
LLNL-PRES-736898
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Umpire:	Next-Generation	Memory	and	
Resource	Management
CoE Performance	Portability	Meeting

David	Beckingsale	&	Rich	Hornung

August 22nd 2017



LLNL-PRES-736898
2

§ Technology	specific	APIs	force	application	developers	to	commit	
to	one	implementation

§ For	programming	models,	this	can	be	mitigated	with	
approaches	like	RAJA	&	Kokkos

§ We	need	a	similar	approach	for	memory	and	execution	
resources

§ Umpire	API	will	be	driven	by	application	needs	and	library	
requirements

Upcoming	hardware	platforms	have	complex	
sets	of	memory	and	execution	resources



LLNL-PRES-736898
3

§ How	can	applications	and	libraries	co-ordinate	using	limited	
memory	resources?

§ How	can	we	support	flexible	allocation	strategies	for	different	
allocation	types	(e.g.	temporary	arrays)?

§ How	can	data	be	moved	between	places	in	the	memory	
hierarchy?

Umpire	Motivation



LLNL-PRES-736898
4

§ Umpire	is	a	resource	management	library	that	provides	a	
unified	high-level	API	for	discovery,	provision,	and	management	
of	memory	on	next-generation	hardware	architectures

§ Decouple	resource	allocation	from	specific	memory	spaces,	
memory	allocators and	memory	operations

§ Provide	introspection	capability	for	these	allocations,	allowing	
applications	and	libraries	make	decisions	based	on	allocation	
properties

Umpire	Goals	



LLNL-PRES-736898
5

§ Don’t	reinvent	the	wheel

§ Provide	a	unified,	high-level	and	application-focused	API	for	
projects	like	tcmalloc,	jemalloc,	memkind,	SICM

Umpire	will	leverage	Third-Party	Libraries

Umpire

DDR GDDR

memkind tcmalloc cudaMalloc

cnmemmemkind

API

Implementations

Hardware



LLNL-PRES-736898
6

§ Spaces	abstract	a	memory	location,	providing	an	interface	to	
inspect	properties	and	to	allocate/free	via	a	strategy.

§ Allocator	is	a	lightweight	interface	for	making	and	querying	
memory	allocations

§ AllocationStrategy decouple	allocations	from	the	area	they	are	
made	in,	allowing	for	complex	allocation	mechanisms.

§ Operations allow	allocations	to	be	moved	from	one	space	to	
another.	These	operations	will	be	specialized	based	on	the	
source	and	destination.

Umpire	Concepts



LLNL-PRES-736898
7

§ Umpire	user	interface	will	be	
based	around	Allocators

§ Allocator	object	hides	specific	
implementation	behind	a	
unified	interface

§ Allows	accessing	a	particular	
memory	space	the	same	way	as	
a	complex	slab	allocator

§ Allocators	are	accessed	by	
querying	a	central	
ResourceManager

Allocators	&	AllocationStrategies

jemalloc

cudaMalloc

MyArena

Allocator

allocate()
deallocate()



LLNL-PRES-736898
8

§ Spaces	are	created	based	on	accessibility	of	different	memory	
resources	

§ For	example,	on	a	typical	CPU-GPU	node:
— 1	area	for	the	DRAM
— 1	area	per	GDRAM	(device	memory)
— 1	area	for	“unified	memory”

§ Note	that	although	these	spaces	overlap,	they	are	still	
separately	identified

§ Once	a	space	is	constructed,	it	will	be	tied	to	a	“system”	
allocator

Spaces

UM

DDR

GDDR0 GDDR1



LLNL-PRES-736898
9

§ Operations	allow	data	movement	between	spaces

§ The	resource	manager	will	handle	all	data	movement,	so	the	
user	only	needs	to	provide	the	source	pointer	and	destination	
space

void* moved = rm.move(ptr, new_space); 

§ Higher-level	capabilities	around	data	movement	like	caching	
allocations	in	different	locations	will	be	handled	by	other	
libraries/applications	(e.g.	CHAI)

Operations



LLNL-PRES-736898
10

Umpire	will	co-ordinate	with	other	projects

Umpire

CHAI Sidre

RAJA

RAJA

CHAI

Sidre

Umpire

Dependencies

• Lightweight portability layer 
for loops (“on-node” 
programming model)

• Gives context for CHAI 
data copies

• Lightweight pointer 
abstraction to make run-time 
data copies transparent

• Requires RAJA (and Umpire 
in future)

• Data description and 
access for sharing 
across apps and tools

• Will require Umpire for 
allocations (future)

• Portable memory 
allocation and query API

• Underpins CHAI and 
Sidre (future)



LLNL-PRES-736898
11

chai::ManagedArray<float> a(100);

chai::ManagedArray<float> b(100);

// init data on host

const float x = 1.0;

forall<cuda_exec>(0, 100, [=] (int i) {
a[i] = a[i]*x + b[i];

}); 

forall<seq_exec>(0, 100, [=] (int i) {
std::cout << “a[i] = “ << a[i];
std::cout << std::endl;

});

Chai

A

B

A
B

A
B

A
B

A
B

CPU GPU

Umpire handles 
data allocation

Umpire handles 
data movement



LLNL-PRES-736898
12

§ Flexible	pools	for	temporary	allocation	of	GPU	data
— See	Brian	Ryujin’s talk

§ Passing	Allocators	from	application	through	to	library	so	that	
library	data	allocated	in	the	same	place

§ CHAI	in	use	in	multiple	LLNL	application
— See	Adam	Kunen’s talk

Initial	Use	Cases



LLNL-PRES-736898
13

§ Initial	implementation	supporting	Allocators	for	CPU and	GPU	
and	simple	arena	allocation

§ Release	process	underway,	will	host	on	GitHub

§ We	are	interested	in	collaborations	at	all	levels	of	the	memory	
software	stack

Current	Status





LLNL-PRES-736898
15

§ In	Umpire,	the Allocator	concept is	a	stateless	object	that	
handles	allocations	at	the	system	level,	and	is	the	lowest-level	
component	in	the	Umpire	system.	

§ The required interface	is	modeled	on	that	of	the	C++17	
allocator	concept

§ We	currently	have	wrappers	around	std::malloc,	cudaMalloc,	
cudaMallocManaged that	support	this	interface

Allocator	Concepts



LLNL-PRES-736898
16

§ Umpire	will	support	introspection	of	allocations	and	resources,	
allowing	applications	and	libraries	to	dynamically	adjust	there	
behavior

§ Where	(what	space)	is	this	pointer?

§ How	much	memory	is	left	in	this	space?

Allocation	Introspection


