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Slow elastic dynamics in a resonant bar of rock 
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Abstract. Recent resonant bar experiments on Berea 
sandstone show that nonlinear excitation of the sample 
excites a slow dynamics with a time scale many orders 
of magnitude longer than the excitation period, 2•r/w. 
That is, a nonlinear resonant frequency decays to the 
linear resonant frequency long after the high amplitude 
drive has been turned off. We postulate a phenomeno- 
logical theory of slow nonlinear dynamics in the context 
of a resonant bar experiment. The normalized elastic 
modulus of the resonant bar is allowed to be nonlin- 

ear and time dependent. The nonlinear terms are de- 
rived from a model of elasticity in rocks that includes 
anharmonic and hysteretic contributions. We use this 
theory to explain the experimental results. We find an 
explanation for the slow relaxation of the experimen- 
tal resonant frequency using an anharmonic contribu- 
tion to the modulus that responds instantaneously to 
a disturbance, and a contribution derived from elastic 
hysteresis that displays slow dynamics. We suggest an 
acoustic NMR-type experiment to explore slow nonlin- 
ear dynamics. 

Introduction 

Wave propagation in rocks has often been described 
by the time tested linear theory of elasticity [œandau 
and Lifshitz, 1959]. At least three empirical findings 
suggest the need for a broader strategy in the exper- 
imental and theoretical investigation of wave propaga- 
tion. (1) The cubic and quartic anharmonicities in rocks 
are enormous relative to those of materials successfully 
described by traditional theory [Johnson and Rasolo- 
fosaon, 1996]. (2) Quasi-static stress-strain measure- 
ments on rocks display hysteresis with discrete memory 
[Boitnott, 1993; Holcomb, 1981]. (3) A slow dynamics 
has been observed in the behavior of the elastic modulus 

of Berea sandstone [TenCate and Shankland, 1997]. 
The purpose of this letter is to introduce a phe- 

nomenology for elastic wave propagation in rocks. This 
phenomenology is developed in the context of resonant 
bar experiments, for these experiments are character- 
ized by a high degree of precision and control. This 
phenomenology respects the following empirical facts. 

1. Experiment shows that the velocities of sound in 
rock can vary by a factor of approximately two over 
the pressure range (0,100) MPa [Bourbie et al., 1987]. 
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Thus the coefficient that measures cubic anharmonic- 

ity is of order 103. This coefficient is of order 10 for 
normal (single crystal) materials, e.g., SiO2 lAshcroft 
and Metrain, 1970]. As a consequence the stress field 
that determines the propagation of elastic waves is of 
the form 

erA(X)-- Ko 1 + [? •xx +6 •xx +'" •xx ' (1) 

where Ou/Ox is the strain field , K0 is the linear modu- 
lus, and j• and 6 are measures of the cubic and quartic 
anharmonicities [Landau and Lifshitz, 1959; Van Den 
Abeele et al., 1997]. 

2. The hysteresis with discrete memory, seen in quasi- 
static stress-strain measurements, is described by hys- 
teretic elastic elements in the rock [McCall and Guyer, 
1994]. The behavior of these elastic elements is depen- 
dent on the elastic history of each point in the rock. In 
the context of a resonant bar experiment the hysteretic 
elastic elements make a contribution to the stress of the 
form 

- 4- 

where Ae is maximum strain excursion, c• is the strength 
of the hysteresis, and the plus sign corresponds to the 
modulus during increasing strain, the minus sign to de- 
creasing strain [Van Den Abeele et al., 1997]. 

Theory 

Consider a resonant bar experiment in which a bar 
of length L (a cylindrical rock sample long compared to 
its width) is driven at one end with a force at frequency 
w. The acceleration response at the other end of the 
bar, at the driving frequency w, is detected. Usually the 
driving frequency w is swept through the linear resonant 
frequency of the bar w0 = •rc/L, where c is the velocity 
of sound. Take the stress field in the bar to be to be the 

sum of (1) and (2), a = aA + a/•. Then the equation of 
motion for the displacement field u is 

02u 10U__c2[ Ou (Ou)2 ( •T+-- 1+• +6 +a Ae+ 

02u 4-"' •-fcos 
(a) 
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where r0 characterizes a phenomenological damping, 
and f is the force per unit mass. In resonance, the 
dominant terms in the equation of motion are those 
that feed back into the driving frequency. Thus to first 
order, the terms proportional to/3 and :kaOu/Ox are 
negligible. 

Using the Ritz averaging method on the resulting 
lumped element equation [Timoshenko et al., 1974] 
leads to an implicit equation for the amplitude of the 
displacement field in the bar, 

A- F , (4) 
V/(Q • 1 + AIA + •2A2) 2 q- •- 

where ft = w/w0, Q = r0w0, and ,X• and ,X2 are coeffi- 
cients proportional to ct and 5 respectively (A• and A2 
are positive when ct and 5 are negative, as is the case for 
strain softening in rocks). In this equation the displace- 
ment field and the force are dimensionless, F- f/Lwo •, 
and A = a/L, where a is the displacement amplitude. 
Thus, from this point forward all quantities are dimen- 
sionless. The terms K = I- A•A- ,•A • are referred 
to as the normalized (nonlinear) elastic modulus of the 
bar. This elastic modulus involves a first order contri- 
bution proportional to the displacement amplitude A 
and the strength of the hysteresis a, and a second order 
contribution proportional to A • and the strength of the 
quartic anharmonicity •. According to (4), for Q >> 1, 
the maximum displacement amplitude occurs when the 
resonant frequency shift 1- Q2 is given by 

1 - Q2 • •lA + A2A •. (5) 

The experimental observation of a frequency shift that 
is first order in A demonstrates that the hysteretic elas- 
tic elements in the rock contribute to the response of the 
rock in a resonance experiment [Guyer et al., 1995]. 

Equation (4) describes the long time behavior of the 
amplitude, that is, the nonlinear contributions to the 
resonant frequency have no time dependence. How- 
ever, Tencate and Shankland [1997] have demonstrated 
that there are long time scales involved in the elastic 
response of a rock. To describe the slow dynamics of 
Tencate and Shankland [1997] we postulate the coupled 
system of equations 

A- F , (6) 
(fl•- 1 + AK• + AK•) • + •-• 

• 4 
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Figure 1. Amplitude scaled by the driving force A/F 
is plotted as a function of frequency Q for 25 values of 
F. 

When the bar has been in a particular elastic state for 
a time long compared to r•, A is independent of t, and 
AK• ~ ,•A. Thus if the bar is driven at fixed F and 
Q for a time long compared to rl and r2, A is given by 
(4). If at fixed F the driving frequency is swept rapidly 
compared to both r• and r2, then the elastic modulus 
is dependent on the average of A over times of order rl 
and r•, as in (9). 

Consider the behavior of A when the driving time 
is much greater than r• and r2 for each Q. Then 

- - to (4). 
In Figure 1 we show A/F from (4) as a function of Q 
for hi - 0.5, •2 - 1.0, and Q - 5. The figure is a series 
of resonance curves for 25 values of F distributed log- 
arithmically between 0.001 and 0.07. As F increases, 
the shift of the resonant frequency from the linear res- 
onant frequency, Q0 -0.99, becomes very pronounced. 
In Figure 2 the shift of the resonant frequency from Q0 
is plotted as a function of the amplitude at resonance. 
Note that the frequency shift is linear in the amplitude 
at low peak amplitudes in accordance with (5) in the 
limit of small frequency shifts; i.e.,/•Q -Q0- Q << 1 
leads to 2/•Q m •iA+A•A 2. Thus we see that the 
contribution to the nonlinear modulus due to hysteresis 
dominates the resonant frequency shift at low ampli- 
tude. 

Next we consider the dynamic response of the sys- 
tem. When the driving force F in (6) is so small that 
A•A + A2A • << 1, the right hand side (RHS) of (6) is es- 

dAKI= A/{'I q'- '•1 A, (7) dt r• r• 

dAK•= AK2 + . (8) dt r• r2 

These equations are assumed to describe the behavior 
of the amplitude on time scale long compared to the 
time for the amplitude to equilibrate with the driving 
force and the attenuation mechanism, i.e., Q/w. The 
relaxation times r• and r2 are the times over which the 
system has memory of its past elastic state. For exam- 
ple, a solution to (7) is 

xf0' aq(t) - + -- A(t')e(t'-t)/T•dt '. 
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Figure 2. Resonant frequency shift 5ft - Q0-Q, where 
Q0 - 0.99, as a function of dimensionless amplitude at 
resonance. The straight line has slope 1. 
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sentially independent of both A and time, and (7) and 
(8) are unnecessary. However for F sufficiently large, 
the nonlinear terms on the RHS of (6) are important; 
the amplitudes that determine AK• and AK2 are aver- 
ages of the amplitudes at earlier moments in time. Thus 
in a resonant bar experiment in which the frequency is 
changed, the response at any moment of time depends 
on the rate of frequency change. Since the largest am- 
plitude changes occur with changing frequency near the 
resonance, for an experiment to be carried out slowly it 
must pass the resonance region slowly compared to r• 
(assuming r• > r2), i.e., 

(10) 

where (dw/dt)x is the rate at which the frequency is 
swept and Aw is the width of the resonance curve at 
half power. We define the time rx to characterize an 
experimental frequency protocol 

If rx >> rl, then A is given by (4). If rx is of or- 
der rl, then the slow dynamics becomes apparent. This 
is illustrated in Figure 3 where the amplitude from so- 
lution to (6)-(8) is plotted as a function of time step 
as the driving frequency Q evolves. We have chosen 
Q = 5, • = 0.5, • = 0, r• = 10, A(t = 0) = 0 and 
F = 0.050. The resonant frequency is Q0 • 0.87. The 
conditions of this numerical experiment (rx of order r•) 
are the same as those for the experimental result shown 
in Figure 6 of TenCate and Shankland [1997]; our nu- 
merical experiment is in agreement with parts (b) and 
(d). Note that when the slow dynamics is operating 
the resonance shifts in height and width according to 
whether f• is swept up or down. Similar features are 
observed in the experimental results. 
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Figure 3. Amplitude as a function of time step for 
fixed drive and the driving frequency protocol shown. 
The amplitude is the solid and dashed line; the driv- 
ing frequency Q is the dotted line. This Q protocol 
is similar to that employed by TenCate and Shankland 
[1997] to generate their Figure 6. Note, when the fre- 
quency sweep is stopped after having passed through 
the resonance from above (below), the amplitude re- 
sponse decays to a lower (higher) steady state value. 
These qualitative features are in agreement with exper- 
imental observations. 
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Figure 4. Linear probe amplitude as a function of 
frequency for 8 linear probes of the system as described 
in the text. The linear response at t = 98 and t = 298 
is the far right curve. The linear response at t = 198 
is far left curve. The four intermediate curves are the 

linear response at t = 202, 204, 206, and 210 (left to 
right). The location of the resonance on each curve is 
indicated by a filled circle. The inset is a schematic of 
the driving force protocol described in the text. 

The elastic state of the rock is set by the strain field 
in the rock. The result in Figure 3 is complex because 
the calculation (like experiment) involves a frequency 
sweep at fixed force and as a consquence, varying strain 
field. Just as specification of the stress as a function 
of time is an integral part of characterizing quasi-static 
stress-strain measurements [McCall and Guyer, 1994], 
specification of F and • as a function of time is an 
integral part of characterizing dynamic measurements. 

A frequency sweep at fixed drive is a good test of the 
elastic state of the rock provided that (1) the frequency 
sweep is fast enough that the elastic state of the rock 
does not change markedly during the sweep and (2) the 
frequency sweep does not itself significantly modify the 
elastic state of the rock. Thus we envision an NMR- 

style elastic experiment in which a rapid low amplitude 
sweep through resonance serves to probe the state of a 
rock that has been driven at high amplitude and fixed 
(or slowly varying) frequency. 

In Figure 4 we show results of calculations that use a 
linear frequency sweep as a probe. The rock is excited at 
fixed frequency Q = 0.95, and probed at low amplitude 
using a frequency sweep; the driving amplitude is varied 
over time. The driving amplitude ? = 10 -3 for 0 < 
t < 100, F = Fm•x = 0.125 for 100 < t < 200, and 
F ---- 10 -3 for t > 200, as shown in the inset of Fig. 4. 
We use A1 = 0.5, A• = 1, Q = 5, r• = 0, and rl = 
10. In making our choice of r•, we are assuming that 
the artharmonic nonlinearity responds instantaneously 
to the driving force. Thus we have K = 1 - AK1 - A2 A • 
with A and AK1 given by solution of (6) and (7). This 
system is probed by a linear frequency sweep at t = 98 
(F low, system stable), at t = 198 (F high, system 
stable), at a sequence of moments in time beyond t = 
200 (F recently decreased), and at t = 298 (F low, 
system stable). 

The sequence of linear probes is shown in Figure 4. 
The linear probe amplitude is plotted as a function of 
• for seven resonance curves. From left to right the res- 
onant curves were taken at t = 198, 202,204, 206,210, 
and 298. The far right curve is identically the resonance 
curves at't = 98 and t = 298; this curve is the linear 
resonance curve of the rock with resonance frequency 
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Figure 5. Frequency shift as a function of ampli- 
tude during and after a sustained high amplitude drive. 
From left to right, Fm•x - 0.06, 0.07, 0.1, 0.125, 0.15. 
The open circles are the frequency shift for a linear 
probe conducted at t - 198; the filled circles are the 
frequency shift for a linear probe conducted at t - 202. 

Q0 = 0.988 (compare to Figure 1). For t < 100, the 
amplitude A • 0.005. When the large amplitude drive 
F = 0.125, has been on for a long time the amplitude 
in the rock A = 0.394 (note this is not the linear probe 
amplitude). Thus the linear probe finds an elastic mod- 
ulus K = 1 - A•A- AaA 2 = 0.648, and the resonance 
frequency is fl • 0.8 (f12 • K). Immediately after the 
drive is turned down, t = 202, the amplitude relaxes 
to A • 0.005, and the resonance frequency shifts to 
Q • 0.89. The anharmonic contribution to the elastic 

modulus has decayed away (r2 = 0), while the hys- 
teretic contribution remains. Thus K snaps from 0.648 
to K = 1- A1 x 0.394-A2 x (0.005) 2 = 0.803. The hys- 
teretic component of the elastic modulus relaxes slowly 
to the low amplitude value, A m 0.005, and the reso- 
nance frequency evolves toward •0 = 0.99. 

In Figure 5 we have plotted the resonant frequency 
shifts as a function of the amplitude for several values 
of Fm•x. Otherwise, the protocol is identical to that 
described for Figure 4. The frequency shifts are the 
difference between Q0 = 0.99 and (a) the linear reso- 
nant frequency at t= 198 (circles), and (b) the linear 
resonant frequency at t = 202 (filled circles). The de- 
pendence of the latter frequency shift is linear in the 
pumping amplitude response and proportional to 
The instantaneous decay in resonant frequency upon 
changing F from Fmax to 0.001 is the difference between 
the open circles and the filled circles. The difference be- 
tween these two frequencies increases as Fmax increases 
since the second order (anharmonic) contribution to the 
elastic modulus increases. These results are in accord 

with the preliminary findings of Tencate [1997]. 

Conclusion 

In this paper we have introduced a phenomenological 
model of the dynamic nonlinear elastic response of a 
rock. The model has two distinct kinds of nonlinearity, 
a traditional anharmonic contribution, and a contribu- 
tion derived from elastic hysteresis. Each kind of non- 
linearity is allowed to have a slow dynamics. A simple 
explanation of the experimental findings of Tencate and 
Shankland [1997], in which a slow dynamics makes itself 
known, is provided by the model. 

The existence of a slow dynamics in strain response 
means that in any experiment that disturbs the rock be- 

yond linearity there will be features of the time history 
of the disturbance in the response to the disturbance. 
The enormous separation between time scales (the pe- 
riod of the fundamental is less than 0.01 sec; the time 
scale for slow dynamics is greater than 100 sec) suggests 
that many features of the slow dynamics in the nonlin- 
earity may be probed using NMR-style experimental 
protocols. A preliminary illustration of such a protocol 
yields results similar to those found in experiment. 
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