
Performance Portability Experiments with the Grid C++ Lattice QCD
Library

Alejandro Vaquero

University of Utah

August 22th, 2017

DOE Exascale Software project, with:

Peter Boyle, University of Edinburg
Kate Clark, NVIDIA

Carleton Detar, University of Utah
Meifeng Lin, BNL

Verinder Rana, BNL

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 1 / 18

Motivation

Exascale Computing

US DOE planning to bring Exascale capable machines by 2021-2023

The architecture is expected to be complex
Heterogeneity
Complex memory hierarchy
Multiple levels of parallelism

USQCD and its partners are working on a new scientific software stack that will be
Exascale-ready under the Exascale Computing Project (ECP)

ECP requirements

Efficiency
The code must exploit the multiple levels of parallelism of the exascale architectures, as well as its
heterogenous nature
Communications are expected to become a serious bottleneck and might deserve special treatment

Flexibility and ease of use
The code must be flexible enough so the different algorithms required in our physics calculations can
be implemented in a simple way
Support for several layers of abstraction that simplify the development

Performance Portability
The code should be portable with minimal modifications, while preserving competitive performance

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 2 / 18

The Grid library

Data parallel C++ mathematical object library
P. A. Boyle, G. Cossu, A. Yamaguchi, A. Portelli

https://www.github.com/paboyle/Grid

Adapted for Quantum Field Theories

Abstracts away the complexities of the target machine
Efficient: Offers a high level interface that exploits all levels of parallelism

MPI ⊗ OpenMP ⊗ SIMD

Flexible: Uses C++ classes to wrap SIMD intrinsics

Object operations are defined independently of vector length or layout
Vector class operator directly translated into intrinsic code
Performance not impacted by the high-level interface
Current supported SIMD instruction sets: SSE4, AVX, AVX2, AVX512, IMCI, ARM Neon, QPX

Performance portable: Easily hits maximum memory bandwidth in supported platforms

Different architectures are supported through redefinitions of the SIMD intrinsics
Unfortunately this approach won’t work for Gpus

Indeed GPU support is missing from the list

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 3 / 18

https://www.github.com/paboyle/Grid

Data layout in QCD (and computer simulated QFTs)

Quantum Chromo Dynamics (QCD) is our
current theory to describe the strong force

QCD is simulated in supercomputers in a 4D
lattice

Each site of the lattice carries complex vectors
of 3 or 12 components
Each link of the lattice carries a SU(3) matrix
(3× 3 complex matrix)
There are D independent links per site (D =
dimension)
(Anti)Periodic boundary conditions are
enforced on each dimension

Grid implements natively the required
datatypes (complex matrices, vectors...)

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 4 / 18

SIMD parallelism in Grid

Split the lattice in virtual nodes (outer sites)

Each simd lane deals with a virtual node
(inner sites)

Advantages
Easily to parallelize

Disadvantages
Permutations/rotations to keep the right

boundary conditions

Vector datatypes appear at the lowest level
(AoSoV)

a111 a112 a113 a114 a121 a122 a123 a124 a131 a132 a133 a134

a211 a212 a213 a214 a221 a222 a223 a224 a231 a232 a233 a234

a311 a312 a313 a314 a321 a322 a323 a224 a331 a332 a333 a334


SIMD vector

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 5 / 18

Expression Templates in Grid

Using C++11 templates we can abstract complex datatypes and treat them as numbers in
an expression

Grid grid(vol); // Creates a cartesian grid of points

Lattice<Su3f> x(&grid); // Creates objects that populate the cartesian

Lattice<Su3f> y(&grid); // grid with SuNf objects (= SU3 matrix single

Lattice<Su3f> z(&grid); // precision)

z = x*(y+x) - y*y; // Expression to be evaluated

Achieved through a recursive evaluation of expressions
Sample code for the miniapp used for portability tests:

template <typename Op, typename T1,typename T2>

inline Lattice<obj> & operator=(const LatticeBinaryExpression<Op,T1,T2> expr) {

#pragma omp parallel for

for(int ss = 0; ss < this->oSites(); ss++) {

_odata[ss] = eval(ss,expr);

}

return *this;

}

template <typename Op, typename T1, typename T2>

auto inline eval (const unsigned int ss, const LatticeBinaryExpression<Op,T1,T2> &expr)

-> decltype(expr.Op.func(eval(ss,expr.arg1),eval(ss,expr.arg2))) {

return expr.Op.func(eval(ss,expr.arg1),eval(ss,expr.arg2));

}

template<class obj>

inline obj& eval(const unsigned int ss, const Lattice<obj> arg) {

return arg._odata[ss];

}

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 6 / 18

Porting Grid to GPUs

Porting to GPUs quite challenging
C++11 code strongly based on STL, which is not well supported in GPUs
Deep templating makes deep copy (or unified memory) a requirement
Achieving coalesced access with the AoSoV layout can be complicated

Several possibilities

OpenACC/OpenMP

Directive-based, unifies code

Easy to adapt existing code

Portable

Lacks deep copy support

Use in C++ code non-trivial

Compiler dependent

Developer has little control

Jitify

CUDA extensions not needed

CPU-GPU execution policies
can be present simultaneously

Runtime compilation might
affect performance

Kernel functions must be
supplied in header files

www.github.com/NVIDIA/jitify

CUDA

Most mature approach

C++ support improving

Developer has full control

Need to write CUDA
kernels, code branching

Only NVIDIA GPU support

Must add host
device decorations

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 7 / 18

Porting Grid to Gpus

Kernel examples

OpenACC

#pragma acc parallel loop independent copyin(expr[0:1])

for(int ss = 0; ss < this->oSites(); ss++) {

_odata[ss] = eval(ss,expr);

}

OpenMP

#pragma omp target device(0) map(to:expr) map(tofrom:_odata[0:this->oSites()])

{

#pragma omp teams distribute parallel for

for(int ss = 0; ss < this->oSites(); ss++) {

_odata[ss] = eval(ss,expr);

}

}

Jitify

static const Location ExecutionSpaces[] = DEVICE;

policy = ExecutionPolicy(location)

...

parallel_for(policy, 0, this->oSites(),

JITIFY_LAMBDA((_odata, expr), _odata[i]=eval(ss,expr);));

CUDA

template<class Expr, class obj> __global__

void ETapply(int N,obj *_odata,Expr Op) {

int ss = blockIdx.x;

_odata[ss]=eval(ss,Op);

}

LatticeBinaryExpression<Op,T1,T2> temp = expr;

ETapply<decltype(temp),obj> <<<nBs,nTs>>>(this->oSites(),this->_odata,temp);

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 8 / 18

Porting Grid to Gpus

Gpu compilers won’t give coalesced access in a AoSoV layout
Usually they assign a whole vector to a thread, and performance decreases due to register spilling
Performance can be improved with a coalesced wrapper that dynamically transforms the layout

But Grid’s native layout can be effectively used by the gpu giving coalesced access
Assign osites −→ blocks, isites −→ threads

Requires some modifications to make the Expression Templates work properly


a111 a112 a113 a114 a121 a122 a123 a124 a131 a132 a133 a134

a211 a212 a213 a214 a221 a222 a223 a224 a231 a232 a233 a234

a311 a312 a313 a314 a321 a322 a323 a224 a331 a332 a333 a334

 −→

a111 . . .
...

. . .

 a112 . . .
...

. . .


Thread 1 Thread 2a113 . . .

...
. . .

 a114 . . .
...

. . .


Thread 3 Thread 4

Each osite is a vectorized matrix, each isite access a particular simd lane of the vectorized matrix

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 9 / 18

Porting Grid to Gpus

template<class Expr, class vObj> __global__ void ETapply(obj *_odata,Expr Op) {

typedef typename vObj::scalar_object sObj;

auto sD = evalS(blockIdx.x, Op, threadIdx.x);

mergeS(_odata[blockIdx.x], sD, threadIdx.x);

}

template <typename Op, typename T1,typename T2>

inline Lattice<vObj> & operator=(const LatticeBinaryExpression<Op,T1,T2> expr) {

#ifdef __NVCC__

ETapply<decltype(expr), vObj> <<<this->oSites(), this->iSites()>>> (this->_odata, expr);

#else

// CPU code goes here...

#endif

return *this;

}

template <typename Op, typename T1, typename T2>

auto inline evalS (const unsigned int ss, const LatticeBinaryExpression<Op,T1,T2> &expr, const int tIdx)

-> decltype(expr.Op.func(evalS(ss,expr.arg1,tIdx), evalS(ss,expr.arg2,tIdx))) {

return expr.Op.func(evalS(ss,expr.arg1,tIdx), eval(ss,expr.arg2,tIdx));

}

template<class vObj> inline auto evalS(const unsigned int ss, const Lattice<vObj> arg, const int tIdx) {

auto sD = extractS<vObj, sObj>(arg._odata[ss], tIdx);

return (sObj) sD;

}

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 10 / 18

Porting Grid to Gpus

102 103 104 105 106

Problem size (Kb)

0

50

100

150

200

250

300

350

G
Fl

o
p
s/

s

Appx. stream triad (ST)
OpenAcc scalar datatype
Jitify scalar datatype
Jitify vector datatype

Jitify vector w/coalesced ptr
CUDA scalar datatype
CUDA scalar w/ coalesced ptr
CUDA w/ Grid native datatype

0

50

100

150

200

250

300

350

400

G
B

y
te

s/
s

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 11 / 18

Porting Grid to Gpus

Comparison P100, V100, KNL. CUDA + Grid Native datatypes

102 103 104 105 106

Problem size (Kb)

0

100

200

300

400

500

600

700

800

G
Fl

o
p
s/

s
Xeon E5-2695v4 18 cores Avx2
Knl 64 cores, A2A Cache Mode
Quadro GP100 Pascal
Tesla V100 Volta

Stream triad (ST) Cpu
Stream triad (ST) Knl
Stream triad (ST) Pascal
Stream triad (ST) Volta

0

100

200

300

400

500

600

700

800

G
B

y
te

s/
s

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 12 / 18

Porting Grid to Gpus

Results with native datatypes almost independent of vector length

Can be improved if we assign several vectors per block

4 8 16 32 48 64 96 128 192 256 384 512 768 1024
Block size (8 bytes elements)

0

100

200

300

400

500

600

G
Fl

o
p
s/

s

16^4
24^4
32^4

48^4
64^4
Stream triad (ST) Gpu

0

100

200

300

400

500

600

700

G
B

y
te

s/
s

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 13 / 18

Summary Grid

Main difficulties

By design Grid easily create many temporary objects (constructor calls) during any operation

The coalesced pointer also requires calls to constructors to operate
In most implementations constructors are not easily called from device code

OpenACC completely forbids this
CUDA is more relaxed, but we still find segfaults
Jifity directly uses the GNU compiler and seemed to be the most flexible approach

Unified memory is a must for our implementation

OpenACC offers easy portability, but it’s not mature enough and performance is not good

Jitify must place kernels and datatypes in header files, which can be cumbersome
CUDA with native Grid datatypes

Superb performance
No need to change the layout
The nvcc compiler might struggle with the C++
What do we do with the STL?

Other members of the team are trying other approaches. For example, NIM (see Xian-Yong
Jin’s talk Wed. 2:35PM)

Next steps

Integrate Grid’s ET (not our stripped down version), tough C++ test for the compilers

Implement a simple linear operator w = Mv (dslash)

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 14 / 18

Other approaches: Kokkos (B. Joo, T. Kurth, J. Deslippe and K. Clark)

Single Right Hand Side (SRHS) Case:

Naive Implementation: No explicit
vectorization over lattice sites

Not much vectorization opportunity for
compiler
3× 3 and 3× 4 complex matrices,
short trip count loops

Expect performance similar to legacy
codes on KNL

Lack of vectorization causes low
performance on KNL

GPU Performance is very good
80% of QUDA Library on P100
No vectorization needed due to SIMT
programming model
Each thread works on single site, in
scalar mode

Single RHS Dslash Kernel

V100 results from NVIDIA, P100 result from SummitDev (OLCF), KNL

results from Cori (NERSC). KNL nodes have 68 cores, but in some cases

(QPhiX AVX512) only 64 may have been used, for load balance reasons.

Lattice volume was 324 sites: B. Joo (JLab) T. Kurth and J.Deslippe

(NERSC), K. Clark (NVIDIA)

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 15 / 18

Other approaches: Kokkos (B. Joo, T. Kurth, J. Deslippe and K. Clark)

Multi Right Hand Side (MRHS) Case:

Potential to vectorize over right hand
sides and reuse gauge field

Using regular Kokkos complex,
performance was low

Still problems with vectorization

Specializing Vector Type and using
some AVX512 intrinsics gave a major
boost (navy blue bar)

12× speedup over unspecialized
Comparable to QPhiX SRHS code

GPU performance was really good,
specially on Volta

Lower latency, unoptimized code runs
better
4× speedup in int32 indexing
operations

Code is performance portable

Multi RHS Dslash Kernel

V100 results from NVIDIA, P100 result from SummitDev (OLCF), KNL

results from Cori (NERSC). KNL nodes have 68 cores, but in some cases

(QPhiX AVX512) only 64 may have been used, for load balance reasons.

The lattice volume was 163 × 32 sites, with 8 RHS for KNL and 16 for

GPU (natural H/W length) B. Joo (JLab) T. Kurth and J.Deslippe

(NERSC), K. Clark (NVIDIA)

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 16 / 18

Thank you

Thank you for your attention

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 17 / 18

Acknowledgements

We thank Mathias Wagner (NVIDIA) for his help during the recent hackathon

B. Joo thanks NERSC, for travel support and a summer Associate appointment for the work
involving Kokos, for which we also gratefully acknowledge use of computer resources at
NERSC (Cori), OLCF (SummitDev) and NVIDIA (P100 and V100 devices).

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for the planning and preparation of
a capable exascale ecosystem, including software, applications, hardware, advanced system
engineering and early testbed platforms, in support of the nation’s exascale computing
imperative.

Part of this research was carried out at the Brookhaven Hackathon 2017. Brookhaven
Hackathon is a collaboration between Brookhaven National Laboratory, University of
Delaware, Stony Brook University, and the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, and used resources of Brookhaven National Laboratory.

Alejandro Vaquero (University of Utah) Performance Portability with Grid C++ August 22th , 2017 18 / 18

