
Improving MPI with Rust
Abstract

MPI continues to play an important role in HPC applications. At the same time, existing 
implementations fail to provide guarantees of safety and correctness, instead leaving many 
important error conditions to be checked by the user. Many of these errors, such as mismatched 
types or mismatched collective arguments, can lead to memory corruption, segmentation faults, 
and undefined behavior, which typically comes from a lack of memory safety guarantees. From a 
different perspective, the MPI implementations themselves often encounter similar problems but 
from within the library itself. Implementations are increasingly required to adapt to new hardware 
and programming environments, requiring extensive development and testing that can leave 
room for memory safety related errors. One way to solve these problems is to work with newer 
languages that are designed to guarantee memory safety: the Rust programming language is one 
such language that attempts to guarantee memory safety while maintaining performance close to 
that of C. In this presentation I’ll give a brief overview of two different prototypes written in Rust 
that attempt to solve these problems and then show results that indicate that performance is 
close enough to the original versions to merit further consideration of Rust for HPC applications.

Jacob Tronge
LA-UR-23-28913


