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We describe a physically based derivation of the Weibull distribution with respect to fragmentation 
processes. In this approach we consider the result of a single-event fragmentation leading to a 
branching tree of cracks that show geometric scale invariance (fractal behavior). With this approach, 
because the Rosin-Rammler type distribution is just the integral form of the Weibull distribution, 
it, too, has a physical basis. In further consideration of mass distributions developed by 
fragmentation processes, we show that one particular mass distribution closely resembles the 
empirical lognormal distribution. This result suggests that the successful use of the lognormal 
distribution to describe fragmentation distributions may have been simply fortuitous. 0 1995 
American Institute of Physics. 

I. HISTORICAL 5ACKhOUND 

In 1933 Rosin and Rammler’~2 proposed the use of an 
empirical distribution for description of particle sizes, which 
they obtained from data describing the crushing of coal and 
other materials. In 1939 Weibul13 proposed the same distri- 
bution (as we show below), which he obtained from the 
study of the fracture of materials under repetitive stress. The 
distribution proposed was strictly empirical,4 until Austin 
et aL5 derived it to describe batch grinding in 1972. Later, 
Peterson et al.’ md Brown7 and Wohletz et aL8 indepen- 
dently rederived the distribution. Austin et al., Peterson 
et aZ., and Brown each derived the distribution from a some- 
what different point of view, but they all used a, simple but 
nonetheless empirical power law to describe the breakup of a 
single particle into smaller particles. In this article we elimi- 
nate this shortcoming and thus put the Weibull distribution 
on a solid theoretical basis, stemming from physical prin- 
ciples. 

II. DERIVATION OF THE WEIBULL DISTRIBUTION 

Brown7 began his theory of sequential fragmentation 
with the equation 

I 

m 
n(m)=C n(m’)f(m’-+m)dm’. 

m 
(1) 

Here n(m) is the number distribution in units of particles per 
unit mass of mass m between m and m+ dm. f(m’+m> is 
the single-event particle distribution function and expresses 
the distribution in mass, m , arising from the fragmentation of 
a single, more massive particle of mass m’ . Equation (1) 

B)Address for correspondence: 5179 Eastshore Dr., Lake Almanor, CA 
96137. 

represents the summing of all contributions to the distribu- 
tion at m from the fragmentation of all particles of mass 
m’>m. 

Brown7 set the constant C equal to my ‘, and chose 

m y 
f(m'-+m)= m, , i 1 

where - 1 < 60. 
Inserting Eq. (2) into Eq. (l), we have 

n(m)=(~)‘/~n(m’)d( g)- 

The solution to Eq. (3) is 

(4) 

which is the Weibull distribution in particle number. Equa- 
tion (4) has been normalized such that 

NT= m 
I 

n(m)dm, 
0 

(5) 

where NT is the total number of fragments in the distribution. 
The cumulative form of Eq. (4) is 

N(>m) SEn(m)dm (ml4 Y+l 

-= SFn(m)dm =exp - y+li-- - 
NT 1 

Brown7 defended his choice of Eq. (2) on the basis of 
existing experimental data (see, e.g., Fig. 1 and Refs. 9 and 
10) and the extensive successful empirical use of Eq. (6). 
Until now, the use of Eq. (2) was empirical, but as we shah 
see below, it has a deeper meaning based securely on physi- 
cal principles. 

The brittle fracturing of any particle results in a branch- 
ing tree of cracks (Fig. 2), as discussed by Austin” and Van 
Cleef.12 This branching tree of cracks looks the same on any 
scale, and thus can be described as a fractal.13 As reiterated 
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FIG. 1. Plot of log mn(m) vs log x3 where x is the particle diameter for iron 
ground in a ball mill (Rosin and Rammler, Ref. 17). Note that the data 
consist of two populations. fines that experienced a single fragmentation 
event and remained unaffected in spaces among larger particles that were 
repeatedly fragmented during milling. 

by Samson et aZ.,14 a method of describing such a thing as 
the fragments produced by a branching tree of cracks is the 
use of the Covering Set approach. Given a set of points in 
space, the following relationship holds true if the set is a 
fractal: 

K(a) =aeDf, (7) 
where K(a) is the number of segments (in one dimension) of 
length a needed to cover the set. Similarly, K(a) for a two- 
or three-dimensional set would correspond to the number of 

FIG. 2. Picture of tree of cracks after Austin (Ref. 11) and Van Cleef (Ref. 
12) for a particle in a mill. The cracks observed during fragmentation are 
spaced in a manner that gives the fractal dimension, Df= - 3 y. 

circles or spheres of radius a. In the present case, a set of 
spherical volumes describes the distribution of fragments re- 
sulting from the fractal cracking process, and Df is the frac- 
tal dimension. For the case where then fragmented material 
density is constant, the set of volumes becomes a set of 
masses. Equation (7) then becomes 

f(m’+m)=m-Df’3, (8) 

where y=-D/3, -l<+0, and OSDf<3. 
So in addition to the numerous meanings of the param- 

eter y discussed by Brown,7 we see that y has a deeper 
meaning, namely that -3 y is the fractal dimension, Of, 
which is generally understood to be a geometrically based 
attribute of a system:13 

y= - lim 
log f(m’im) 2 

m-tO log{ l/m) =- 3 ’ 69 

Equation (2), then, has a solid basis in both theory and ex- 
periment, and the Weibull distribution is no longer empirical. 
We note that in wriiing this article, it is not our intention to 
investigate the phenomena involved in the actual cracking of 
material on a microscopic scale (cf. Grady”) nor do we pre- 
tend to be experts on the subject. We have chosen rather to 
investigate fragmentation of bulk matter and the resulting 
macroscopic mass distributions that, to our understanding, 
derive from far-field stresses as opposed to the near-field 
stresses that primarily determine particle surface textures. 

111. THE CONNECTION WlTH THE ROSIN-RAMMLER 
DISTRIBUTION 

The weight-size distribution proposed by Rosin and 
Rammler’ in 1933 is 

(10) 

Here, M( > 2) is the cumulative mass of all particles of mass 
greater than size I, MT is the total mass of the distribution, CT 
is a size related to the average size of the distrib;ution, and 
the exponent k, is a free parameter. Equation (10) has enjoyed 
extensive successful empirical use. 

Equation (9) can be converted to a mass distribution by 
setting. lla= (mlm2)‘13 so that 

W>m> m k13 -=exp - - 
MT H )I m2 

3 (11) 

where m2 is related to the average mass of the distribution. 
Equation (10) is of the form of Eq. (6) except that Eq. 

(6) describes the cumulative particle distribution, whereas 
Eq. (11) describes the cumulative mass distribution. Equation 
(6) is nevertheless of the Rosin-R&mler form. 

If n(m) describes the number of particles of mass m 
between m and m + dm and each of the particles has mass m, 
then the mass distribution is just mn(m), which is the total 
mass of particles of mass m between m and m + dm. The 
cumulative mass distribution is given by 
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I 

m  

M(Cm)= mn(m)dm. W) 
0 

Further, 

dM 
z =mn(m). (13) 

By taking the derivative of Eq. (11) with respect to m, we 
obtain 

mn(m)= 2  5  (&i*“-’ eXp[ -( E)k’3]. (I41 

This, too, is a Weibull distribution [the power on the left 
(m/m2) is one less than the (m/m2) in the square brackets], 
but Eq. (14) is a Weibull distribution in mass whereas Eq. (4) 
is a Weibull distribution in particle number. Another differ- 
ence is that in Eq. (4) the f(m’ -+m) = my term now has a 
physical basis, whereas the corresponding term for Eq. (11) 
does not.5 We  now see, however, that the derivative of any 
Rosin-Rambler distribution is a Weibull distribution. This 
observation indicates that the demonstrated physical basis for 
the Weibull distribution is true also for the Rosin-Rammler 
distribution. 

IV. THE USE OF THE WEIBULL DISTRIBUTION 

In his article Brown7 advocated the use of the mass dis- 
tribution, mn(m), rather than the particle number distribu- 
tion, n(m), because the latter is tedious--if not impos- 
sible-to observe [the use of the cumulative distribution, Eq. 
(6), has been preferred]. 

The mass distribution, mn(m), from Eq. (4) is 

Alternatively, if we make use of a logarithmic scale in m, say 
u=ln m, and note that 

n(u)du=n(m)dm, (16) 

mn(m)=n(u). (17) 

Thus mn(m) also gives the number of particles per unit 
natural logarithm in m. 

Furthermore, if mn(m) is the number of particles per 
unit logarithm in m, and the mass of each particle is m, then 
the total mass of particles per unit logarithm is just m%(m). 
Thus 

m%(m) = NTml (c) y+2 exp[ - (m~~)IYil]. (18) 

This distribution is shown in Fig. 3 where it is compared to 
the lognormal distribution: 

k(m)= 1 ’ (19) 

log m/ml log m/m3 

FIG. 3. Plot of &n(m) vs logm (where m, and rn? are constants) com- 
pared to the lognormal distribution for y=-0.8 and standard deviation (r=2 
(In m  unitsj. Note the apparent similarity of the two distributions. 

where h(m) is the mass, m, distribution in units of mass per 
unit In interval, m3 is a constant that allows variable posi- 
tioning of the curve, and u is the standard deviation in In m  
units. 

The quantity m2n(m) is precisely what is measured 
when a sample of particles is sifted through a series of sieves 
of decreasing mesh size where the mesh size between any 
two adjacent sieves is a fixed ratio. As Brown and collabo- 
rators noted,7V8 the form m2n(m) closely resembles the log- 
normal distribution” (see Fig. 3), a  distribution that has en- 
joyed a long history of successful, empirical use; we note the 
lognormal distribution has a mathematical basis,t6 but no 
physical basis. 

The gathering of data through a series of sieves with a 
fixed size ratio between them is standard procedure in many 
fields, for example, in the analysis of geological materials 
such as sand and volcanic ash. For this procedure, the mass 
left on each sieve AM, is recorded in a logarithmic bin of 
width A+ where @--log2(Z/Zo), and where lo= 1 mm. It 
can easily be shown that 

dM 
a=-3 In 2m’n(m). 

The negative sign and the In 2 originate from the definition 
of the 4 scale, and the 3 provides the conversion from mass 
to size (assuming spherical particles of equal density). An 
illustration of the effect of varying yin Eq. (18) is shown in 
Fig. 4 where distributions of different y values are plotted as 
dMld+ vs $ from Eq. (20). This illustration shows that as y 
increases (signifying that the particles are undergoing further 
processing), the distribution becomes finer in particle size 
and more peaked. 

As in many fields, the lognormal distribution has been 
typically used to describe the data because it is a convenient 
approximation to the shape of the data such as dMld+. Al- 
though applicationof the lognormal distribution to this type 
of data is traditional, its satisfactory representation of the 
data may be simply fortuitous. In contrast, we believe that 
application of Eq. (18), giving m%(m), is a more proper, 
physically based formulation to apply. An example of the use 
of m”n(m) for soot particle size data,‘* using the mass to 
size conversion of Eq. (20), is shown in Fig. 5. 
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Phi = -log,(diameter in mm) 

FIG. 4. Plot of msn(m) distributions in the form of dM/d+ YS 4, where 
dM/dq5 is defined by Eq. (ZO), and +-log, (diameter in mm); the reader 
will recall that all log scales are proportional, and that the minus sign simply 
places the coarse particles to the left and the fine particles to the right. This 
plot shows the effect of varying yin IIq. (18), where increasing y shifts the 
peak of the distribution to the right (finer particle sizes) and makes the 
distribution more peaked. Note that where y=- 1.0 the distribution is flat, 

V. CHARACTERISTICS OF THE LOGNORMAL-LIKE 
m2n(m) DISTRIBUTION 

In general .form, the equation describing m2n(m) is 
given by 

Y+2 
m%(m) = NTml --- 

[ 
C(~nh)-Cm0lmdl Y+l 

Xexp - Y+l 1 , cw 

where m. allows variable positioning of the distribution. The 
peak of the distribution, mp (also called the most probable 
mass or the mode), may be obtained by taking the derivative 
of Eq. (18) and setting the result equal to zero; We obtain 

40 

.E 
; 30 
a 

s 20 
& P 
E 
3 10 

0 
-1 0 1 2 3 4 5 6 

Phi - -log,(diameter in mm) 

PIG. 5. An example of the use of &z(m) for soot particle data from 
Medalia and Heckman (see Ref. 18). In this plot the m’n(m) curve crosses 
every data point but one, whereas the lognormal curve gives a less satisfac- 
tory fit. Each curve was best-fit to data by Ieast-squares regression analysis; 
the m%(m) curve explains 96% of the sample variance while the lognormal 
curve satisfies only 88%. As in Pig. 4, data and m*n(mj are expressed in 
distribution wt. % per l/2 phi bins. 

(23) 

This function varies relatively slowly with 7. 
We may find the average mass, fi, of the distribution by 

setting 

iw 

With the use of the complete gamma function 

we find that 

iii - 
ml 

‘(y+ l)“(YfU 

YJr3 r- i i Yfl 
yf2 . 

r- 
i i Yfl 

(25) 

Combining this result with mp from Eq. (22), we obtain 

(26) 

iii -= 
mP ( 

ll(yf1) r 
Yf3 

Yfl 
-1 

k--i Yfl 

Yf2 r yf2 . 

l-1 Yfl 

(27) 

The integrals involved in tinding the standard deviation of 
m%(m) proved to be intractable. An approximate curve was 
found numerically for the full width at half maximum 
(FWHM). It is (in In m units) 

2.3444 
FWHM=+ 

77--i-- 
0.68-0.17 In(y+l), CW 

which is good to within < 1% for the range of O<( y+ 1)<0.8 
and to within 2% for 0.8<(y+l)Cl.O. The data rarely (if 
ever) fall outside this range. At (y+ l)>O the distribution is 
very broad and flat. At (y+ 1)~ 1, the distribution is quite 
narrow and peaked. For the lognormal distribution, shown in 
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FIG. 6. Plot of m%(m) vs log m/ml for y=-0.8, showing average particle 
mass rTi, FWHM (full width and half maximum), and mp , the particle mass 
at the distribution peak. 

EC& (191, FWHM = cl- . Figure 6 illustrates fi, mp , 
and FWHM as described above. 

The cumulative mass of the distribution m”n(m) is ob- 
tamed by setting 1 

M(<m) J!!,“m’n(m)d In m Jfmn(m)dm 
-= 

MT J”_,m2n(m)d In m 
= 

Jymn(m)dm * (29) 

The result is obtained with the use of the incomplete gamma 
functions 

x 
Y(a,x)= 

I 
ta- ‘c-‘dt 

0 
(30) 

and 

I 

m 
lycu,x)= P- le - ‘dt. (31) 

n 

The results are 

Yf2 
M(<m) 

Y- 
i i y+l’ x 

-= 
MT Y+2 

r- 
( i Y+l 

and 

W>m) r Y+2 
i i y-t-l’ x -= 

MT yf2 ’ 
r- 

l i Yfl 

(32) 

(33) 
. 

(mlml)Y+l xs 
yfl * 

(34) 

Figure 7 is a plot of h+?(<rn)IM, vs log m/m,, whereas 
Fig. 8 shows log mlml plotted vs M(<m) in probability %. 

FIG. 7. Plot of M(<m)/M, vs log m/m, for a range of y values. The plot 
demonstrates that as y becomes larger, the distribution becomes narrower. 

VI. CONCLUSIONS 

Because the fragmentation of any single particle results 
in a branching tree of cracks that looks the same on any 
scale, the process can be described by a fractal. Further, the 
Covering Set approach leads to exactly the formulation pre- 
viously and empirically used to describe the mass distribu- 
tion of particles resulting from the fragmentation of a single 
larger particle. Thus all of the principal distributions used 
over the years to describe particle sizes have a physical basis, 
and the fractal dimension, Of= -3 y(OGDfc3), gives a 
deeper meaning to Brown’s7 parameter, y, which is central to 
the problem of deriving the various distributions discussed. 

In deriving the Weibull distribution from physical prin- 
ciples, we have shown that the Rosin-Rammler distribution 
is just the integral of the Weibull distribution so that it, too, 
has a physical basis. In our synthesis, we have defined the 
m%(m) form of the mass distribution. This formulation 
closely resembles the lognormal distribution and suggests 

HG. 8. Plot of log m/m, vs M(<m)IM, in 9% probability. Note that as y 
approaches - 1, the curves become increasingly linear; a straight line would 
designate a lognormal distribution. 
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that the successful empirical use of the lognormal distribu- 
tion for particle size studies over the last century may have 
been simply fortuitous. This finding suggests that the same 
situation may exist in other fields where the lognormal shape 
has been empirically used, and has had legitimacy bestowed 
upon it by many years of use.. 
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