
Simplified Interface to
Complex Memory

Sean Williams1

Michael Lang2, Latchesar Ionkov2

1New Mexico Consortium, 2Los Alamos National Laboratory

LA-UR-17-27387



Emerging technologies

I Intel Xeon Phi

I NVLink

I Gen-Z

I 3D XPoint



Problems

I Exposure of heterogeneous memory
I NUMA?
I Block devices?
I Exotic buses?

I Coordination between processes and

threads

I Portability



Portability

I Allocate

I Deallocate

I Migrate

I Introspect

I Arbitration/coordination



NUMA on KNL



NUMA on KNL

I HBM “far away” from CPUs
I Cache mode for automatic handling

I Can be fine

I preferred memory policy for manual
handling

I Works because only two memory systems

I Not exactly “distance”



New memory policy

Configurable distances between memory

pairs, configured via sysfs:

$ cat /sys/devices/system/node/node1/ordering1

1 0 2 3



New memory policy

I Orderings become policies:
I Ordering that prefers bandwidth
I Policy that follows bandwidth ordering
I Ordering that prefers latency
I Policy that follows latency ordering
I . . .



Deciding the ordering
I Have hardware define multiple distances

I Distance as measured by bandwidth
I Distance as measured by latency
I . . .

I Have hardware define specs
I Spec bandwidth
I Spec latency
I . . .

I Derive specs empirically
I Measure bandwidth on boot
I Measure latency on boot
I . . .



Balancing allocations?

I Kernel solution?
I Per-process, per-node caps on pages
I Set via system calls
I Orchestrated globally, e.g., MPI math

I User solution?
I Custom heap allocator
I Uses shared memory to coordinate
I Bookkeeping can be tricky



Block devices?

I At present, data is mirrored in memory

I Basically just swap

I Swap improvements?



Files?

I Memory mapped via /dev
I Currently used for shared memory

I Possible future implementation

I This is a userspace problem

I May require shared-memory allocator



Conclusion

I Need portable, simplified approachs to

heterogeneous memory
I Memory policy for NUMA heterogeneity

I Policies to implement custom orderings
I User side is still libnuma
I Compatible with memkind

I Shared heap allocator
I Arbitrate between threads/processes
I Manage memory on non-NUMA devices

I Swap improvements may be coming



Conclusion


