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Abstract. A theory of sequential fragmentation is presented that de- 
scribes a cascade of fragmentation and refragmentation, i.e., continued 
comminution. It is shown that the theory reproduces one of the two major 
empirical descriptors that have traditionally been used to describe the 
mass distributions from fragmentation experiments. Additional exper- 
imental evidence is presented to further validate the theory, and includes 
explosive aerosolization, grinding in a ball mill, and simulated volcanic 
action. Also presented are some astronomical applications of the theory 
including infalling extraterrestrial material, siderophile concentrations in 
black magnetic spherules of possible meteoritic origin, the asteroids, the 
distribution of galactic masses, and the initial mass function of stars. 
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1. Introduction 

 
The problem of analytically characterizing the distribution of particles from fragment- 
ation experiments has almost always been approached empirically. Ideally, it should 
be possible to derive the desired analytical description from a physical theory of 
fragmentation. In this article, I present my theory of “sequential fragmentation,” or 
fragmentation that occurs progressively—as in continued comminution: following a 
fragmentation event, the resulting fragments are caused to refragment, and so on 
down the chain. I assume that there is no continuing feed replenishment.

There are several empirical descriptions of fragment distributions. Typically, when
data were limited, the simplest description has been used—that of a power law. For
example, 
 

N (> m) = Cm – b. (1)
 

Here m is the fragment mass, N ( > m) is the cumulative number of fragments of mass
greater than m, and b and C are constants. Historically, a great deal of work has
concerned the size distribution, rather than the mass distribution. Difficulties were 
experienced in characterizing the size of particles (e.g., broken coal) which was not 
easy to describe owing to the typically irregular shapes of the fragments. In this article, 
I will reduce all data to that of the pertinent mass distribution—which I consider to be 
the basic quantity involved.
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When more extensive data are acquired, it is usually found that power laws like 
Equation (1) are inadequate, and more sophisticated empirical descriptions are 
required. Turcotte (1986) has reviewed these relations, and I will address each of them 
in turn below. 

An extensively used empirical description is 
 

(2) 
 

where NT is the total number of fragments, µ is a mass related to the average mass of 
the distribution, and v is a free parameter. Equation (2) has enjoyed considerable 
success, but I emphasize that its use has been entirely empirical. 

Another successful empirical description has been the Weibull distribution: 
 
 (3) 

Here M( < l) is the cumulative mass of fragments of size less than l, MT is the total 
mass of fragments in the distribution, σ is a size related to the average size, and k is a 
free parameter. 

A third successful empirical description of fragment size distribution is that of Rosin 
& Rammler (1934; see also Kittleman 1964). In the language of this article, the
Rosin–Rammler law of crushing is given by
 

(4)  
Because 
 

(5) 
 
it can be seen that the Rosin–Rammler distribution is identical to the Weibull 
distribution.

Finally, the lognormal distribution has been extensively used (e.g., Loveland & 
Trivelli 1927). In essence, it is
 

(6) 

where n(l) is the differential size distribution, and A and a are constants. In contrast to 
the above analytical descriptions, the lognormal distribution does have a mathemat- 
ical basis (McAlister 1879), although even it has no derivation based on physical 
theory. Therefore, Equations (1)–(6) have been used entirely empirically: their use
served only to summarize and correlate data, and their extrapolation beyond the
range of the data was risky. In addition, as a result of their empirical use, these 
analytical descriptions could not yield any physical understanding of the fragment- 
ation phenomena involved.

In the following sections, I first present my sequential fragmentation theory. I then 
test the theory by applying it to the description of the fragment distributions from 
several terrestrial sequential fragmentation phenomena. Further, I apply the theory to 
the description of what may be the results of sequential fragmentation phenomena in 
the field of astronomy: infalling extraterrestrial material, siderophile element concen-
trations in black magnetic spherules of possible cosmic origin, the asteroids, the
 



Sequential Fragmentation on Astronomical Scales 91
 
distribution of galactic luminosities, and the stellar initial mass function. Finally, with 
all these results in hand, I discuss the meaning of the principal free parameter of the 
sequential fragmentation theory. 
 

2. The sequential fragmentation theory 
 
I start my theory of sequential fragmentation with the equation 
 

(7) 
 
Here, n(m) is the particle number distribution with dimensions of the number of 
fragments per unit mass of mass between m and m + dm. The function f (m’ → m) 
describes the mass distribution that results when a single heavy fragment of mass 
m’(>m) breaks up into lighter pieces. The symbol c denotes a constant. Equation (7) 
is a summing of the contribution to the particle number distribution at m, by all 
masses m’ greater than m. 

I choose for the function f (m’→ m) 
 

(8) 
 
where the fragment mass in the right-hand-side argument is m, not m´. In Equation (8),
γ is a free parameter (– 1  γ < 0), and m 1 is a mass related to the average fragment 
mass in the distribution n(m). I chose Equation (8) (Brown 1986c) because I felt that in
the fragmentation of a particle of mass m´, the resulting single-event mass distribution,
f , must contain a disproportionately large number of lighter particles. That is, lighter 
particles would be formed preferentially. I also chose the power-law form expressed by 
Equation (8) both because it was the simplest one I could think of, and because I 
intuitively felt it was correct. I will now support my choice of Equation (8) with
experimental data.

Gaudin (1926) found that the “fines” produced in his mills were a prominent feature
of his mass distributions, but distinct from that of the coarser particles. Finding that 
the fines yielded a straight line on a log–log plot of “the percentage of material” vs the
screen aperture, Gaudin characterized the fines distribution by the equivalent of
 

(9) 
 
where Δ M/MT is the mass fraction selected between a series of screens differing in size 
by a fixed ratio. Thus the mass distribution in Equation (9) is given in terms of mass 
per logarithmic interval in size (or mass) and as I shall show later, this quantity is 
given by m2n(m). Therefore, the mass distribution, f (m´ → m), is functionally related
to Equation (9) by 
 

(10) 
 
 

where we may identify γ with (k/3) – 1. The mass distribution of Equation (10) is of a
type that falls in the category of Equation (1). Gaudin suggested that the fines had 
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been “protected” by the larger fragments in his mills, and would therefore be the result 
of single-event fragmentations. Gaudin found that in his roll mill, Galena gave values 
of k all across the range 0.84 < k < 0.92 (– 0.72 < γ < – 0.69), while Quartz gave 
0.80 < k < 0.91 (– 0.73 < γ < – 0.70). Further, he found that in his rod mill, Quartz 
gave the result 0.55 < k < 0.94 (– 0.81 < γ < – 0.69). Gaudin’s calculations allowed 
for 0.4 < k <1.2 (– 0.87 < γ < – 0.6). These results strongly support the use of 
Equation (8). 

More recently, research has been carried out to find the single-event mass distribu-
tion directly (Gilvarry 1961; Gilvarry & Bergstrom 1961; Bergstrom 1962). Bergstrom 
characterized his fines data with the equivalent of 
 

(11) 
 

which is just an approximation (for l/σ≪ 1) to the Weibull distribution of Equa- 
tion (3). Gilvarry & Bergstrom refer to Equation (11) as the “empirical Schuhmann 
Law,” and to k as the “Schuhmann size modulus,” but I have not been able to obtain a 
copy of their reference (Schuhmann 1940). I will show later that for particles of low 
mass, Equation (11) yields 
 
 

(12) 
 
just as in Equation (10). Bergstrom (1962) found that in fracturing glass spheres by 
squeezing them between a parallel pair of extremely hard tungsten carbide platens, he 
obtained the value k= 1.16, so that γ = – 0.61. There was found to be no effect when 
the strain rate was varied. Gaudin’s and Bergstrom’s results show that the power-law 
form of Equation (8) is on firm experimental ground. 

When Equation (8) is inserted into Equation (7) and c is chosen as m1
– l , I obtain 

 
(13) 

 

The solution to this, for – 1 < γ < 0, is 
 

(14) 
 

where the expression has been normalized so that 
 

(15) 
 
For the special case γ = — 1, 
 
 

(16) 

where Κ is a constant (the total number of fragments,  N T is undefined in this case).
The mass distribution for a sequential fragmentation for — 1 < γ < 0 is given by and

 
(17) 
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and for γ  = – 1 by 

(18)
 
i.e., a constant 

In Fig. 1, are examples of plots of the mass distribution of Equation (17). When such 
shapes were seen as that on the left-hand-side of Fig. 1, they were called “skew” to
express the fact that they did not look like the normal curve of error. The plot on the
right-hand-side in Fig. 1 illustrates that the sequential fragmentation mass distribu- 
tion has lognormal-like qualities (Equation 6).

Fig. 2 comprises log–log plots of the mass distribution mn(m). (In this article I will 
use “log” to denote the logarithm to the base 10.) As we shall see, it is usually necessary 
to use log–log plots to describe data, and it is convenient to make decades the same 
length on the ordinate and on the abscissa. This type of plot provides a consistent 
means by which one can easily recognize the shapes depicted in Fig. 2.

The quantity mn(m) describes the mass distribution in terms of the total mass of 
fragments of mass m between m and m + dm. However, mn(m) also symbolizes the 
number of particles per logarithmic interval in m, and because the theory and data 
must usually be plotted υs log m, it is useful to think of mn(m) in this way. We shall
 

Figure 1. Examples of mass distributions yielded by the sequential fragmentation theory. The 
linear plot at left shows the “skew” character of the distribution. At right, it can be seen that the 
distribution has lognormal-like qualities, especially on the right-hand side of the curve where 
the data always seem to fall.

Figure 2. Examples of sequential fragmentation mass distributions plotted in the “standard”
way adopted for this article. The curves have been shifted vertically and horizontally, but the
shapes are correct.
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later see that the mass distribution, mn(m), bears a simple relationship to the size 
distribution. Because mn(m) may be interpreted as the number of particles per natural 
logarithmic interval in m, the quantity m2n(m) symbolizes the mass distribution in
terms of the total mass of fragments per logarithmic interval in m(dM/d ln m 
= m2 n(m)). This fact was used earlier in the formulation of Equation (10). The m2n(m) 
form is quite similar to a lognormal distribution.

We may find the average mass, m, in the distribution from 
 
 
 
 (19) 

 
When Equation (17) is inserted in Equation (19), we find that for sequential fragment-
ation, 
 
 (20) 

 
Here Γ(α) is the complete gamma function 
 

(21) 
 

We may find the peak location (the most probable mass), mp, in the sequential 
fragmentation mass distribution by differentiating Equation (17) with respect to m, 
and setting the result equal to zero. I find that
 
 (22) 

so that m and mp are related by 
 
 (23) 

 
The peak value of the mass distribution may be obtained by substituting Equa- 

tion (22) into Equation (17). I find that
 (24) 

where e is the natural logarithmic base. 
The integral form of the particle number distribution, N (> m), gives the cumulative 

number of particles of mass greater than m. By definition: 
 
 (25) 

When Equation (14) is inserted into Equation (25), I find that for sequential fragment- 
ation 
 

(26) 
 

-
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A plot of log N (> m) υs m(linear) is called a “Poisson plot,” and is traditional in the
field of fragmentation. The reader will note that Equation (26) is identical to the
empirical description given in Equation (2) if ν =  γ + 1, and µ = mp . The fact that the 
present theory subsumes one of the major empirical descriptions means that the 
sequential fragmentation theory is supported by the hundreds of fragmentation 
experiments in which Equation (2) has been successfully used to describe the mass 
distribution of the fragments. This specifically includes the munitions experiments 
conducted by Mott in World War II (Mott & Linfoot 1943, Mott 1943ab, 1947). This 
initiated the now famous “Mott Plot” (v = ½ ) wherein a plot of log N (> m)/NT υs 
(m/µ) ½ yields a straight line. An example of the Mott Plot may be found in (Weimer & 
Rogers 1979).

Note that with the definition of Equation (25), Equation (13) becomes 
 

(27) 
 
which could have been used as the starting point for the sequential fragmentation
theory. 

The complementary cumulative particle distribution N (< m) is defined as
 

(28) 
 
and, for sequential fragmentation, is given by 
 

(29) 
 
 

Both Equation (26) and Equation (29) may be converted directly to integral particle 
size distributions by using (m/m1) =  (l/l1 )3, where l  is the nominal size (diameter) of a
fragment, and l1 is a size related to the average size of the fragments in the distribution.

Another often-used integral formulation of the mass distribution is M (< m), that
symbolizes the cumulative mass of fragments less than mass m. Thus
 
 
 
 
When Equation (17) is inserted into Equation (30), there results 
 
 
 (31)

 
 
 
 

(32) 
 
and where  (α , x) is the incomplete gamma function 
 

(33) 
 
Υ (α , x) is a standard computer library resource, and is often called “GAMI.” 

(30)

where

Υ 

 

Υ 
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Finally, we may write down the expression for M (> m), i.e., the cumulative mass of
all fragments of mass greater than m
 

(34) 
 
I note that 

(35) 
 
where Γ(α, x) is the complementary incomplete gamma function (“GAMIC”):
 
 (36) 

 

Then, using Equations (17), (32), (34), (35) and (36), I find that
 
 

(37)  
 
 
Again, the integral distributions M (< m) and M (>m) may be converted directly to
size distributions by setting (m/m1) = (l/l1)3. 

I feel that the integral functions M and Ν are more difficult to assess visually, and
that therefore, mn(m) is preferable. I admit that using log mn(m) υs log m  plots also 
distorts the shape of the distribution (see Figs 1 and 2), but this form is necessary to 
describe data over the wide range in mass usually available. In the following studies of 
various types of fragmentation data, I will reduce whatever form the data are in to 
log mn(m) vs log m.
 
 

3. Terrestrial tests of the theory
 

3.1 High Explosive Aerosolization 
 
In an explosive fragmentation experiment named “Operation Roller Coaster” (Shreve 
& Thomas 1965), a pyrophoric metal was aerosolized. The detonation of the explosive 
drove the expansion and provided the initial mechanical motion of the material.The 
aerosolization process occurred through a combination of boiling (phase trans- 
formations under high temperature and pressure), mechanical fragmentation, aero-
dynamic breakup, and combustion. This is surely an example of sequential fragment- 
ation. 

Fig. 3 shows the data yielded by three samples collected from the Operation Roller 
Coaster explosion in the form of log l υs M (< l) plotted on probability paper. To
reduce this to mn(m), I note from the definitions of M (< m) and M (> m) in
Equations (30) and (34)
 

(38) 
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Figure 3. The integral mass distribution data yielded by the Operation Roller Coaster 
plutonium aerosolization experiment. The aerosol size distribution is plotted on probability 
paper. 
 

If the density, ρ , is constant from fragment to fragment, then the mass and nominal 
size, l, of fragments are related by
 
 (39) 

 
 (40) 
 

and if dm from Equation (40) is inserted in Equation (38), there results 
 

(41) 
 
To extract dM /dl from Fig. 3, I plotted Μ vs l, and obtained the derivative graphically 
as a function of l Alternatively, one may define the log–log slope, S1, as 
 

(42) 
 
 

The slope, S1, may be obtained by plotting log Μ υs log l and determining S1

graphically. Then, from Equations (41) and (42) 
 

(43) 
 

Then
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Fig. 4 shows the Operation Roller Coaster data plotted as log mn(m) vs l3 ( ∝ mass).
The data curves in Fig. 4 are almost coincident over the central range, but diverge at
the extremes. The best fit of the data with the present theory was obtained using γ = 
– 0· 95 in Equation (17) plotted with NT = 1. As I will discuss later, a value of γ so near 
to – 1 means that the process consisted of relatively few sequential fragmentation 
events. 

With regard to Equation (41), it can be seen that dM/dl is a crucial quantity. This 
quantity is obtainable directly from shifting samples of particles through screens of 
progressively smaller mesh size. ∆l is the mesh size difference between two adjacent 
screens, and ∆Μ is the mass of particles caught on the lower of the two screens. Data 
are often found in the form ∆M /MT (%) in a size range ∆l. 

The data from the aerosolization type of experiment are often described by the 
empirical Weibull distribution, Equation (3), with k  1. It is therefore useful to
compare the Weibull distribution directly with the sequential fragmentation mass 
distribution Analytically, I find that for the Weubul distribution 
 

(44)  

where (m/m2) = (l/σ)3. Using Equation (38), I find that 
 

(45)  
 This was used earlier in the formulation of Equation (12) for the fines in the
distribution. 

Fig. 5 shows a comparison of the Weibull distribution with that of sequential 
fragmentation made over the same range in mass as that of the Roller Coaster 
experiment. Note that Equation (45) contrasts fundamentally with Equation (17), 
because it differs by one power of m in the fines end of the distribution. Considering
the fact that the fines are usually only fairly well characterized by the Weibull

 

Figure 4. The mass distribution yielded by the Operation Roller Coaster aerosolization
experiment compared to the sequential fragmentation theory.

≃ 
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Figure 5. A comparison of the mass distribution given by the Weibull distribution (with k = 1) 
to that of the sequential fragmentation theory. 
 
 
distribution and uncertainties are large in that region, Fig. 5 shows reasonable 
agreement between the Weibull distribution and the sequential fragmentation dis- 
tribution. 
 
 

3.2  Iron Ground in a Ball Mill 
 
In the article in which they presented their theory of Equation (4), Rosin & Rammler 
(1934) also presented data from the grinding of iron in a ball mill. The process is 
manifestly sequential fragmentation as the balls fragment and refragment the iron. 
They presented their data (in their Table I) in the form of M ( > l ) vs l, and I have used
Equation (41) to convert it to log mn(m).

Fig. 6 shows a fit of the sequential fragmentation theory to Rosin and Rammler’s 
distribution of iron fragments. The value of γ obtained in describing this data is γ = 
 – 0.3 indicating that a relatively large number of sequential fragmentation events 
have occurred, i.e., the process has reached a relatively mature stage.
 
 

3.3 Thermite–Water Volcanic Simulations 
 
Volcanic ash is formed by fragmentation of rising magma within an erupting volcano.
The fragmentation process is thought to be sequential to the degree that brittle
fracture, hydrodynamic flow, phase changes, and aerodynamic breakup have oc-
curred. My Los Alamos colleagues Heiken & Wohletz (1985) have conducted exten- 
sive studies of volcanic ash, Wohletz has conducted experiments that simulate 
volcanic action (Wohletz & McQueen 1984). In these experiments, thermite is 
suddenly brought into contact with water, producing a “fuel-coolant” interaction. The
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Figure 6. The mass distribution of iron particles, ground in a ball mill, compared to the
sequential fragmentation theory.
 
resulting ash is collected and sieved, to give data in the form of ∆M/MT (%) υs l. 
Equation (41) was used to translate these data into the log mn(m) vs log m form.

Fig. 7 shows the mass distribution of the ash from a thermite-water volcanic
simulation. The best-fit value of γ = – 0.94 indicates that there was time for relatively
few sequential fragmentation generations to take place before the action terminated.

In addition, Wohletz kindly provided me with particle size data on a sample of 
volcanic ash taken at La Mesita, a site just below Los Alamos on the Rio Grande. The 
La Mesita ash is thought to have been formed in part by a fuel-coolant interaction in
which rising magma contacts groundwater or lake water resulting in explosive vapour 
production and hydrodynamic instabilities. Fig. 8 shows the mass distribution of 
particles in the La Mesita volcanic ash sample. A value of γ = – 0.96 was obtained for 
this case. 

Because the value of γ for the La Mesita ash is less than that for the simulated ash, a 
simple conclusion is that the natural fragmentation process did not advance as far as 
that produced experimentally in the thermite-water simulations.

Continuing studies of volcanic ash distributions (Wohletz et al. 1989) support the 
wide application of sequential fragmentation theory to many volcanic processes such 
as saltation, etc. 
 
 

3.4  Experimental Support
 
In this section, I have presented comparisons of the sequential fragmentation theory 
to data from several terrestrial experiments that clearly represent instances of contin- 
ued comminution. Taken together with the hundreds of experiments in which the data 
sets were described by Equation (2) (that has been shown to be reproduced by the 
present theory), I believe that the totality of supporting experimental evidence 
validates the sequential fragmentation theory. I would claim that the simple logic of 
the sequential fragmentation theory, as exemplified by Equation (7) or (27), and 
Equation (8), even gives the theory a degree of beauty.

Be that as it may, in the next section I analyze various astronomical data that I
speculate have been produced by the sequential fragmentation process, but in. which 
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Figure 7. The mass distribution of ash particles, yielded by a thermite-water volcanic
simulation, compared to the sequential fragmentation theory.
 

Figure 8. The mass distribution of volcanic ash particles, from a sample taken at the La
Mesita site near Los Alamos, compared to the sequential fragmentation theory.
 
 
the actual processes are difficult or impossible to observe. As usual in the field of 
astronomy, we normally must be content to remain on earth and observe the 
phenomena as they appear at present. 
 
 

4. Astronomical applications of the theory 
 

4.1 Infalling Extraterrestrial Material 
 
Material falling from outside into the atmosphere must fragment and refragment as it 
breaks up from aerodynamic forces and the heat of air friction. It is a likely candidate 
for having undergone the sequential fragmentation process.

Parkin & Tilles (1968) have summarized the data observed for the infalling rate of 
extraterrestrial material. Sea sediments, polar ice, air, and space were searched for the 
amount and character of interplanetary debris.
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Fig. 9 shows Parkin and Tilles’ plot of log N ( > m) (per unit time) vs log m. From the 
definition of N ( > m) and N (< m) in Equations (25) and (28), we see that 
 

(46) 
 

For completeness, I note that this can be changed into the dN /dl form by substituting
Equation (40) into Equation (46). I also note that dN /dl = n(l). See Section 4.2 below.

Thus, in general, from such a plot as Fig. 9, we must find dN /dm. However, most of 
the data shown in Fig. 9 are in the form of straight lines. Such a straight line may be 
described by 
 

(47) 

Here, N (0) is the ordinate where the line (or its extension) crosses the abscissa log m 
= 0, and S2 is the log–log slope: 
 

(48) 
 

Combining the last three equations, I find that
 

(49) 

that also yields line segments on a log mn(m) υs log m  plot. Thus, to obtain the mass 
distribution in this case, one must obtain N (0) and S2 from Fig. 9. Fig.10 shows 
Parkin and Tilles’ data as transformed by Equation (49).

The best fit of the present theory to the observed infall of extraterrestrial material is 
given by using γ = – 0.98 in Equation (17). It can be seen from Fig. 10 that although 
the “IRONS” don’t fit well, the remainder of the materials do. A value of γ so near to 
— 1 means that there was time for relatively few sequential fragmentation events to
take place before the process ceased.
 

Figure 9. Parkin and Tilles’ (1968) graph summarizing the integral particle distributions of 
infalling extraterrestrial material. The cumulative number influx to Earth (number of particles 
per square metre per day with mass greater than m (grams)). 
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Figure  10. The mass  distribution of infalling extraterrestrial material compared to the
sequential fragmentation theory.
 
 

4.2  Black Magnetic Spherules 
 
The siderophile element concentrations in black magnetic spherules from deep sea 
sediments are possibly of iron meteoritic origin. The size distribution has been given 
by Yamakoshi, Nogami & Shimamura (1981). They presented their data in a log n(l) 
vs l plot. To convert this to a mass distribution, I first note that
 

(50) 

where n(l) is the number of fragments of nominal size l between l and l + dl. Then, by 
combining Equations (39) and (40) with Equation (50), it can be readily shown that 
 

(51) 

Besides being interpreted directly as the mass distribution as above, ln(l) also may be 
interpreted as the number of fragments of nominal size l per logarithmic interval in l. 
Likewise, mn(m) is the number of fragments of mass m per logarithmic interval in m. 
Log m space is expanded by a factor of three relative to log l space, i.e., log l3 = 31og l, 
so Equation (51) results.

Yamakoshi, Nogami & Shimamura (1981) presented their data in a log n(l) υs l plot. 
It was a simple matter to obtain the mass distribution from Equation (51), but in fact 
in Fig. 11, log ln(l) was plotted—that is just a translational offset from log mn(m). The
error bars in Fig. 11 were obtained by using n(l) ± √n(l) where √n(l) is the
uncertainty in each ∆l bin of n(l) in the sample taken.

Yamakoshi, Nogami & Shimamura (1981) suggested a size distribution of 
 

(52) 

which, however, has no physical basis. Equation (52) translates into a log mn(m) υs
log m slope of – 2/3. It can be seen from Fig. 11 that this description is inadequate. 
The best fit using the present theory (Equation 17) is obtained with a value of γ =  
 – 0.80. This indicates that a fairly large number of sequential fragmentation events 
took place before the process stopped.
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Figure 11 The mass distribution siderophile element concentrations in black magnetic 
spherules, obtained from deep-sea sediments, compared to the sequential fragmentation theory. 
 
 

Although Yamakoshi, Nogami & Shimamura (1981) state that the spherules are not 
confirmed as to extraterrestrial origin (Doyle, Hopkins & Betzer 1976), they do 
present evidence that the majority of the spherules are of iron meteoritic origin. It is a 
pity that the extraterrestrial “IRONS” of the preceding section do not fit with γ = 
– 0.98, because the spherules, with γ = – 0.80, have clearly undergone more exten-
sive processing in the sequential fragmentation cascade.

The size distribution n(l), that gives the number of particles per unit length of length 
l between l and l + dl, in sequential fragmentation may be obtained with the use of 
Equation (51). It is given by 
 

(53) 
 
Equation (53) is a Weibull distribution (as is Equation 14). M. Felthauser (1988) has
carried out a comparative study of this distribution and the lognormal distribution
with regard to certain observed particle size distributions.
 
 

4.3 The Asteroids 
 
Repetitive collisions between the asteroids may have resulted in their present mass 
distribution. If so, it seems reasonable to see if the sequential fragmentation theory fits 
the observed data. 

The size distribution of the asteroids is relatively well known. The pertinent articles 
are (Kuiper et al. 1958; Anders 1965; Hartmann & Hartmann 1968; Hartmann 1969; 
Davis et al. 1985). Donnison & Sugden (1984) studied the size distribution of the 
asteroids, but they used a theoretical distribution with no physical basis.

I used the data given by Davis et al. (1985) in the form of log n(l) vs log l. As before, I 
used Equation (51) to achieve my Standard log mn(m) υs log m plot.

The mass distribution of the asteroids is shown in Fig. 12. The famous “bump,” 
lying in the range 6 < log l3 < 7 is obvious. However, the difference between the
present theory (with γ = – 0.95) and the observed mass distribution in the bump is 
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Figure 12 The mass distribution of the asteroids compared to the sequential fragmentation
theory. 
 
only ∆log ln(l) ~ 0.25 or a multiplicative factor of ~ 1.8. The fact that γ is again   
– 1 indicates that relatively few sequential fragmentation events have occurred, but
whence came the bump?

The present theory describes two opposing simultaneous processes on this scale: 
fragmentation and gravitational accretion (assumed proportional to the mass of each 
fragment). However, soon after the solar system was formed, before the present stage 
was reached, there must have been a period of pure accretion. In the spirit of 
Equation (7), I model this pure acretion process by
 

(54) 
 
where now m > m, and every collision results in a new particle of composite mass m
(k1 is a positive constant). Differentiating Equation’(54) yields
 

(55) 
 
I assume for the moment that n(0) is a constant, so that 
 

(56) 
 
where k2 is another positive constant. If I let k2 = m– l, I find that  
 

(57) 
 
where m3 is a mass related to the average mass. Then the particle number distribution 
is  
 

(58) 
 
where the constant k3 is positive. From Equation (58) we see that n(0) is indeed a 
constant, as assumed above.

The mass distribution for pure accretion is given by
 

(59)
 

≃ 

´

3
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At large masses, m is limited by the amount of material originally present so the mass 
distribution would fall off at large m. Equation (59) could indicate the progenitor of 
the “bump” that has not yet been erased by the later, but immature ( γ = – 0.95) 
sequential fragmentation process. I might point out that early accretion of the
planetary material might also have followed Equation (59).
 
 

4.4 Galactic Masses 
 
Ostriker & Cowie (1981) and Ikeuchi (1981) have proposed a mechanism of galaxy 
formation in which a pre-galactic star explodes as a supernova, and a massive shell is 
ejected. As the shell moves outward, sweeping up mass, the shell cools and fragments 
into clouds that form stars more massive than the original star. The process is 
presumed to continue until bodies of galactic mass are achieved. Thus the authors 
have named this mechanism “explosive amplification.” The literature may be followed 
backward from (Bertschinger 1985).

If indeed it was the explosive amplification mechanism that generated galaxies, then 
the present theory of sequential fragmentation ought to describe the observed mass
distribution of galaxies. I assume here that the amplification was proportional, i.e., 
when a fragment sweeps up additional mass, the fragment gains mass in proportion to
its original mass. If this is so, then the shape of the fragment mass distribution would
not change, and Equation (17) would still apply.

Unfortunately, the mass distribution of galaxies is not well known, but rather it is
the distribution of total galactic luminosities that is reasonably well known. The data
are often represented by the empirical Schecter (1976) distribution
 

(60) 
 
where n* and L* are constants, L  /L* is the variable and α is an adjustable parameter. 
If I assume that the mass/luminosity ratio (M/L) is constant, then I can compare the
sequential fragmentation mass distribution with the Schecter distribution.

For the purposes of direct comparison, I write 
 

(61) 
 
and note that this is identical to Equation (17) for the case α = γ = 0. Such a value of α
is possible, but not probable. A value of γ = 0 would indicate an extremely protracted
process of sequential fragmentation.

A modification of the Schecter distribution, proposed by Dressier (1978) involves 
the use of the form exp ( – Lp) in Equations (60) and (61). This would result in 
 
 (62) 

In this form the luminosity distribution can be made to agree identically with 
Equation (17) of sequential fragmentation, with the identification of γ with α and of p
with γ + 1. If this were done, then α, the log–log slope of the faint end of the galactic
luminosity distribution, would take on a new meaning as the single-event mass
distribution, as in Equation (8). However, one more variable, p, has been introduced.
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If I limit my attention to the case p = 1, then I must do the best I can in fitting 
Equation (61) with the sequential fragmentation mass distribution. Fig. 13 shows the 
comparison for α = – 1.0 (Turner & Gott 1976) and the best fit of γ = – 0.4. I note 
that the bright end of the distribution is well-approximated by the sequential 
fragmentation theory even though p  = 1 in the pure exponential cutoff as compared 
with the more complex cutoff function of Equation (17). I also note that a wide range 
of α has been found from observations (– 1.6 ≲ α ≲ 0) depending on the sample of 

galaxies studied (see, e.g., Sandage, Tammann & Yahil 1979; Tammann, Yahil & 
Sandage 1979), so that I am not too concerned about the poor agreement at the faint 
end in Fig. 13. However, in this regard, I must call attention to the superior ability of 
the Weibull distribution to approximate the Schecter distribution (Brown 1986a) 
throughout the entire range.

The value γ = – 0.4 provides a reasonable fit to the distribution of galactic 
luminosities. This indicates that if explosive amplification/sequential fragmentation  
as actually responsible for defining the galaxies as we see them today, then a 
relatively large number of sequential fragmentation events must have occurred before 
the “top-down” process stopped. When sufficient data are available, it will be possible
to apply the sequential fragmentation theory to the mass distribution of intergalactic
Lyman α clouds (Ikeuchi & Ostriker 1986).

In another study of how galaxies might have formed (Brown 1985) I explored the 
idea that galaxies might have resulted from eddies in a turbulent early universe. In 
Brown (1986b) I postulated a mass distribution of eddies based on a sequential
fragmentation process of eddy-spawning. This now needs to be modified to bring it 
into agreement with Equation (17).
 
 

4.5 The Stellar Initial Mass Function 
 
When the concept of “explosive amplification” is applied to stars, the star formation 
scenario is that after galaxies were formed, explosive amplification continued via
Supernovae. As a star undergoes a supernova event, a shell is ejected that cools, sweeps
 

Figure 13.   The distribution of total galactic luminosities (as given by the Schecter distribution)
compared to the sequential fragmentation theory.



108                                         W. Κ. Brown
 
up additional mass, and separates into fragments as the shell moves outward. When 
any particular fragment has gathered enough mass, it will, in turn, undergo a 
supernova explosion and perpetuate the cascade of sequential fragmentation. I have 
hypothesized (Brown 1986c) that this mechanism results in (1) the initial mass function 
(IMF) as deduced from stellar absolute luminosities, e.g., (Miller & Scalo 1979), and (2) 
solar systems (Brown & Gritzo 1986, Brown 1987a, b,c). However, the analysis of 
(Brown 1986c) must be modified due to an error I made that has resulted in a change 
in the low-mass end of the sequential fragmentation distribution. The results do not 
have to be modified much because the strong cutoff function at the high-mass end 
remains unchanged. In my opinion, explosive amplification is closely related to self- 
propagating star formation (see the recent article by Schulman & Seiden 1986 and 
references therein). 

Fig. 14 shows a fit of the present theory (Equation (17)) to the IMF, ξ (Μ), of Miller 
& Scalo (1979). In the present analysis, the best fit was obtained with γ = – 0.80, and 
this indicates that the supernova shell fragmentation process is fairly mature. Of 
course, it has had ample time to get that way since shortly after the Big Bang about 
(15 ± 3) × 109 years ago. However, it is really the number of sequential fragmentation 
events that matters, and not just the time available to the process.

I consider the fit in Fig. 14, of the IMF with the present theory, to be excellent, 
although it can be seen that the sequential fragmentation theory overestimates the
IMF at low masses. I believe that this is due to the fact that below ~ 8 M , Type II 
Supernovae cannot occur. Thus, stars of < 8 Μ  do not contribute to the distribution 
at lower masses, and the observed mass distribution falls below the sequential 
fragmentation theory at these lower masses. It is a pity that the predictive power of 
Equation (17) begins to fail below 1 Μ , because it would have been helpful to 
extrapolate the IMF down into the region of brown dwarves and “Jupiters.” This 
would have allowed an assessment of how much “dark matter” might be available 
from this source. However, assuming explosive amplification is a credible mechanism 
 

 

Figure 14. The stellar initial mass function ξ (M), of Miller and Scalo 1979 compared to the
sequential fragmentation theory. For stellar masses above M = 1 (solar mass units),the two
curves are coincident. 
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for self-propagating star formation, I do not hesitate to extrapolate the sequential 
fragmentation theory of the IMF to higher masses.
 
 

5. Discussion 
 
I will now discuss the possible meaning of the key parameter γ, as defined in Equation 
(8) and as it is manifested in Equations (14) and (17). It seems clear that γ = γ(t) where 
t is the time after the beginning of the process. More accurately, γ(t) symbolizes how 
far the sequential fragmentation process has progressed, i.e., how mature the process 
is. To illustrate this, we may envision that shortly after the sequential fragmentation 
process begins, we will have one fragment of unit mass, two of mass one-half, four of 
mass one-quarter, etc. Thus at the beginning, the particle number distribution, n(m), 
will have a log–log slope of – 1, and γ (0) = – 1, as in Equation (16). This idealistic 
picture assumes no depletion due to sequential fragmentation. However, in the 
absence of feed replenishment, the particle number distribution will be progressively 
depleted, especially at large fragment mass. It is this progressive depletion that curves 
the mass distribution and changes the value of γ. The mass distribution, mn(m), is 
peaked at mid-range mass (Fig. 2). This is due to the fact that although there are many 
more particles of low mass, there is not much mass in the distribution at low particle 
mass. 

As can be seen from Fig. 2, as the sequential fragmentation process matures, the 
mass distribution grows increasingly more peaked at midrange mass as γ(t) increases 
(becomes less negative). I prefer to think of this progression as being related to 
γ(t) + 1, as in Equation (17), i.e., the greater the number of events that have occurred, 
the larger γ(t) + 1 is. Because I suppose that γ + 1 can grow progressively larger, I do 
not rule out values of γ   0 in the present theory.

Table 1 summarizes the results of the applications presented in earlier sections of 
this article. 

The maturity of the sequential fragmentation process depends on the number of 
generations of fragmentation events that have taken place. If the rate of occurrence of 
generations in the cascade is denoted by R (t), then the number of generations,    , at
 
Table 1. Results of various applications of the sequential fragmentation theory.
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the time t is given by 
 

(63) 
 
 

The relationship between    (t) and γ(t) + 1 is unknown, but it must rise mono-
tonically from γ (0) + 1 = 0. It is clear that both the refragmentation rate and the time 
duration of the fragmentation events dictate the maturity of the sequential fragmen- 
ation process.

It appears that the quantity γ (t) + 1 can be used as a discriminator between 
samples of fragments. If two samples are characterized by different values of γ (t) + l, 
then they must have been processed in different ways.

As can be seen from the plots of Equation (17) in Fig. 2, the width of the mass 
distribution is inversely related to γ + 1. I have been able to show that the right-hand
side of the distributions (the only part of the distributions I have found useful in this 
article), the half-width at half maximum (HWHM) In (m 1/2 /m1), is given by 
 

(64) 
 
 

When I compare this to the actual HWHM I find that 
 

(65) 
 
 

to within about 0.02% in the range (– 1 < γ < 0). If, as in the lognormal distribution, 
I define for the sequential fragmentation distribution 
 
 
 (66) 

 
then 
 (67) 
 

 

Values of σ for the applications studied in this article are included in Table 1. As 
(γ + 1) increases, σ decreases, signifying that the mass distribution is progressively 
depleted at higher masses as the sequential fragmentation process matures.

So, three meanings of γ have been identified: (1) the log–log slope of a single-event 
fragmentation event (Equation 8), (2) an indicator of the maturity of the sequential 
fragmentation process, and (3) the standard deviation of the sequential fragmentation 
mass distribution. In addition, because it seems possible to describe a class of 
fragmentation mass distributions with a single variable, γ, the sequential fragment- 
ation process may be an example of fractal structure. Indeed, this application of
fractals has been advanced by Turcotte (1986) for many observed fragmentation mass 
distributions.
 
 

6. Conclusions 
 
The present theory of sequential fragmentation appears to describe many phenomenaon
on widely differing scales. Of the applications studied for this article, all were
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successfully fit with mass distributions yielded by the theory. In addition, the theory 
subsumes one of the two major empirical descriptors of data. I am satisfied that the 
theory is validated.

I would like to emphasize three things: (1) the theory has only one adjustable 
parameter, γ; (2) the fit of each data set is unique in that when the tilt and curvature are 
matched, the value of γ is closely bounded; and (3) the parameter γ appears to have 
meaning as the log–log slope of the mass distribution resulting from a single-event 
fragmentation, as an indicator of the maturity of the sequential fragmentation process 
and as the standard deviation of the sequential fragmentation mass distribution 
Another point worth stressing is that the sequential fragmentation mass distribution 
is based on a physical theory, i.e., a theory derived from a physical model.

Applications of the present theory (other than those studied here) suggest them- 
selves. Orbiting space junk is clearly undergoing sequential fragmentation and 
because its presence is a hazard to astronauts and satellites, characterizing its mass 
distribution is important. The particles in the rings around the giant planets should 
follow the present theory. During the formation of our solar system, the mass 
distribution of the planetesimals—as might be inferred from the crater distributions
on Mercury, the Moon, and Mars—could be described by sequential fragmentation
theory. Another possibility is the mass distribution of the chondrules in meteorites.

I am most pleased that my sequential fragmentation theory describes a certain class 
of ordinary events, and I look forward to future applications of the theory.
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