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Challenges

Porting SUNDIALS code to heterogeneous hardware architectures

= Implement numerical integrators in a way that makes best use
of heterogeneous hardware architecture

= Ensure performance portability when used standalone or within
LLNL Software Stack.

= Develop code that can evolve along with the new hardware --
separate platform specific from algorithmic part (RAJA, Kokkos).

= Total cost of ownership:
— How easy is it to deploy the code in new environments?
— How easy is it to add new features?
— What is the maintenance cost?

Maximizing performance is but one of several challenges that need to be addressed when

moving to new architectures.
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SUNDIALS ’

Suite of state-of-the art numerical integrators and nonlinear solvers

= Forward looking, extensible object oriented design with simple and clean linear
solver and vector interfaces.

= Designed to be incorporated into existing codes. Ol |p W

= Modular structure allows users to supply their own data structures.

= Scales well in simulations on over 500,000 cores.

= Supplied with serial, MPI and thread-parallel (OpenMP and Pthreads) structures,
as well as hypre and PETSc vector interfaces.

= CMAKE support for configuration and build.
= Freely available, released under BSD license; Over >11,000 downloads in 2016.

= Modules and functionality:
— ODE integrators: (CVODE) variable order and step stiff BDF and non-stiff Adams, (ARKode)
variable step implicit, explicit, and additive Runge-Kutta for IMEX approaches.
— DAE integrator: (IDA) variable order and step stiff BDF.
— CVODES and IDAS include forward and adjoint sensitivity capabilities.
— KINSOL nonlinear solver: Newton-Krylov and accelerated fixed point and Picard methods.
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SUNDIALS ’

Used in industrial and academic applications worldwide

= Power grid modeling (RTE France, ISU)

= Simulation of clutches and power train parts (LuK
GmbH & Co.)

= Electrical and heat generation within battery cells
(CD-adapco)

= 3D parallel fusion (SMU, U. York, LLNL)

= Implicit hydrodynamics in core collapse supernova
(Stony Brook)

Core collapse

= Dislocation dynamics (LLNL) supernova

= Sensitivity analysis of chemically reacting flows
(Sandia)

= Large-scale subsurface flows (CO Mines, LLNL)

= Optimization in simulation of energy-producing
algae (NREL)

=  Micromagnetic simulations (U. Southampton)

Subsurface flow
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LLNL Software Stack

Libraries currently being ported to heterogeneous architectures

MFEM: A free, lightweight, scalable C++ library for
finite element methods.

O

agials

S SUNDIALS: Suite of state-of-the-art numerical
integrators and nonlinear solvers.

7[}},% hypre: A library for solving large, sparse linear systems
~===  of equations on massively parallel computers

S

The combined use of MFEM, hypre and SUNDIALS is critical for the
efficient solution of a wide variety of transient PDEs, such as non-linear

elasticity and magnetohydrodynamics.

Maintaining interoperability and performance portability of the software stack is more

challenging on heterogeneous architectures.
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Interfacing SUNDIALS with other software

Vector interface Linear solver interface
= Specifies: = Specifies following five functions:
— 3 constructors/destructors init, setup, solve, perf and free.
— 3 utility functions.
— 9 streaming operators. = SUNDIALS only requests linear
— 10 reduction operators. solves at specific points. It is
= Interaction with application data independent of linear solve
is carried out through these 19 strategy.
operators.

= I[mplementation of hypre linear

" Allare level-1 BLAS operators. solver interface is in progress.

= Individual modules require only
a subset of these operators.

Object oriented design and well defined interfaces simplify porting SUNDIALS to new platforms.
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Numerical simulation and data flow
Use case: implicit integration scheme with iterative linear solver

T int { g SUNDIALS

Ime_ Integrator an ——> Time integrator step
nonlinear solver hypre
agnostic of vector \1, | |  wFem |
data Iayout. Updated residual vector f and Jacobian J

——> Nonlinear solver step
Updated solution vector x
f,J \1, dx
Finite elements tools:
Linear solver step < — | Model function and
Preconditioner P Jacobian evaluation
Numerical ‘l’
integrators and No g
_ ged? :

nonlinear solvers g/loylngddafca betweer)[ Q_OSt aptd
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control logic. onverged:

‘1’ |deally, solver workspace and
model data should both stay on
No Final time? the device.
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Adapting SUNDIALS for execution on GPU

= Preliminary results show best performance is achieved when
model evaluation and solver workspace are both in the device
memory during computation. Moving entire or a part of the
solver workspace prohibitively expensive.

= Developed vector kernels in CUDA for use on GPU-based
hardware.

= Developed vector kernels using hardware abstraction layer RAJA
as an alternative GPU-enabled implementation.

= Numerical integrator logic executed on the host; the integrator
launches vector kernels on the device.

= Users will need to write CUDA kernels for their problem defining
functions or code them in RAJA to realize benefit.
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Prototype GPU implementation
SUNDIALS CUDA vector module

= The CUDA-based prototype was developed to understand
requirements for running SUNDIALS on GPU-based architectures.
= The prototype uses standard SUNDIALS C-interface.

= Data layout class = Thread partitioning class

— Allocates memory on host and device. — Separate streaming and reduction
thread partitionings.

— Allocates data buffer for reduction
— Provides pointer to partitioning class kernels when needed

— Copies data to/from device

— Hierarchical partitioning possible
template<class RealT, class IdxT>

class ThreadPartitioning { template<class RealT, class IdxT>
IdxT size_; class ThreadPartitioning {
IdxT mem_size_; IdxT  block_;
RealT* h_vec_; IdxT grid_;
RealT* d_vec_; IdxT  shMemSize_;
bool ownPartitioning_; RealT* d_buffer_;
bool ownData_; RealT* h_buffer_;
ThreadPartitioning<RealT, IdxT>* part_; IdxT  bufferSize_;
}s5 }s
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Prototype GPU implementation
SUNDIALS RAJA vector module

= Using RAJA hardware abstraction layer has a potential to significantly
reduce code development and maintenance time compared to hand
coded CUDA.

= The prototype uses standard SUNDIALS C-interface.

= Data layout class = Thread partitioning

— Allocates memory on host and device. — Handled by RAJA; hidden from user.

— The same code can produce CUDA or
OpenMP shared memory
parallelization

— Hierarchical partitioning possible

— Copies data to/from device

template<class RealT, class IdxT>
class ThreadPartitioning {

IdxT size_;

IdxT mem_size_;

RealT* h_vec_;

RealT* d_vec_;

bool ownData_;

};...
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Performance test on GPU architectures
Advection-diffusion-reaction system integrated with CVODE

= We test a simple 2-D advection-diffusion-reaction system discretized on a

unit square with standard 5-point stencil:

u
Fria 0.01V - Vu + 10Vu 4+ 100u(u + 10)(1 — u) on Q, —Vu-n =0 on 9Q
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= RAJA adds a small performance overhead that decreases with vector size.
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Code profiling

Advection-diffusion-reaction system integrated with CVODE

= 79% of processing time is taken by 6 vector kernels (2 reductions).

= 20% is spent on model evaluation and 1% on everything else.

= QOverall performance can be predicted from testing results for a
representative streaming and reduction kernels, respectively.
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SUNDIALS Bandwidth utilization

Dot product and AXPY kernels make ~55% of the test case runtime

Quadro K2200, Xeon E5-1650 v3
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LLNL Software Stack

Test case description

= We test nonlinear heat equation:

u .
E:V-(K+au)|7u INQ and Vu -ngq =0

= Finite element model is created in MFEM and integrated by SUNDIALS
module CVODE using explicit Adams-Bashforth scheme.

Initial Solution at Explicit integration schematics with
condition t=0.5 SUNDIALS and MFEM
Updated RHS function f
MFEM:
|:> SUNDIALS: < | Finite element tool
Time mtegrator step right-hand-side
function evaluation
Updated solution vector x
Final time?
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LLNL Software Stack
SUNDIALS-MFEM combined performance

= We test nonlinear heat equation:

d—lz: V-(k+au)Vu inQandVu-nyg =20

= Solution vector size increased by refining the mesh and using higher
order stencils.

= Performance testing shows significant speedup when running the test
on the GPU vs. CPU, and good GPU device utilization.

GPU (CUDA) vs. CPU (OpenMP) speedup GPU Occupancy (%)
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LLNL Software Stack

Profiling results

= Except for very simple problems SUNDIALS vector kernels make up only a
small fraction of total execution time (~1% in this test case).

= Numerical integrator reduction kernels cannot be run on stream parallel
with other computations.
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Conclusions

= Moving data between host and device still most expensive
action during numerical integration. Device memory appears to
be the main performance limiting factor.

= Numerical integrators take small fraction of the overall
computation time. The main reason to run numerical
integration on the device is to minimize device to host
communication.

= Numerical integrator reduction operators cannot be run on
streams parallel to other computations. They are potential
computational bottlenecks. Parallel in time integration may
address this issue.
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