Bayesian Information-Gap (BIG) Decision Analysis Applied to a Geologic CO₂ Sequestration Problem

Daniel O’Malley (omalled@lanl.gov) and Velimir V. Vesselinov (vvv@lanl.gov)
Computational Earth Science, Los Alamos National Laboratory, Los Alamos, NM, United States
Unclassified: LA-UR-14-28376

BIG UQ
Bayesian-Information-Gap (BIG) Decision Analysis (DA) combines probabilistic Bayesian methods with non-probabilistic information-gap decision theory using a three-layered approach:

- Inner layer: information-gap to deal with model inadequacy (Here, this is related to the oversimplified physical model.)
- Middle layer: Bayesian analysis to deal with parametric uncertainties (Here, these are related to the location and resistivity of a leaky well.)
- Outer layer: information-gap to deal with uncertainty in the conditional distribution used in the Bayesian analysis (Here, these are related to the fact that the residuals are not a Gaussian white noise.)

Utilizing information-gap decision theory in the outer layer enables a robust decision analysis. The details are described in [1].

HYDROGEOLOGICAL SETUP

SITES
- Knowns
 - Hydrological parameters: permeability, aquifer thickness, specific storage
 - Injection parameters: injection rate, well geometry
- Unknowns
 - Leaky well parameters: location, resistivity
- Difference between two sites
 - Site 1 contains a leaky well with a lower resistivity than Site 2
 - Therefore, Site 2 is a better injection site

ROBUSTNESS CURVES

OBSERVED DATA

PHYSICAL MODEL
- Semi-analytical model for the setup described above [2]
- Predicts
 - Groundwater flow mixed with CO₂ from lower to upper aquifer
 - Pressure build-up in lower aquifer
 - Pressure build-up in upper aquifer
- Assumes
 - Uniform hydraulic parameters in the upper and lower aquifers
 - Leaky well is present
- Model inadequacy is considered within the BIG analysis

DECISION SCENARIO
- A site is to be chosen at which CO₂ will be injected in a deep aquifer
- Injecting at the site must not induce a high over-pressure in the host formation to avoid induced seismicity
- Injecting at the site must not induce a high over-pressure/flow into the overlying aquifer to avoid groundwater contamination
- A pumping test is performed at two locations to evaluate their suitability for CO₂ injection

IMPLEMENTATION
- Physical-model independent: easy to utilize new physical models
- Info-gap uncertainty-model independent: easy to utilize new info-gap uncertainty models
- Numerous MCMC samplers available for the Bayesian component
- Runs in parallel
- Implemented in Julia: fast and flexible
- Part of the MADS framework

CONCLUSIONS
- Probabilistic analyses are not able to adequately characterize uncertainty in every application
- Subsurface applications are a prime example due to manifold & severe uncertainties
- Combining Bayes theorem with information-gap decision theory provides a viable approach to dealing with uncertainty for these applications

REFERENCES