
DOE Office of Science
Facilities
ALCF, NERSC, OLCF

HPC Systems at the Office of Science

ALCF, NERSC and OLCF have begun transitioning users to energy-efficient
architectures in preparation for Exascale

OLCF Titan
18,000+ CPU+GPU Nodes

ALCF Theta
2500+ Xeon-Phi Nodes

NERSC Cori
9500+ Xeon-Phi Nodes

http://performanceportability.org/facilities/overview/

Challenges and Opportunities

Users of these ALCF, NERSC, OLCF are scientists who first and foremost care about scientific
results. They often have accounts and allocations at multiple Office of Science Facilities. They
desire:

1. Portability - The want to be able to maintain a single branch of code that works across the
different systems they have access to.

2. Longevity - They don’t want to have to rewrite their codes for each new system they can
access to every couple of years.

What Recommendations do We Have For Them?

Challenges and Opportunities

Performance comes from “similar” architectural features

● Increase parallelism (Cores, Threads, Warps/SMs/Blocks)
● Vectorization (AVX512 8 Wide Vector Units, 32 Wide Warps)
● Small Amount High-bandwidth Coupled with Large Amounts of Traditional DDR

Portable Implementation Challenges:

1. How to express parallelism in a portable way across both the KNL processor cores and
vector-lanes and across the 896 SIMT threads that the K20x CUDA cores support.

2. How to express data movement and data locality across the memory hierarchy
containing both host and device memory in portable way.

Agree? Missing something?

Our Working Definition

DOE SC Facility Definition

An application is performance portable if it achieves a
consistent ratio of the actual time to solution to either the
best-known or the theoretical best time to solution on each
platform with minimal platform specific code required.

Agree?

Measuring Performance Portability

Measuring Performance Portability:

Bad Ways

1. Compare time-to-solution on one system vs another.
2. Compare ratio of actual app performance to peak system performance

Good Ways

3. Compare time-to-solution on each system against a well-known optimal
implementation

4. Compare performance on each system against a relevant roofline-model
ceiling on each system (We’ve included instructions for KNL and GPU)

Agree?

Selecting a Performance Portability Strategy (And Limits of Each)

Threads and Vectors (SMT, SIMT, SIMD).

1. SIMT ≅ SMT : What you tend to get when taking a GPU code and
attempting a first pass portable version. This leaves SIMD on the GPU
un-expressed. Leads to concept of coalescing.

2. SIMT ≅ SIMD : What you tend to get by default with OpenMP (!$OMP
SIMD). Limits what you can vectorize on GPU to code with which the CPU
can vectorize.

3. Use nested parallelism to map GPU SMs/Warps to CPU Cores/Threads
and threads within Warps to Vector lanes. Still lose flexibility on the GPU.

Example: (QCD Dslash)

Implementation 1:

Use Kokkos to define simple parallel_for over lattice sites. Map SIMT Threads
to SMT threads/cores on CPU.

Result: Great performance on GPU, Bad performance on KNL (compiler can’t
vectorize)

Implementation 2:

Use Kokkos to both parallelize over lattice sites and new level of
inner-parallelism (multiple right hand sides) using threadVectorRange

Result: Add a little non-portable code to help compile explicitly vectorize
C++/Kokkos complex data-type.

High Level Findings

Leading Performance Portability
Approaches

Agree?

Recommendations

Available options for performance portability are still somewhat immature and
evolving quickly.

● Profile your application using tools at:
● If you can use a well-supported Library or DSL, use it
● If your application doesn’t use C++, try OpenMP 4.5 and OpenACC (Later

lacks a lot of testing on CPUs/KNL)
● If your application does use C++, consider Kokkos or Raja / OpenMP 4.5

(incremental) and which best fits your application
● Reach out to your facility to report bugs/deficiencies that we can share with

the framework developers and standard bodies
Agree?

Extras

Feedback:
We are looking for feedback on definition, measurements,
strategy, conclusions, recommendations

http://performanceportability.org

Example: (QCD Dslash)

Single Right Hand Side Multiple Right Hand Side

http://performanceportability.org/case_studies/qcd/results_summary/

Defining Performance Portability

Definitions from Last Years Meeting:

● "For the purposes of this meeting, it is the ability to run an application with acceptable performance
across KNL and GPU-based systems with a single version of source code." (Neely)

● "An application is performance portable if it achieves a consistent level of performance (e.g.
defined by execution time or other figure of merit (not percentage of peak flops across platforms))
relative to the best known implementation on each platform." (Pennycook, Intel)

● "Hard portability = no code changes and no tuning. Software portability = simple code mods with
no algorithmic changes. Non-portable = algorithmic changes" (Pope, Morozov)

● (Performance portability means) the same source code will run productively on a variety of
different architectures" (Larkin)

● "Code is performance portable when the application team says its performance portable!"
(Richards)

Measuring Performance Portability

Measuring Portability:

Percentage of code lines that are shared between
architectures vs code lines that architecture specific.

Hard to measure if total code lines have gone up, but about as good as you can
do.

Measuring Performance Portability

Roofline Data and Instructions

http://performanceportability.org/perfport/measurements/

Collecting Roofline Data on KNL:

http://performanceportability.org/perfport/measurements/knl/

Collecting Roofline Data on GPUs:

http://performanceportability.org/perfport/measurements/gpu/

Measuring Performance Portability

Roofline Model (Find Most Relevant Ceiling)

One can extend the roofline to collect multiple relevant ceilings and AI values:

Different Levels of Cache/Memory, Different memory Access Patterns, Network Bandwidth/Traffic

