Streamlining Machine Learning for Molecular Dynamics by Interfacing Python with LAMMPS

Steven Anaya

HPC-DES sanaya@lanl.gov

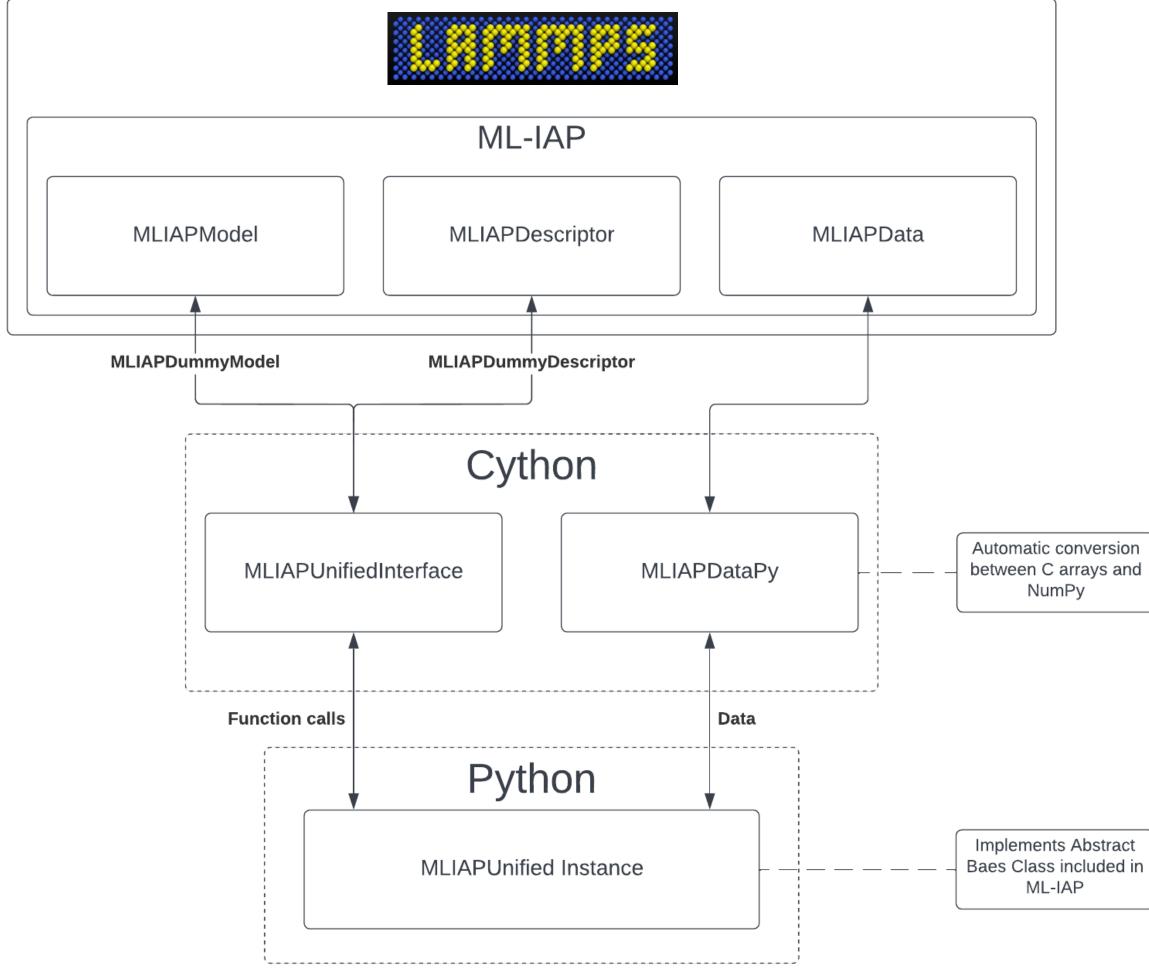
Mentor: Nicholas Lubbers (CCS-3)

Motivation

- LAMMPS is a gold-standard molecular dynamics simulation program written in C++
- (Machine-Learning The ML-IAP Interatomic Potential) package provides a simplified interface for connecting external C++ codes into LAMMPS
- However, many advanced ML packages are written in Python
- While LAMMPS allows users to couple Python models with their interatomic potentials through its Python package, this is meant for prototype codes and only allows for simplified potentials
- LAMMPS lacks a direct interface to arbitrary Python models

The ML-IAP Unified Interface

- The new "ML-IAP Unified" Interface unifies both model and descriptor functionalities into a single streamlined Python interface
 - Descriptors give features but neural net finds own
- This allows users to construct elegant Python models that seamlessly interface with LAMMPS using familiar methods
- Enables computational scientists to more quickly and easily construct Python models using GPUaccelerated machine-learning interatomic potentials for use with LAMMPS
- Allows for easier usage of PyTorch-based machine learning models such as HIP-NN with LAMMPS


Background: HIP-NN

- designed for Convolutional network neural interatomic potentials
- Highly-tunable parameters, performance
- Implemented in Python using PyTorch

Challenges Encountered

- Creating direct, two-way Cython interface
- Implementing automatic data conversion between C++ and NumPy
- Supporting modified atom neighbor lists for models that require them
- Supporting multiple atom types (see InP Example)
- Identifying and addressing Python bottlenecks

Unified Interface Architecture

InP Example: Unified HIP-NN vs SNAP

- SNAP: machine-learning interatomic potential that uses bispectrum components
- Unified HIP-NN has approx. 9× shorter loop time
- Energy and pressure differ considerably, but neither model considered ground truth

Press

-2305.4876

-2253.983

-2005.112

-1448.301

-686.4810

13.29226

410.5434

404.1693

58.26258

-422.8517

-800.7543

Unified HIPNN

289.4449

173.34948

136.32353

114.93675

111.96058

124.36461

144.90639

164.9825

in.mliap.unified.hippynn.lnP

TotEng

.8025716

4.8025714

4.8025709

4.8025701

-4.8025693

4.8025686

-4.8025684

4.8025686

-4.8025693

-4.80257

-4.8025705

Per MPI	rank	memory all	ocation (min/avg/max))
Step		Temp	E_pair	
6:0 	0	300	-3.4805794 (0
	10	285.84677	-3.4787531 (0
	20	248.14649	-3.4738884 (0
	30	198.94136	-3.4675394 (0
	40	152.74831	-3.4615791 (0
	50	121.9796	-3.4576091 (0
	60	113.27555	-3.4564863 (0
	70	125.68089	-3.4580873	0
	80	151.47475	-3.4614159 (0
	90	179.18708	-3.4649919 (0

SNAP

Performance: 1.7	780 ns/day,	13.484	hours/ns,	41.202	timesteps,
99.4% CPU use w	ith 1 MPI t	asks x 1:	. OpenMP th	nreads	

memory allocation (min/avg/max) = 996.7

-4.8412739

-4.8399121

-4.836111

4.8307021

-4.8249327

-4.8201554

-4.8173961

·4.8170124

-4.8186132

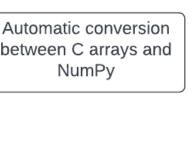
-4.821264

-4.8238546

procs for 100 steps with 512 atoms

ormance: 0.196 ns/dav. 122.196 .8% CPU use with 1 MPI tasks x 1 OpenMP threads

pop time of 21.9953 on 1 procs for 100 ste


-3.4673559

100 197.50662

in.snap.InP.JCPA2020

= 6.027 6	5.027 6.027	′ Mby	/tes				
E_mol	TotEng		Press				
	-3.4418771		1353.5968				
	-3.4418766		1611.7131				
	-3.4418756		2312.0308				
	-3.4418744		3168.1543				
	-3.4418734		3903.5749				
	-3.4418728		4387.1254				
	-3.4418729		4556.3003				
	-3.4418735		4431.2083				
	-3.4418745		4107.2369				
	-3.4418754		3739.5881				
	-3.441876		3492.7778				
with 512 atoms							
.546 timesteps/s							

- Tested on Chicoma with NVIDIA A100 GPUs
- 1 dual-socket CPU per node
- Weak scaling: 1 GPU per node
- Strong scaling: 4 GPUs per node
- 1 process per GPU
- 16 OpenMP threads per process
- Higher is better; flat, horizontal line is ideal
- Efficient scaling with modified (ghost) neighbor lists
- HIP-NN highly competitive with other ML interatomic potentials such as SNAP and ASE

Conclusion

- LAMMPS enhanced with support for arbitrary, easyto-make Python models
- ML and GPU acceleration provide LAMMPS Python models with major performance advantage
- ML-IAP Unified + HIP-NN highly competitive with other machine-learning interatomic potentials
- ML driving HPC into the future!

Future Work

- Successfully merge code into LAMMPS GitHub repo
- Produce thorough documentation of each Unified Interface component and usage
- Perform scaling tests with more than 64 GPUs
- Implement other ML interatomic potential models

LOS ALCABORATORY

