Hydraulic Inverse Modeling Using Total-Variation Regularization with Relaxed Variable-Splitting

Youzuo Lin, Velimir Vesselinov, Daniel O’Malley, & Brendt Wohlberg

Los Alamos National Laboratory
Los Alamos, NM 87545

March 15, 2017
Outline

1. Introduction

2. Hydrogeologic Inverse Modeling
 - Forward Problem - Groundwater Flow Equation
 - Inverse Problem - Least-Squares Problem

3. Regularization Theory

4. Total Variation Regularization with Relaxed Variable-Splitting Scheme

5. Computation Methods

6. Numerical Results

7. Conclusions
Outline

1 Introduction

2 Hydrogeologic Inverse Modeling
 Forward Problem - Groundwater Flow Equation
 Inverse Problem - Least-Squares Problem

3 Regularization Theory

4 Total Variation Regularization with Relaxed Variable-Splitting Scheme

5 Computation Methods

6 Numerical Results

7 Conclusions
Introduction

- Inverse modeling seeks model parameters given a set of observed-state variables.
- For many practical hydrogeological problems, because the data coverage is limited, the inversion can be ill-posed and unstable.
- To stabilize the inversion, regularization techniques can be employed to eliminate the ill-posedness.
- The most commonly used type of regularization include Tikhonov and Total-Variation (TV).
- However, Tikhonov regularization tends to yield smoothed inversion results, and conventional TV regularization can be computationally unstable and yield unwanted artifacts.
- We have developed a novel hydraulic inverse modeling method using a TV regularization with relaxed variable-splitting scheme to preserve sharp interfaces and improve the accuracy of inversion.
1 Introduction

2 Hydrogeologic Inverse Modeling
 Forward Problem - Groundwater Flow Equation
 Inverse Problem - Least-Squares Problem

3 Regularization Theory

4 Total Variation Regularization with Relaxed Variable-Splitting Scheme

5 Computation Methods

6 Numerical Results

7 Conclusions
• **Input:** Measured values (hydraulic heads) at N observation wells.

• **Output:** Model parameter values (conductivity or transmissivity) at every grid node of the model.
The forward problem of hydrogeologic inverse modeling is governed by the groundwater flow equation,

\[\nabla \cdot (T \nabla h) = g \]
\[g(x, y) = 0 \]
\[\left. \frac{\partial h}{\partial x} \right|_{a,y} = \left. \frac{\partial h}{\partial x} \right|_{b,y} = 0 \]
\[h(x, c) = 0, \quad h(x, d) = 1 \]

where \(h \) is the hydraulic head, \(T \) is the transmissivity and \(g \) is a source/sink (here, set to zero).
Using the operator, the forward modeling problem of the hydrogeologic inverse modeling can be simplified as,

\[h = f(T), \]

where \(f(\cdot) \) is the forward operator mapping from the model parameter space to the measurement space.
Correspondingly, the problem of model calibration can be posed as a damped least-squares problem,

\[
 \mathbf{m} = \arg \min_{\mathbf{m}} \left\{ \| \mathbf{d} - f(\mathbf{m}) \|_2^2 \right\},
\]

where \(\mathbf{d} \) represents a recorded hydraulic head dataset, \(\mathbf{m} \) is the calibrated model parameter, \(\| \mathbf{d} - f(\mathbf{m}) \|_2^2 \) measures the data misfit, \(\| \cdot \|_2 \) stands for the L_2 norm.
Outline

1. Introduction

2. Hydrogeologic Inverse Modeling
 - Forward Problem - Groundwater Flow Equation
 - Inverse Problem - Least-Squares Problem

3. Regularization Theory

4. Total Variation Regularization with Relaxed Variable-Splitting Scheme

5. Computation Methods

6. Numerical Results

7. Conclusions
Inverse modeling with general regularization term can be posed as,

$$\hat{m} = \arg\min_m \left\{ \| d - f(m) \|_2^2 + \lambda R(m) \right\},$$

where $R(m)$ is a general regularization term and the parameter λ is a parameter controlling the amount of regularization in the inversion.
Inverse Modeling with regularization

\[
\min_{\mathbf{m}} \left\{ \| \mathbf{d} - f(\mathbf{m}) \|_2^2 + \lambda R(\mathbf{m}) \right\},
\]

where \(\| \mathbf{d} - f(\mathbf{m}) \|_2^2 \) is data fidelity term, \(R(\mathbf{m}) \) is the regularization term and \(\lambda \) is the regularization parameter.

Specific Regularization and Its Characteristics

- **Total-Variation (TV):**
 \[R(\mathbf{m}) = \| \nabla \mathbf{m} \|_1 = \sum_i |(\delta m)_i|, \text{ (1-D)} \]
 Best suited for reconstructing piecewise-constant functions, computationally expensive

- **Tikhonov (TK):**
 \[R(\mathbf{m}) = \| L \mathbf{m} \|_2 = \sum_i (\delta m)_i^2, \text{ (1-D)} \]
 Best suited for reconstructing smooth functions, computationally cheap

- \(TV_{step} = 5; \)
 \(TV_{smooth} = 2 + 2 + 1 = 5. \)

- \(TK_{step} = 5^2 = 25; \)
 \(TK_{smooth} = 2^2 + 2^2 + 1 = 9 \)

1 Introduction

2 Hydrogeologic Inverse Modeling
 Forward Problem - Groundwater Flow Equation
 Inverse Problem - Least-Squares Problem

3 Regularization Theory

4 Total Variation Regularization with Relaxed Variable-Splitting Scheme

5 Computation Methods

6 Numerical Results

7 Conclusions
The misfit function of hydraulic inverse modeling using total-variation regularization with relaxed variable-splitting is:

$$E(m, u) = \min_{m, u} \left\{ \|d - f(m)\|_2^2 + \lambda_1 \|m - u\|_2^2 + \lambda_2 \|\nabla u\|_1 \right\},$$

- $\|d - f(m)\|_2^2$ is the data misfit term;
- $\|m - u\|_2^2$ and $\|\nabla u\|_1$ are the regularization terms;
- λ_1 and λ_2 are the regularization parameters;
A New Misfit Function of Hydraulic Inverse Modeling

\[
E(m, u) = \min_{m,u} \left\{ \|d - f(m)\|_2^2 + \lambda_1 \|m - u\|_2^2 + \lambda_2 \|u\|_{TV} \right\},
\]

where \(\lambda_1 \) and \(\lambda_2 \) are both positive regularization parameters.

- The regularization terms contain a new variable \(u \) and an additional term \(\|m - u\|_2^2 \) compared to the conventional TV regularization term.
A New Misfit Function of Hydraulic Inverse Modeling

\[
E(m, u) = \min_u \left\{ \min_m \left\{ \|d - f(m)\|_2^2 + \lambda_1 \|m - u\|_2^2 \right\} + \lambda_2 \|u\|_{TV} \right\},
\]

where \(\lambda_1\) and \(\lambda_2\) are both positive regularization parameters.

- The regularization parameter \(\lambda_1\) controls the trade-off between the data misfit term and the Tikhonov regularization term, and \(\lambda_2\) balances the amount of interface-preservation in inverse modeling.
A New Misfit Function of Hydraulic Inverse Modeling:

\[E(m, u) = \min_u \left\{ \min_m \left\{ \| d - f(m) \|^2_2 + \lambda_1 \| m - u \|^2_2 \right\} + \lambda_2 \| u \|_{TV} \right\}, \]

where \(\lambda_1 \) and \(\lambda_2 \) are both positive regularization parameters.

- The inner problem is to solve for \(m \) using a conventional inverse modeling with the Tikhonov regularization and prior model \(u \).
- The outer subproblem is to solve for \(u \) using a standard \(L_2 \)-TV minimization method to preserve the sharpness of interfaces in inversion result \(m \).
- The interleaving of solving these two subproblems leads to an inversion that not only improves the minimization of the data misfit, but also enhances the sharpness of interfaces.
1 Introduction

2 Hydrogeologic Inverse Modeling
 Forward Problem - Groundwater Flow Equation
 Inverse Problem - Least-Squares Problem

3 Regularization Theory

4 Total Variation Regularization with Relaxed Variable-Splitting Scheme

5 Computation Methods

6 Numerical Results

7 Conclusions
We employ the Alternating Direction Method of Multipliers (ADMM) to solve our new hydraulic inverse modeling

Alternating Direction Method of Multipliers (ADMM)

\[
\begin{align*}
\mathbf{m}^{(k)} &= \arg\min_{\mathbf{m}} \{ E_1(\mathbf{m}) \} \\
&= \arg\min_{\mathbf{m}} \left\{ \| \mathbf{d} - f(\mathbf{m}) \|_2^2 + \lambda_1 \| \mathbf{m} - \mathbf{u}^{(k-1)} \|_2^2 \right\} \\
\mathbf{u}^{(k)} &= \arg\min_{\mathbf{u}} \{ E_2(\mathbf{u}) \} \\
&= \arg\min_{\mathbf{u}} \left\{ \| \mathbf{m}^{(k)} - \mathbf{u} \|_2^2 + \lambda_2 \| \mathbf{u} \|_{TV} \right\}
\end{align*}
\]
• The subproblem of $m^{(k)}$ is a classical inverse modeling with Tikhonov regularization.

• Various parameter estimation method has been developed: L-Curve, GCV, etc.
Selection of the Regularization Parameter: λ_2

- The subproblem of $u^{(k)}$ is a classical L_2-TV minimization.
- Surprisingly, not many effective methods in existing references.
- We employ the unbiased predictive risk estimator (UPRE):

Selection of λ_2, (Lin et. al., SP (90) 2010):

$$
\lambda_2 = \arg\min_{\lambda_2} \left\{ \frac{1}{n} \| r_{\lambda_2} \|_2^2 + \frac{2\sigma^2}{n} \text{trace}(A_{TV,\lambda_2}) - \sigma^2 \right\}.
$$
Outline

1 Introduction

2 Hydrogeologic Inverse Modeling
 Forward Problem - Groundwater Flow Equation
 Inverse Problem - Least-Squares Problem

3 Regularization Theory

4 Total Variation Regularization with Relaxed Variable-Splitting Scheme

5 Computation Methods

6 Numerical Results

7 Conclusions
Problem Setup and Model Discretization

- The reference problem is steady-state groundwater flow on the square domain, $[0, 1] \times [0, 1]$, with fixed hydraulic head at $y = 0$ and $y = 1$, zero flux boundaries at $x = 0$ and $x = 1$, and zero recharge.
- We run the tests on a Linux desktop with 32 cores of 2.0 GHz Intel Xeon E5-2650 CPU, and 16.0 GB memory.
- The groundwater flow equation is solved using the finite difference method on a uniform grid. The parameter grids are composed of horizontal and vertical transmissivity nodes (as are illustrated in figure below).
The plus ("+") are the hydraulic-head observation points (wells).

A horizontal profile indicated by the red dotted line will be used to compare the results.
Inverse Modeling Result - 2D Inversion

2D Inversion

- Inversion result using inverse modeling with conventional TV regularization
2D Inversion

- Inversion result using inverse modeling with our new TV regularization
1D Horizontal Profile

- Profile of the inversion (red) v.s. the true value (blue)
- Inverse modeling with conventional TV method
1D Horizontal Profile

- Profile of the inversion (red) v.s. the true value (blue)
- Inverse modeling with our new TV method
- The interface is much better preserved
The dimension of the true model is 50×50.

Two low-permeable geologic facies are included in the true model representing: sand (green) and clay (red). The background is highly permeable (gravel; blue). The permeability within all the three facies is assumed to be uniform.
2D Inversion

- Inversion result using inverse modeling with conventional TV regularization
2D Inversion

- Inversion result using inverse modeling with our new TV regularization
In the image, there are two 1D profiles showing the comparison of the reference field (k_{ref}) and the estimated field (k_{est}) at two different locations:

- **Location 1:**
 - Profile of the inversion (red) v.s. the true value (blue)
 - Inverse modeling with conventional TV method

- **Location 2:**
 - similarly described as in Location 1.
Inverse Modeling Result - 1D Profile

Location 1
- Profile of the inversion (red) v.s. the true value (blue)
- Inverse modeling with our new TV method
- The interface is much better preserved

Location 2

Conclusions

• We have developed a hydraulic inverse modeling using total-variation regularization with relaxed variable-splitting.

• Our numerical examples using synthetic data show that our new methods not only preserve sharp interfaces between facies with contrasting permeabilities, but also significantly improve the accuracy of the inversion. Therefore, our method has great potential in characterizing the subsurface heterogeneity problems.

• We implement our new inverse modeling method using Julia in the MADS computational framework (http://madsjulia.lanl.gov/), which can be downloaded at https://github.com/madsjulia/Mads.jl.
Acknowledgement

- This research is supported by LANL Environmental Programs Projects.

- In addition, Velimir V. Vesselinov was supported by the DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science, Grant #11145687).

Thank you