that are each wrapped by a macro
— A call to malloc does not provide enough context to effectively use GPUs
— Some context can be inferred by existing state (e.g., allocating 

temporaries)
— Some context cannot be inferred (e.g., location of data usage)

 For performance, we now have a three tiered system
— Originally used cudaMallocManaged for everything

• Worked correctly, but performed poorly
— Allocating different memory has vastly different costs

• Malloc – CPU control code
• cudaMallocManaged (UM) – For mesh data (accessed on CPU and GPU)
• cudaMalloc (cnmem memory pools) – Temporary GPU data

— Switching from a naïve single tier system to a three tier system gave a 14x 
speedup on current hardware

 Plan to switch the allocation to use Umpire

Memory management strategies in Ares

See David 
Beckingsale’s talk 
on Umpire
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We are seeing good speedups on our EA systems

Problem Zones 
(Mzones)

Speedup 4 GPU vs 
20 Power8 CPU
cores

3D Sedov 1 10X
3D Sedov + 
LEOS

1 12X

2D Sedov 1 6X
3D ALE test 1.1 7X
3D Rad 
Diffusion test

1.1 8X

3D Shaped 
Charge (ALE, 
Strength, 
Slides)

1.3 6X

EA Node
20 Power 8+ CPU cores
4 NVIDIA P100 GPUs
16 GB Memory/GPU
NVLINK 1.0

Some packages are more amenable to GPUs. Increasing zone count provides a better speedup
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Resources # of 
Nodes

Runtime 
(min)

Relative 
speedup

576 CPU 
cores

16 2825 1

1152 32 1407 2

2304 64 811 3.5

4608 128 400 7

16 GPUs 4 816 3.5

32 GPUs 8 514 5.5

64 GPUs 16 398 7.1

GPU performance is showing great promise for 
ALE hydro problems

RT Mixing Layer in a 
Convergent Geometry

• Octant, 37.3M zones
• 300,000 cycles
• LEOS EOS (with RAJA)
• Eulerian

CTS1 (Broadwell) vs. EA (Power8 + P100 GPUs)

With nominal zone counts, it takes 15X more CTS1 nodes to match a single EA node
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 RAJA and Unified Memory is a viable strategy for some degree of 
performance portability
— Over 98% of the loops port cleanly
— Remaining loops may require algorithmic changes for parallelization

 GPU performance tracks about what we’d expect compared to CPU

 Kernel launch overhead can become a significant portion of runtime
— Packing and unpacking MPI buffers for ghost zone exchanges is dominated by kernel 

launch overhead, and can take over 25% of the runtime in moderately sized problems
— Packing and unpacking code is organized with polymorphic objects, which makes 

kernel merging difficult
— Investigating techniques to queue the packing/unpacking calls without breaking the 

objected oriented organization

 Dealing with our large physics libraries will be challenging
— Management of the limited amount of memory between packages
— GPU strategies for libraries must be compatible

 Running with much larger MPI tasks (30k zones/rank -> 1M zones/rank) will 
force us to relearn our intuition on the code’s scaling properties

Conclusion and Future Work
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