Continuous thermoacoustic mixture separation

G. W. Swift and D. A. Geller
Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, MS K764, Los Alamos,
New Mexico 87545

(Received 16 June 2006; revised 31 July 2006; accepted 8 August 2006)

The superposition of nonzero time-averaged mole flux \dot{N} on a thermoacoustic wave in a binary gas mixture in a tube causes one component of the mixture to flow in the sound-propagation direction and the other component to flow in the opposite direction.1–3 The expenditure of acoustic power results in an increase in the Gibbs free energy of the mixture’s components, and the energy efficiency of the process is comparable to that of some other practical separation processes.4 Thermoacoustic separation is caused by oscillating radial thermal diffusion combined with oscillating axial viscous motion. The sound wave’s oscillating pressure causes an oscillating radial temperature gradient, which in turn causes radial thermal-diffusion oscillations, inducing a small fraction of the light and heavy components of the mixture to move parallel to the tube wall. Thus, outside of that boundary layer, the sound wave’s axial oscillating motion carries gas that is slightly enriched in the heavy component in one direction during one half of the acoustic cycle and gas that is slightly enriched in the light component in the other direction during the other half of the cycle.5 In a 2-m-long tube, a 50–50 helium-argon mixture has been separated to yield 70% helium, 30% argon at one end and 30% helium, 70% argon at the other end; and a small enrichment of 22Ne from natural neon has been demonstrated.6

The five papers cited above described some of the mathematical physics of this phenomenon. Analytical expressions for the radial dependencies of oscillating temperature, density, mole fraction, and velocity and for the time-averaged molar separation flux were derived in the boundary-layer approximation, initially with no axial concentration gradient1 and later with an arbitrary concentration gradient.3 A numerical calculation was described that did not invoke the boundary-layer approximation.3 Measurements confirmed the calculations, initially with no axial concentration gradient in a tube where the boundary-layer approximation was adequate,2 and later in a smaller-diameter tube with an axial concentration gradient.3

All of this theoretical work assumed that $\dot{N}_H+\dot{N}_L=0$, where \dot{N}_H and \dot{N}_L are the time-averaged mole fluxes of the heavy and light components of the gas, respectively. In other words, it was assumed that the heavy and light mole fluxes were exactly equal in magnitude and in opposite directions. Similarly, all of the previous experimental work ensured that there was no bulk time-averaged total mole flux of the gas. In an engineering context, this corresponds to “batch” separation, in which a mixture is loaded into an apparatus, the apparatus is run for some time to accumulate an enriched product in one place and a depleted product in another place, and the products are finally removed. However, most industrial separation processes (e.g., petroleum refining, air separation, isotope enrichment7–9) run continuously, with feedstock steadily injected at one place while one or more enriched and depleted products are steadily removed elsewhere. Continuous separation requires nonzero total mole flux \dot{N} superimposed on the separation flows, so that

$$\dot{N} = \dot{N}_H + \dot{N}_L \neq 0.$$

(1)

We undertook the work reported here to explore some fundamental aspects of continuous thermoacoustic mixture separation, for which inequality (1) is true.

Reference 3 showed that the first-order thermoacoustic momentum equation is unchanged by mixture-separation effects, and Doppler-shift effects are also negligible at the slow mean flows of interest here. Then the momentum equation shows that the evolution of the complex pressure amplitude p_1 with axial coordinate x is given by

$$\frac{dp_1}{dx} = -\frac{i\omega p_m}{1-f_r}U_1,$$

(2)

where ω is the angular frequency of the oscillation, p_m is the mean density of the gas, A is the cross-sectional area of the

I. INTRODUCTION

In thermoacoustic mixture separation, a sound wave propagating in a gas mixture in a tube causes one component of the mixture to flow in the sound-propagation direction and the other component to flow in the opposite direction.1–3 The expenditure of acoustic power results in an increase in the Gibbs free energy of the mixture’s components, and the energy efficiency of the process is comparable to that of some other practical separation processes.4 Thermoacoustic separation is caused by oscillating radial thermal diffusion combined with oscillating axial viscous motion. The sound wave’s oscillating pressure causes an oscillating radial temperature gradient, which in turn causes radial thermal-diffusion oscillations, inducing a small fraction of the light and heavy components of the mixture to take turns being partially immobilized in the viscous boundary layer near the tube wall. Thus, outside of that boundary layer, the sound wave’s axial oscillating motion carries gas that is slightly enriched in the heavy component in one direction during one half of the acoustic cycle and gas that is slightly enriched in the light component in the other direction during the other half of the cycle.5 In a 2-m-long tube, a 50–50 helium-argon mixture has been separated to yield 70% helium, 30% argon at one end and 30% helium, 70% argon at the other end; and a small enrichment of 22Ne from natural neon has been demonstrated.6

The five papers cited above described some of the mathematical physics of this phenomenon. Analytical expressions for the radial dependencies of oscillating temperature, density, mole fraction, and velocity and for the time-averaged molar separation flux were derived in the boundary-layer approximation, initially with no axial concentration gradient1 and later with an arbitrary concentration gradient.3 A numerical calculation was described that did not invoke the boundary-layer approximation.3 Measurements confirmed the calculations, initially with no axial concentration gradient in a tube where the boundary-layer approximation was adequate,2 and later in a smaller-diameter tube with an axial concentration gradient.3

All of this theoretical work assumed that $\dot{N}_H+\dot{N}_L=0$, where \dot{N}_H and \dot{N}_L are the time-averaged mole fluxes of the heavy and light components of the gas, respectively. In other words, it was assumed that the heavy and light mole fluxes were exactly equal in magnitude and in opposite directions. Similarly, all of the previous experimental work ensured that there was no bulk time-averaged total mole flux of the gas. In an engineering context, this corresponds to “batch” separation, in which a mixture is loaded into an apparatus, the apparatus is run for some time to accumulate an enriched product in one place and a depleted product in another place, and the products are finally removed. However, most industrial separation processes (e.g., petroleum refining, air separation, isotope enrichment7–9) run continuously, with feedstock steadily injected at one place while one or more enriched and depleted products are steadily removed elsewhere. Continuous separation requires nonzero total mole flux \dot{N} superimposed on the separation flows, so that

$$\dot{N} = \dot{N}_H + \dot{N}_L \neq 0.$$

(1)

We undertook the work reported here to explore some fundamental aspects of continuous thermoacoustic mixture separation, for which inequality (1) is true.

Reference 3 showed that the first-order thermoacoustic momentum equation is unchanged by mixture-separation effects, and Doppler-shift effects are also negligible at the slow mean flows of interest here. Then the momentum equation shows that the evolution of the complex pressure amplitude p_1 with axial coordinate x is given by

$$\frac{dp_1}{dx} = -\frac{i\omega p_m}{1-f_r}U_1,$$

(2)

where ω is the angular frequency of the oscillation, p_m is the mean density of the gas, A is the cross-sectional area of the
tube, U_1 is the complex volume-flow-rate amplitude, and f_{v} is the viscous function10 that depends on the geometry of the tube. The evolution of U_1 with x arises from the laterally averaged first-order continuity equation10 for $dT_m/\!dx=0$

$$i\omega(p_1) + \rho_m \frac{d(u_1)}{dx} = 0,$$

where $\langle \rangle$ indicates an average over the cross-sectional area of the tube. The ideal-gas equation of state gives

$$\frac{\langle p_1 \rangle}{\rho_m} = \frac{p_1}{\rho_m} - \frac{\langle T \rangle}{T_m},$$

and Eq. (30) in Ref. 3 with $f=\langle f \rangle$ gives $\langle T \rangle$. Combining these and using the ideal-gas identity $\rho_m a^2 = \gamma p_m$ yields the mixture-separation continuity equation

$$\frac{dU_1}{dx} = -i\omega A \gamma - 1 [B f_{v} + C f_{x} + D] + \frac{C f_{x} \rho_{m}}{T_m} p_1,$$

where a is the adiabatic sound speed, γ is the ratio of isobaric to isochoric specific heats, and B, C, f_{x}, and $f_{x} \rho_{m}$ are defined in Ref. 3 and discussed in Appendix A here. Continuing through the derivation in Ref. 3, the first opportunity to incorporate nonzero \dot{N} is in Eqs. (43) and (44) of Ref. 3, the latter becoming

$$\dot{N}_{H,m} = n_H \dot{N} - NAD_{12} \frac{dn_H}{dx}$$

with the addition of the convective term $n_H \dot{N}$, where n_H is the mean molar fraction of the heavy component and D_{12} is the binary mass-diffusion coefficient. Thus, the combination of Eq. (6) with Eqs. (41) and (56) of Ref. 3 shows that the mole flux of the heavy component is

$$\dot{N}_H = n_H \dot{N} + \frac{\delta_k}{4r_H} \frac{\gamma - 1}{\gamma} \frac{k_T}{R_{\text{m}, \text{m}} T_m} p_1 |U_1 |(F_{\text{grad}} \cos \theta + F_{\text{stand}} \sin \theta) + \frac{\delta_k}{4r_H} \frac{\rho_m |U_1 |^2}{m_{\text{m}} a} F_{\text{grad}} \frac{dn_H}{dx}$$

$$- \frac{\rho_m}{m_{\text{m}}} AD_{12} \frac{dn_H}{dx}.$$

The first term represents the mole flux of the heavy component that simply accompanies nonzero bulk flow of the gas mixture. The second term represents the thermoacoustic mixture-separation process described qualitatively above, which can cause the heavy component to flow in either direction with respect to its concentration gradient. The third term represents a qualitatively similar process of oscillating radial mass diffusion and axial viscous motion, but one that always works to reduce the magnitude of a nonzero concentration gradient. The fourth term represents ordinary axial mass diffusion, which also always works to reduce the concentration gradient. In Eq. (7) and throughout this paper, $\delta_k = 2k / \omega p_{m,c_p}$ is the thermal penetration depth, k is the thermal conductivity, c_p is the isobaric specific heat, r_H is the hydraulic radius of the separation tube (for a circular tube, r_H is half of the circle’s radius R), k_T is the molar thermal-diffusion ratio, $R_{\text{m}}, \text{m} = 8.314 \text{ J/mol-K}$ is the universal gas constant, T_m is the mean temperature, θ is the phase by which p_1 leads U_1, $m_{\text{avg}} = n_H m_H + (1 - n_H) m_L$ is the average molar mass, and m_H and m_L are the heavy and light molar masses, respectively. The three real variables F_{grad}, F_{stand}, and F_{grad}, which are generally $<$0, depend on the properties of the gas and the local geometry of the tube. Analytical expressions for the three F’s have been published previously in the boundary-layer limit,1,3 but in Appendix A here we present analytical expressions for the F’s in small circular tubes for the first time. The coupled differential Eqs. (2), (5), and (7), with the expressions for the three F’s given in Appendix A, have been implemented in the computer code DELTAE,11 which has been used to create all the calculated curves in the figures below. In that implementation, Eq. (7) is solved for $dn_H/\!dx$ and is integrated with respect to x simultaneously with Eqs. (2) and (5) to obtain $p_1(x), U_1(x)$, and $n_H(x)$. The mole fluxes \dot{N} and \dot{N}_H are taken to be independent of x except where feedstock is injected or product is removed.

To solve Eqs. (2), (5), and (7) for $p_1(x), U_1(x)$, and $n_H(x)$, boundary conditions on those three variables must be imposed. The boundary conditions for p_1 and U_1 are the same as for ordinary acoustics in tubes, but boundary conditions for n_H are less familiar. In batch separations, the number of moles of each gas in the apparatus at the end of the separation process is the same as at the beginning, so n_H must satisfy

$$\int n_H(x) \, dV = n_{H, \text{batch}},$$

where $n_{H, \text{batch}}$ is the initial heavy mole fraction of the batch and V is the volume of the apparatus. Continuous separations impose different constraints. In steady state, the number of moles of gas and the number of moles of the heavy component of the gas in the apparatus must be constant, so whatever flows in must flow out. This can be expressed mathematically as

$$\sum_j \dot{N}_{\text{feedstock} \, j} = \sum_k \dot{N}_{\text{product} \, k},$$

$$\sum_j n_{H, \text{feedstock} \, j} \dot{N}_{\text{feedstock} \, j} = \sum_k n_{H, \text{product} \, k} \dot{N}_{\text{product} \, k},$$

where the indices j and k account for more than one feedstock and product capillary, respectively. Equation (10) is a global constraint on n_H for continuous separation, similar in principle to the constraint of Eq. (8) for batch separation.
equal their values in the separation tube. Thus, the boundary condition imposed on \(n_H \) at an end \(x_o \) of the separation tube where a product is removed is simply

\[
\dot{N}_H(x_o) = n_H(x_o) \dot{N}(x_o). \tag{11}
\]

(The corresponding condition would be)

\[
\dot{N}_H(x_o) - \dot{N}_H(x_o^+) = n_H[\dot{N}(x_o) - \dot{N}(x_o^+)] \tag{12}
\]

if product were removed somewhere in the middle of the separation tube.)

The algebraic simplicity of the boundary condition given in Eq. (11) disguises at least two interpretations. At the simplest level, Eq. (11) expresses “what goes in must go out” with respect to the region of the separation tube adjacent to the product-removal capillary’s entrance. However, Eqs. (7) and (11) together show that the last three terms in Eq. (7) must sum to zero at such a location. This shows that the boundary condition can also be interpreted as a complicated local constraint relating \(dn_H/dx \) (which appears explicitly in two of those three terms) to \(n_H \) itself (on which most of the variables in all three terms depend implicitly).

In contrast to continuous product removal, continuous feedstock injection does not impose any explicit local boundary condition on the solution to Eqs. (2), (5), and (7) in the separation tube. The total injection flux \(\dot{N}_{\text{feedstock}} \) and the injection flux of the heavy component, \(n_H \dot{N}_{\text{feedstock}} \), add to any time-averaged flows already in the separation tube and compete with the terms of Eq. (7) and boundary conditions imposed elsewhere to determine the local value of \(n_H \) which is not necessarily equal to \(n_H \dot{N}_{\text{feedstock}} \). If the feedstock capillary had a large enough diameter to support internal thermoacoustics, continuity of \(n_H \) at the junction of the capillary and the separation tube would presumably hold. As its diameter was reduced, \(dn_H/dx \) at the end of the capillary would steepen, eventually developing what we conveniently treat as a discontinuity here.

The verification of the presence of the first term in Eq. (7), \(n_H \dot{N} \), and the boundary condition on \(n_H \) expressed in Eq. (11) are the principal quantitative goals of this work. The experiments described below used a helium-argon mixture in a loudspeaker-driven traveling-wave separation tube. Fed with a 50-50 mixture, concentrations at the ends of the tube ranged from 30 to 70%. Feedstock was added and products were removed via capillaries, small enough in diameter to eliminate significant internal thermoacoustic effects but large enough to allow steady flow without requiring high pumping power. Feeding gas to the middle of the separation tube and extracting products at both ends allow simultaneous continuous production of helium-enriched gas and argon-enriched gas. Feeding gas to one end and removing an almost equal amount from the same end allows continuous production of a single more-highly enriched gas at the other end. Measurements under both circumstances provide quantitative confirmation of the \(n_H \dot{N} \) term in Eq. (7) and of the boundary condition expressed by Eq. (11).

II. APPARATUS AND INSTRUMENTATION

Figure 1 illustrates the apparatus we used to investigate these issues. The stainless-steel separation tube was 1-m long and had a 3.3-mm inside diameter. Near one end, access through a valve and a very short, 1-mm-inner-diameter (i.d.) connector allowed rapid evacuation and addition of the gas mixture before each experimental run, to a mean pressure \(p_m=80 \) kPa that was measured with a high-accuracy capacitance manometer that had been checked recently against a mercury manometer. At each end of the tube was a bellows-sealed piston epoxied to the face of a loudspeaker. These two driver assemblies were used to maintain the sound wave in the gas, and are described more thoroughly in Ref. 6. They were driven sinusoidally at 200 Hz by two phase-locked signal generators and audio amplifiers. Three piezoresistive pressure transducers and a lock-in amplifier were used to observe the resulting complex pressure amplitude \(p_1 \) in the gas at the ends and the middle of the separation tube. Table I summarizes the important dimensions of the apparatus discussed above and other variables that are discussed later.

The heavy mole fraction \(n_H \) in the separation tube could be measured at the seven locations that are shown in Fig. 1. At each location, a microcapillary continuously withdrew gas from the separation tube at a rate of \(\sim 3 \times 10^{-10} \) mol/s. All seven microcapillaries were 5-cm long and nominally...
10-μm inside diameter. These fragile microcapillaries were epoxied into larger copper tubes to protect against accidental damage. We found that two of them, henceforth referred to as the “large” microcapillaries, had 30% lower flow impedances than the other five, so the inside diameters of those two may have been 7% larger than the other five. The helium and argon flowing through the microcapillaries were detected by a computer-controlled, quadrupole-type residual gas analyzer (RGA) pumped by a turbopump,17 the latter backed by an oil-free mechanical pump.18 A network of bellows valves allowed any of the seven microcapillaries to be connected to the RGA-pump system, which maintained the pressure at ~10⁻⁶ torr in the presence of such flow. Meanwhile, the other six microcapillaries were connected to a second turbopump and second mechanical pump, to maintain high vacuum in all connecting tubing so that opening a valve never dumped a large amount of accumulated gas into the RGA. A measurement of \(n_H \) at a single microcapillary involved opening and closing the valves appropriately, waiting 2 min for steady state, and then averaging the RGA mass-4 and mass-40 “partial pressures” for 3 min. This averaging time yielded roughly 1% statistical uncertainty in the supposed ratio of mass-4 partial pressure to mass-40 partial pressure.

However, obtaining \(n_H \) from that “partial pressure” ratio was complicated because the RGA is much more sensitive to helium than to argon and because the RGA-pump system’s response is nonlinear,\(^\text{19}\) with the nonlinearity being different for mass 4 and mass 40. We mapped out this complexity near our operating conditions by recording the RGA’s reported partial pressures for known helium-argon mixtures, which we prepared from the pure gases in a 2-liter fan-stirred mixing chamber. These mixtures, ranging in concentration from 35–65 to 65–35, were forced through one small and one large microcapillary with 80-kPa pressure. The RGA results were slightly different for the partial pressures resulting from the large and small microcapillaries. We found

\[
\frac{p_{p4}}{p_{p40}}^{\text{true}} = C_L \left(\frac{p_{p4}}{p_{p40}} \right)_{\text{RGA}}, \quad \text{large microcapillaries};
\]

\[
\frac{p_{p4}}{p_{p40}}^{\text{true}} = C_S \left(\frac{p_{p4}}{p_{p40}} \right)_{\text{RGA}}, \quad \text{small microcapillaries};
\]

where \(pp \) stands for the partial pressure reported by the RGA, \(C_L \approx 7.8 \) and \(C_S \approx 8.0 \). Based on a number of calibration runs, we suspect that systematic uncertainties in these values contribute about 1% to uncertainty in \((p_{p4}/p_{p40})^{\text{true}}\).

The heavy mole fraction is then given by

\[
n_H = \frac{1}{1 + (p_{p4}/p_{p40})^{\text{true}}}. \tag{15}\]

At the start of each experimental run (and at the end of the longest full-day runs), we remeasured \(C_L \) and \(C_S \) with our 50-50 feedstock. These constants changed from day to day by up to 2%. However, we retained the nonlinear coefficient 0.1 in Eq. (14) for all experimental runs.

In laminar flow of an ideal gas, the mole flux through a circular capillary of diameter \(D \) from pressure \(p \) to zero pressure is obtained from\(^\text{20}\)

\[
-\frac{dp}{dx} = \frac{128\mu}{\pi D^4} U, \tag{16}\]

where \(U = \dot{N}R_{univ} T/\rho \) is the volume flow rate and \(\mu \) is the viscosity. Integrating Eq. (16) from \(x=0 \) at one end of the capillary to \(x=\Delta x \) at the other shows that

\[
\frac{[p(0)]^2 - [p(\Delta x)]^2}{2} = \frac{128\Delta x}{\pi D^4} \dot{N}R_{univ} T = \mu ZN\dot{R}_{univ} T, \tag{17}\]

where \(Z = 128\Delta x/\pi D^4 \) includes the geometrical parts of the flow impedance. At the high-pressure end of a microcapillary, the mean free path is only about 1% of the diameter, so the gas should flow as a viscous fluid. However, \(p(\Delta x) = 0 \) at the low-pressure end, and the assumption of laminar flow is questionable because the mean free path exceeds the capillary diameter. The crossover to the molecular-flow regime, where the mean free path is of the

<table>
<thead>
<tr>
<th>TABLE I. Properties of 50–50 helium-argon at 80 kPa, 300 K, and 200 Hz, and values for three tubes filled with this gas. The last three rows of the table are for (</th>
<th>p_{1.0}</th>
<th>= 2) kPa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcapillary</td>
<td>Capillary</td>
<td>Separation tube</td>
</tr>
<tr>
<td>(\delta_1)</td>
<td>0.23 mm</td>
<td>← same</td>
</tr>
<tr>
<td>(\delta_2)</td>
<td>0.36 mm</td>
<td>← same</td>
</tr>
<tr>
<td>(\delta_3)</td>
<td>0.39 mm</td>
<td>← same</td>
</tr>
<tr>
<td>(R)</td>
<td>0.005 mm</td>
<td>0.064 mm</td>
</tr>
<tr>
<td>(</td>
<td>\alpha</td>
<td>^{-1})</td>
</tr>
<tr>
<td>(\Delta x)</td>
<td>50 mm</td>
<td>150 mm</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>2180 mm</td>
<td>← same</td>
</tr>
<tr>
<td>(F_{\text{exv}})</td>
<td>(-9.43 \times 10^{-12})</td>
<td>(-5.48 \times 10^{-6})</td>
</tr>
<tr>
<td>(F_{\text{std}})</td>
<td>(1.59 \times 10^{-7})</td>
<td>(4.58 \times 10^{-4})</td>
</tr>
<tr>
<td>(F_{\text{grad}})</td>
<td>(-7.11 \times 10^{-8})</td>
<td>(-2.05 \times 10^{-4})</td>
</tr>
<tr>
<td>Eq. (810) at (x=0)</td>
<td>(-6 \times 10^{-7})</td>
<td>(-0.2)</td>
</tr>
<tr>
<td>(</td>
<td>\Delta n_H</td>
<td>)</td>
</tr>
<tr>
<td>(E_2)</td>
<td>5 nW</td>
<td>10 (\mu)W</td>
</tr>
</tbody>
</table>
order of the microcapillary diameter, occurs around $p = 0.01$ bar, approximately 5 μm from the low-pressure ends of the 5-cm long microcapillaries. Safely ignoring such a small fraction of the microcapillary length, Eq. (17) shows that $N \approx \left\{p(0)\right\}^2$. This quadratic dependence was experimentally observed, using the argon partial pressure at the RGA as a proxy proportional to \dot{N}. (This proportionality depends on the assumptions that the volumetric pumping speed of argon through the turbopump is independent of argon partial pressure, justified by the pump’s specifications, and that the RGA’s sensitivity to argon is approximately independent of partial pressure.)

Fittings at the top, middle, and bottom of the separation tube allowed connection of capillaries for feedstock injection and product removal. Figure 1 shows one such capillary at each of those three locations; other arrangements are discussed below as they arise. Each of these stainless-steel capillaries was nominally 127 μm (0.005 in.) inside diameter and 15-cm long. To obtain an accurate value of the geometrical factor Z for each capillary, we used an auxiliary setup in which we timed the displacement of a liquid out of an inverted graduated cylinder while feedstock gas with $n_H = 0.50$, driven by a known pressure, flowed steadily through the capillary into the graduated cylinder. A mixture of 90% glycerin, 10% water, and a few drops of food coloring provided low vapor pressure, not-too-high viscosity, and easy viewing. Care was taken to avoid effects of surface tension and to account for the changing head of the liquid. Equation (17) and the time derivative of the ideal-gas law, $pU = \dot{N}R_{\text{m},\text{un}}T$, were used to obtain Z from the measured pressures and volume flow rates. Five measurements were made with each capillary, with flow rates ranging from 1 to 5 μmol/s. No single determination of Z differed from the average for that capillary by 1%. We believe that systematic errors totaled at most 2%. (The measurements showed that the inside diameters of the capillaries were only 5 to 6% larger than their nominal values.)

Later, during mixture-separation experiments, the mole fluxes into and out of the separation tube through these capillaries were controlled by needle valves connected to the feedstock gas through a pressure regulator and to a vacuum pump through an old, homemade rubber-membrane manostat. The flow rates were determined via Eq. (17) by measurements of the pressures at the ends of the capillaries using the piezoresistive transducers shown in Fig. 1 and knowledge of Z obtained as described in the previous paragraph. We accounted for the n_H and T dependences of the gas viscosity. We neglected acoustic streaming’s contribution to the pressure difference across the capillaries $\left\{p_1\right\}^2/4p_m$ because it was only 0.04 to 1% of the pressure difference of Eq. (17) for all measurements.

Establishing a desired wave in the separation tube was an iterative procedure, carried out intermittently over a period of an hour or two as steady state was approached. We adopted a standard target of 3.00 kPa amplitude in the center of the tube, and a purely real acoustic impedance $z = A p / U_1$ equal to $\rho_u a$ in the center of the tube to achieve a pure traveling wave there. We made a DELTAE model of the apparatus with these constraints and with the desired conditions of steady flow. The DELTAE model’s complex p_1 at the two ends of the separation tube then served as goals to which experimental measurements could be compared, and adjustments to the complex voltages imposed on the two-driver assemblies were made to bring the experimental p_1’s close to their goals. This might seem to be a complicated procedure, because two experimental voltage amplitudes and two experimental voltage phases were being adjusted to try to meet two experimental pressure amplitudes and two experimental pressure phases. However, the overall time phase of the oscillation is a meaningless variable, and the overall amplitude of the wave was reliably changed by any desired fractional amount when the amplitudes of both drive voltages were changed by that same fractional amount. Thus, it was necessary only to measure changes in p_1 at the ends of the separation tube in response to two small changes: A small change in phase difference between the two driver voltages, and a small fractional increase in driver voltage at one driver. The matrix of these measurements was inverted to allow a prediction of the complex drive voltages needed to achieve desired p_1’s. Two iterations might have sufficed to bring the wave close to the goal, but $n_H(x)$ was also evolving during the course of these iterations, changing the density and sound speed along the separation tube, so three or four iterations were usually needed.

To illustrate how well this wave-tune-up procedure was typically accomplished and to establish confidence in the measurement techniques, Fig. 2 shows experimental and DELTAE results with no steady flow in the separation tube.

FIG. 2. Results with no time-averaged total mole flux, plotted as a function of location x along the separation tube. Curves are calculations and points are experimental values. (a) Complex pressure. (b) Heavy mole fraction. (c) Specific acoustic impedance z compared with $\rho_u a$. Upper dashed curve is $\text{Re}(z)$ and lower dashed curve is $\text{Im}(z)$. Solid curve near $\text{Re}(z)$ is $\rho_u a$.
Figure 2(a) compares the experimental and calculated pressure waves, with the zero of phase arbitrarily chosen to be the phase of the calculated p_1 at the middle of the separation tube. The agreement between the calculated and measured complex pressures at the two ends is indicative of how well the tune-up procedure described in the previous paragraph was routinely carried out, and the agreement between the calculated p_1 and measured p_1 at the middle of the separation tube is then one indication of how accurately we are modeling the wave. Figure 2(b) compares experimental and calculated mole fractions, and is a second indication of how accurately we are modeling the wave and its mixture-separation effects. The differences between measurements and calculations in Fig. 2(b) are about 1%, comparable to the expectations outlined above and similar to what was described in Ref. 3. Figure 2(c) shows calculations of specific acoustic impedance $z=p_1A/U_1$ along the tube for this wave, showing how well this arrangement can maintain a purely traveling wave along its entire length, even while the acoustic power decreases from 0.19 W at $x=0$ to 0.08 W at $x = 1$ m.

Imposing nonzero mole flux on the separation tube through the feedstock and product capillaries requires a small amount of additional, nonacoustic power to overcome the viscous impedances of the capillaries. In the present experiment, the ideal mechanical power required to isothermally compress the feedstock from 80 kPa to the feedstock pressure and to isothermally compress the products from the product-suction pressure to 80 kPa can be taken as a fair measure of the additional power required. As an example from the high end of the range of flows discussed below, this power totals only 10 mW for 4 μmol/s flowing in through one feedstock capillary and 2 μmol/s flowing out through each of two product capillaries.

To accurately measure $n_H(x)$ with this apparatus, we must be assured that the concentration gradient in each microcapillary is small enough that n_H at the RGA does not differ significantly from n_H in the separation tube where the microcapillary is attached. To perform continuous separations, we must similarly be certain that dn_H/dx in the feedstock capillaries and product capillaries can be neglected, or at least understood quantitatively. We must also know that acoustic power dissipation in the capillaries is acceptably small. In Appendix B, we analyze these issues for $N=0$, using the small-radius limits of the mixture-separation results in Appendix A and other equations of thermoacoustics. The results are summarized in Table I. Without superimposed steady flow, the expected end-to-end mole-fraction differences $|\Delta n_H|$ would be approximately 10^{-8} in the microcapillaries and 3×10^{-4} in the feedstock/product capillaries, both much smaller than the mole-fraction resolution of our apparatus. Table I also shows that the acoustic power dissipated in these capillaries is negligible compared with the ~ 100 mW consumed in the separation tube.

However, in most of the circumstances of interest in this paper, the steady flow in the capillaries overwhelms the oscillating flow, invalidating the analysis in Appendix B. At 1 μmol/s in a feedstock/product capillary, the steady flow equals the amplitude of the oscillating flow at the high-$|p_1|$ end of the capillary, and the capillary is swept clean by the steady flow in only ten acoustic cycles. In the microcapillaries, the steady flow is about twice the amplitude of the oscillating flow at the high-$|p_1|$ end. Thus, the analysis in Appendix B is probably only valid for flows below about 0.1 μmol/s in the feedstock/product capillaries. Nevertheless, it is hard to imagine how fast steady flows could increase the ability of the thermoacoustic phenomena to create a concentration gradient—in the next section, we see that modest steady flows always decrease the gradient. Two microcapillaries (not shown in Fig. 1) leading to the RGA from the left ends of the two product capillaries shown in Fig. 1 were used to verify that the product streams indeed carried the same mole fractions as were observed in the separation tube at the product-capillary entrances.

III. DISCUSSION OF THERMOACOUSTIC RESULTS

Figures 3–5 show the heavy mole fraction in the separation tube under a variety of conditions of nonzero total mole flux of feedstock and product(s). In all cases, calculations and measurements are in good agreement, confirming the presence of the n_HN term in Eq. (7) and our understanding of the boundary condition on n_H discussed near Eq. (11). It should be noted that there are no adjustable parameters in the calculations producing the curves in these figures. The calculations integrate Eq. (7), simultaneously with Eqs. (2) and (5), with respect to x, using the experimental values of $p_i(0)$, $p_1(x=1 \text{ m})$, frequency, mean pressure, $n_{H,\text{feedstock}}$, and N in each feedstock and product capillary, and with the boundary condition Eq. (11) imposed on n_H wherever product flows out of the separation tube.

Figure 3 shows n_H versus x for feedstock injection at $x = 0.5$ m. In Fig. 3(a), where half of the feedstock is removed at each end of the separation tube, the effect of simply in-
To the extent that the implicit energy equation in the work of Reid, Swift, and coworkers.

$$= 0.$$ J. Acoust. Soc. Am., Vol. 120, No. 5, November 2006 G. W. Swift and D. A. Geller: Continuous thermoacoustic mixture separation

feedstock flow equal to five times the

tions. Circles, feedstock flow equal to twice the

injected at

 variables in Eq. 19

and terms with \(d\theta / dx \) in the energy equation in the work of Reid, Swift, and coworkers.

To the extent that the implicit \(n_H \) and \(x \) dependencies of all variables in Eq. (7) could be neglected, that equation would be of the form

$$N_H = \alpha + N_H + \beta \frac{dN_H}{dx},$$

where \(\alpha \) and \(\beta \) can be regarded as constants, so \(n_H(x) \) would have an exponential curvature.

Figure 3(b) is less symmetrical than Fig. 3(a) because 20% of the feedstock mole flux is removed at \(x = 0 \) and 80% at \(x = 1 \) m in Fig. 3(b). The slopes are shallower and the curvatures greater on the right half of the figure than on the

left half because \(\hat{N} \) is greater on the right half, as discussed in the previous paragraph. The heavy mole fraction at \(x = 0.5 \) m is different from \(n_{H, \text{feedstock}} = 0.50 \), with the difference growing as the feedstock mole flux decreases and exerts weaker local influence on \(n_H(x) \).

Figure 4 illustrates most clearly the sometimes counter-intuitive nature of the boundary condition for \(n_H \) expressed in Eq. (11). For the circles and squares, feedstock with \(n_{H, \text{feedstock}} = 0.50 \) is injected at \(x = 1 \) m and all of the product is removed at \(x = 0 \). One might at first guess that \(n_H \) would be close to 0.50 at the feedstock end of the separation tube, but instead \(n_H \) is tied firmly to 0.50 at the product end of the separation tube. One way to interpret this result is to realize that, in steady state with only one feedstock capillary and one product capillary, what flows out of the product capillary must be exactly what flows in through the feedstock capillary, which has \(n_{H, \text{feedstock}} = 0.50 \). In the context of Eqs. (9) and (10), there is only one term on the right and one on the left, so \(n_{H, \text{product}} = n_{H, \text{feedstock}} \). In the context of Eq. (11), the product total mole flux and heavy mole flux must equal their values for the feedstock, so the product’s \(n_H \) must also equal its value in the feedstock.

For the operating point of Fig. 3(b), in which 20% of \(N_{\text{Feedstock}} \) flows out at \(x = 0 \) and 80% at \(x = 1 \) m, the corresponding global steady-state condition based on Eq. (10) shows that

$$0.20n_H(0) + 0.80n_H(1.0 \text{ m}) = n_{H, \text{Feedstock}} = 0.50,$$

which is indeed the case in Fig. 3(b). The triangles in Fig. 4 also illustrate Eq. (19) for one feedstock and two-product capillaries, though with different numerical values. In contrast to Fig. 3(b), in which the feedstock enters at the center of the separation tube and the two products are removed at the ends, the triangles in Fig. 4 represent a case in which the feedstock enters at one end and the two products are removed at the two ends.

Figure 5 shows how \(n_H \) in the two product streams at the ends of the separation tube varies with flow rate, when the feedstock is injected at the middle of the separation tube. Purities decrease with increasing flow rates, and the purity of one product can be enhanced by reducing the fraction of the feedstock that flows into it. For this separation tube running with a 3-kPa traveling wave, product flow rates of the order of 1 to 10 \(\mu \text{mol/s} \) cause a significant decrease in purities.

IV. CONCLUSIONS

Measurements confirm that the addition of the simple term \(n_H \hat{N} \) to the thermoacoustic mixture-separation equation for the heavy mole flux \(\hat{N}_H \) accounts for a nonzero total mole flux \(\hat{N} \). The influence of \(\hat{N} \) on \(n_H(x) \) is similar to that of steady flow on \(T_m(x) \) in the stack of a standing-wave refrigerator: As \(\hat{N} \) is increased, the magnitude of the slope \(|d\theta / dx| \) is reduced and \(n_H(x) \) acquires significant curvature. Measurements also show that a boundary condition constraining the solution \(n_H(x) \) is imposed wherever steady flow leaves the separation tube and enters a small-diameter capillary with negligible thermoacoustic characteristics of its
own. Flow out through such a capillary carries whatever mole fraction is present in the separation tube where the capillary is attached. No such boundary condition is imposed by feedstock entering the separation tube through such a capillary.

Capillaries suitable for practical continuous thermoacoustic mixture separation have been demonstrated. Such capillaries are small enough in diameter that they do not develop significant internal concentration gradients, nor do they consume significant acoustic power. Nevertheless they are large enough to carry significant steady flow without prohibitively large steady pressure drops.

ACKNOWLEDGMENTS

This work was supported by Locally Directed R&D funds at Los Alamos National Laboratory. The authors thank Scott Backhaus for helpful conversations and Mike Torrez for expert layout and assembly of the apparatus.

APPENDIX A: THERMOACOUSTIC MIXTURE SEPARATION IN CIRCULAR TUBES

The time-averaged mole flux of the heavy component when \(dT_m/dx=0\) is given by Eq. (7), where the three functions \(F_{\text{trav}}, F_{\text{stand}},\) and \(F_{\text{grad}}\) depend on the properties of the gas and the radius of the tube. Analytical expressions for the three \(F\)'s in the boundary-layer limit have been published previously.\(^{1,3}\) Here we derive such expressions for circular tubes of arbitrarily small radius, starting from Eq. (5) and from Eqs. (47) and (48) of Ref. 3.

Unfortunately, Eq. (48) of Ref. 3 has a minus-sign typographical error; the correct expression is

\[
\dot{N}_{H,2} = \frac{1}{2} \left[\frac{k_f}{R_{\text{g}} T_m} \right] \frac{1}{1-f_j} \left[C \left(\frac{\delta_e}{\delta_{x,2}} - 1 \right) J_{x,2}(1) - h_{x,2} \right] f_{\text{trav}}(1) - B_{j,2} \left[\sigma - \frac{1}{\sigma} \right] \langle h_{x,2}(1-h_{x,2}) \rangle,
\]

where the last line here has the sign error fixed. \(B\) and \(C\) are given in Eqs. (33) and (34) of Ref. 3. Note that \(B\) is proportional to the concentration gradient and that \(C\) contains one term proportional to \(B\) and one term independent of the gradient. The \(\langle \cdot \rangle\) denotes the average over the cross-sectional area, \(\sigma\) is the Prandtl number, the tilde denotes complex conjugation, and

\[
h_j = J_0[(i-1)R/\delta_j],
\]

\[
f_j = \frac{2J_1[(i-1)R/\delta_j]}{[(i-1)R/\delta_j]J_0[(i-1)R/\delta_j]},
\]

where \(J_0\) and \(J_1\) are the zeroth- and first-order Bessel functions, and \(j\) is \(\nu, kD,\) or \(Dx.\) The coefficient \(\varepsilon\) and the penetration depths \(\delta_{x,2}\) and \(\delta_{2x}\) are also defined in Ref. 3.

To evaluate averages of the form \(\langle h_{i-1-h_{j}} \rangle\), one can use identity (11.3.20) from Ref. 28

\[
\int_0^z t^i J_{-i-1}(t)dt = z^i J_i(z) \quad \text{for Re}[\nu] > 0
\]

to verify that

\[
\langle h_j \rangle = f_j.
\]

Then one can use Ref. 28’s Eqs. (9.1.40)

\[
\tilde{J}_i(z) = J_i(z)
\]

and (11.3.29)

\[
\int_0^z \left\{ (k^2 - \tilde{\nu}^2)t - \left(\frac{\mu^2 - \nu^2}{t} \right) J_{-i-1}(kt) \right\} dt
\]

\[
= z[kC_{\mu+1}z(iz) - iC_{\mu}(iz)] - (\mu - \nu)C_{\mu}(iz)J_i(iz),
\]

where \(C\) and \(D\) are any two Bessel functions, to compute

\[
\langle h_{i-1-h_{j}} \rangle = \frac{\delta_{e,j}}{\delta_{e,j} + \delta_{2e,j}} \langle f_i \rangle + \frac{\delta_{e,j}}{\delta_{2e,j} + \delta_{2e,j}} \langle f_j \rangle.
\]

Combining Eqs. (A5) and (A8) yields the result needed in Eq. (A1)

\[
\langle h_{i-1-h_{j}} \rangle = \frac{\delta_{e,j}}{\delta_{e,j} + \delta_{2e,j}} \langle f_i \rangle + \frac{\delta_{e,j}}{\delta_{2e,j} + \delta_{2e,j}} \langle f_j \rangle.
\]

and identification of expressions for the \(F\)'s in Eq. (A1) is straightforward. The results are

\[
F_{\text{trav}} = \frac{R}{\delta_k} \text{Re} \left[\frac{G}{(1-f_j)} \right],
\]

\[
F_{\text{stand}} = \frac{R}{\delta_k} \text{Im} \left[\frac{G}{(1-f_j)} \right],
\]

\[
F_{\text{grad}} = \frac{R}{\delta_k} \left[\frac{1}{1-f_{\text{grad}}^2}(1-\sigma)(1-\sigma L) - \varepsilon \sigma \right]
\]

\[
\times \text{Im} \left[\frac{(\sigma - 1)}{\sigma \varepsilon} \left(\frac{\delta_{x,2} - \delta_{x,2}^D f_{\text{grad}}}{\delta_{x,2} + \delta_{x,2}^D} \right) \right.
\]

\[
= \left(1 + \sigma \right) \frac{LQ}{M} - \frac{f_j - S}{\text{Re} + \varepsilon G},
\]

where \(R\) is the circle radius, \(L = k/\rho_m c_p D_{12}\), and

\[
S = \left(\frac{\delta_{x,2}^2}{\delta_{x,2}} - 1 \right) f_{\text{grad}} - \left(\frac{\delta_{x,2}^2}{\delta_{x,2}^D} - 1 \right) f_{\text{grad}}^D,
\]

\[
Q = \frac{\delta_{x,2}^D - \delta_{x,2}}{\delta_{x,2}},
\]

\[
M = (1 + \sigma)(1 + \sigma L) + \varepsilon \sigma,
\]
\[G = \frac{\alpha LQ}{\text{MS}} f_{sd} \frac{f_{ad}}{S} \left(\frac{f_{ad}}{1 + \frac{\partial f_{ad}}{\partial \delta_{Dx}}} - \frac{f_{Dx}}{1 + \frac{\partial f_{Dx}}{\partial \delta_{ad}}} \right). \]

(A16)

APPENDIX B: THERMOCOULUMS IN CAPILLARIES

Ignoring the effects of steady flow, the wall-damped Helmholtz equation for pure gases is\(^{10}\)

\[[1 + (\gamma - 1)f_\kappa]p_1 + \frac{a^2}{\omega^2}(1 - f_\kappa) \frac{dp_1}{dx^2} = 0, \]

(B1)

with the viscous-dissipation function \(f_\kappa\) and the thermal-dissipation function \(f_\kappa\) in a circular tube of radius \(R\) given by

\[f_\kappa = \frac{2J_1[(i - 1)R/\delta_i]}{[(i - 1)R/\delta_i]j_0[(i - 1)R/\delta_i]}, \]

(B2)

where \(J_n\) is the \(n\)th-order Bessel function, \(\delta_i = 2\mu / \omega \rho_p\) is the viscous penetration depth, and \(\delta_\kappa = \sqrt{2k/\omega \rho_p \kappa}\) is the thermal penetration depth, and \(j\) is either \(\nu\) or \(\kappa\). For small \(R\), Eq. (B2) becomes

\[f_\kappa = \frac{1}{\delta_i} - \frac{i R^2}{4 \delta_i^3} - \frac{1}{12 \delta_i^5} + O(R^6). \]

(B3)

Substitution of Eq. (B3) into Eq. (B1) yields, to lowest order in \(R\), the Helmholtz equation for a small circular tube

\[\left(1 - \frac{i \gamma - 1}{4 \delta_\kappa^2}\right)p_1 + \frac{i R^2}{4 \delta_\kappa^2} \frac{dp_1}{dx^2} = 0. \]

(B4)

The solution \(p_1(x)\) to Eq. (B4) is the sum of positive and negative complex exponentials of \(x\). To conveniently satisfy boundary conditions at the ends of the capillary, the solution can be written in either of two forms

\[p_1 = p_{1,0} e^{-\alpha x}, \quad \text{infinite length}, \]

(B5)

\[p_1 = p_{1,0} \frac{\sin(\alpha(Dx - x))}{\sin(\alpha Dx)}, \quad \text{finite length}, \]

(B6)

for capillaries driven at \(x=0\) with a complex pressure amplitude \(p_{1,0}\). The first form is for a capillary extending from \(x=0\) to infinity, and the second form is for a capillary of length \(Dx\) with \(p_1=0\) at \(x=\pm Dx\). Substitution of either form into Eq. (B4) and use of the general identity \(a=\lambda f\) relating the sound speed \(a\), the wavelength \(\lambda\), and the frequency \(f\) shows that

\[\alpha^{-1} = \frac{1 - i}{\sqrt{2}} \frac{1}{4 \pi \sqrt{\gamma / \delta_\kappa}} \frac{R}{\lambda}, \]

(B7)

to lowest order in \(R\). The volume flow rate \(U_1\) is obtained from Eqs. (B5)–(B7) via Eq. (2) taken to the small-\(R\) limit

\[U_1(x) = \frac{i \pi R^3 (1 - f_\kappa) dp_1}{\omega \rho_m} \frac{dp_1}{dx} \]

(B8)

\[\approx - \frac{\pi R^4 dp_1}{8 \mu dx}, \]

(B9)

which yields the expected Poiseuille fourth-power dependence on radius.\(^{20}\)

For a gas mixture, \(f_\kappa\) in Eq. (B1) should be replaced by a linear combination of \(f_{ad}\) and \(f_{Dx}\), which are defined in Ref. 3. However, the absence of \(\delta_\kappa\) from Eqs. (B5)–(B7) shows that this detail is irrelevant for the determination of \(\alpha\) in the present problem.

Table I displays some numerical values for the gas, the microcapillaries, the feedstock/product capillaries, and the separation tube. In the microcapillaries, \(\rho = 2 \times 10^{-6}\), so Eq. (B5) is appropriate. The feedstock/product capillaries have \(\rho = 0.06\), so Eq. (B6) would be required for high accuracy, but for simplicity it is not used here.

To estimate the end-to-end concentration difference that develops in a capillary, we begin by considering Eq. (7). The two terms with \(dn_H/dx\) typically subtract from the \(|p_1||U_1|\) term and are smaller than it. Thus, \(n_H-n_p N\) will never be much larger than \(|p_1||U_1|\), and \(n_H-n_p N\) can be neglected when estimating the order of magnitude of \(dn_H/dx\) in the capillary. In small enough tubes or at low enough amplitudes, the third term in Eq. (7) can be neglected in comparison to the fourth term, because their ratio

\[\frac{\text{third term}}{\text{fourth term}} = \frac{1}{16 \pi^2 \gamma \sigma \sum f_{\text{grad}} \frac{p_{1,0}}{p_m} e^{-2 Re(\alpha) \tau}}, \]

(B10)

is proportional to \(R^4|p_{1,0}|^2\). (Note that \(F_{\text{grad}}\) is proportional to \(R^3\) for small \(R\).) To obtain Eq. (B10) and subsequent results in this section, it is necessary to use Eqs. (B9), (B7), and (B5), the definitions \(\sigma = \delta_i^2 / \delta_\kappa^2\) and \(L = \delta_i^2 / \delta_\kappa^2\), given in Ref. 3, and the ideal-gas identities \(a^2 = \gamma R T_m / m_{\text{avg}}\) and \(p_m = \rho_0 R T_m / m_{\text{avg}}\). Based on the numerical values in Table I for Eq. (B10), we neglect the third term in Eq. (7).

With these approximations, Eq. (7) becomes

\[0 \approx \frac{\delta_\kappa}{\gamma} \frac{1}{2 \pi} \frac{k_f}{R} \frac{F_{\text{trav}} \cos \theta + F_{\text{stand}} \sin \theta}{|p_1||U_1|} \]

\[- N \pi R^2 D_{12} \frac{dn_H}{dx}, \]

(B11)

in a capillary. Solving this equation for \(dn_H/dx\) and integrating along the length of the capillary, using Eqs. (B5)–(B7) as necessary, with \(\theta = 3 \pi / 4\) from Eqs. (B5) and (B9), and using the small-\(R\) limits of \(F_{\text{trav}}\) and \(F_{\text{stand}}\)

\[F_{\text{trav}} \approx R^5, \]

(B12)

\[F_{\text{stand}} \approx \frac{1}{12} \frac{R^3}{\delta_\kappa^2}, \]

(B13)

yields finally

\[\Delta n_H \approx \frac{1}{384 \pi^2} \frac{(\gamma - 1)L}{\gamma \sigma} \frac{\lambda^2 R^4 |p_{1,0}|^2}{\delta_i^2 p_m^2}, \]

(B14)

for infinite length. Numerical values are given in Table I.

The acoustic power consumed by each capillary is calculated with

\[\dot{E}(0) = \frac{1}{2} Re[p_1(0) \dot{U}_1(0)]. \]

(B15)

Substituting Eq. (B9) into Eq. (B15) yields
for infinite length. Numerical values are given in Table I.

5A computer animation of this process can be obtained by downloading MixSepZip.exe from www.lanl.gov/thermoacoustics/movies.html.
15Model S, Swagelok Inc., www.swagelok.com
16Model PRG101, Omega Engineering, Stamford CT, www.omega.com
17MKS Baratron Type 390HA, www.mksinst.com
19Model SP150, Omega Engineering, www.omega.com
Erratum: “Continuous thermoacoustic mixture separation”

G. W. Swift and D. A. Geller
Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545

(Received 19 June 2008; accepted 20 June 2008)

[DOI: 10.1121/1.2967473]

PACS number(s): 43.35.Ud, 43.20.Mv, 43.35.Ty

A typographical error appears in Eq. (A12). In the second line, \((\sigma-1)\) should be \((1-\sigma)\).
(The correct equation was used for all the plots in the paper.)