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A comprehensive numerical methodology has
been developed that handles the challenges in-
troduced by considering the compressive na-
ture of Rayleigh-Taylor instability (RTI) systems,
which include sharp interfacial density gradients
on strongly stratified background states, acous-
tic wave generation and removal at computational
boundaries, and stratification dependent vortic-
ity production [1]. The computational framework
is used to simulate two-dimensional single-mode
RTI to extreme late-times for a wide range of flow
compressibility and variable density effects. The
results show that flow compressibility acts to re-
duce the growth of RTI for low Atwood numbers,
as predicted from linear stability analysis.

Background and Motivation
An accurate representation of the stratification,

acoustic, and intrinsic compressibility effects in-
volved in the compressible RTI system imposes
strong requirements on the numerical scheme,
such as resolving the acoustic time scale, han-
dling acoustic waves and RT shock waves at the
boundaries, and performing computations over a
vast range of density scales. In order to capture
the late-time behavior, the simulations need to be
performed in long vertical domains. If the back-
ground stratification is strong, the density range
can span orders of magnitude. In addition, vor-
tices are generated continuously within the RT
mixing layer and nonlinearly interact with one an-
other to affect the late-time large-scale growth.

Description
To minimize the computational effort required

for high resolution DNS of compressible RTI, a
wavelet-based adaptive mesh is utilized so that
the resolution of the computational grid matches
the local scale of the system. The wavelets al-
low the grid to dynamically adapt to the phys-
ical features in the flow as they evolve in time
while maintaining a direct control of the error.
A consistent initialization is developed and im-
plemented for both the thermodynamic variables
and the velocity field, such that the generation
of acoustic waves is minimized and does not af-
fect the instability growth. In order to isolate the
RTI growth from the effects of wave reflections at
the boundaries, two different boundary method-
ologies are also developed and implemented: a
diffusion buffer zone that damps acoustic distur-
bances, and a characteristics-based non-reflecting
boundary that removes the energy of acoustic
waves from the stratified background. The nu-
merical methodology also includes a dynamic
time integration method that can be efficiently
applied to highly nonlinear and potentially stiff
convective-diffusive systems, such as compress-
ible RTI.

The comprehensive computational framework
is applied to simulations of two-dimensional
single-mode RTI, which act as a good test for
the numerical algorithm by exposing any direc-
tional bias. However, the numerical methods
are all easily extendable to three-dimensional do-
mains with a multi-mode initialization. Specif-
ically, the boundary conditions are general due
to the mostly planar nature of the acoustic waves
generated from the growth of compressible RTI.
The validation of the methodology includes a res-
olution convergence study, simulations for a wide
range of flow compressibility and variable density
effects that remain symmetric well into late times
(as seen in Fig. 1), and a look at the flow com-
pressibility effects for the small Atwood number
(A) case.
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Mole fraction during late-time RTI growth
for low-compressibility effects (left) and high-
compressibility effects (right) at A = 0.3.

Anticipated Impact
The advanced computational framework de-

veloped specifically for DNS of compressible
Rayleigh-Taylor systems is likely to shed new
light on the nature of the RTI. The compressibil-
ity effects cannot be summarized by any one sin-
gle quantity, nor are the effects universal. Strat-
ification is closely tied to the intrinsic compress-
ibility within the system when the initial condi-
tions are in thermal equilibrium, but it is also
affected by the molar mass difference between
the two fluids. The two effects can be com-
pletely decoupled for thermal out-of-equilibrium
initial conditions. When the molar mass differ-
ence is small, the background stratification acts
to suppress the instability growth, and global sta-
bility can be achieved quickly. However, when
there is a large difference in molar mass, unsta-
ble configurations within a highly compressive
system may lead to an enhanced growth when
compared to the incompressible system. Such re-
sults may have important applications to under-
standing the mixing in the inertial confinement
fusion context. The high-resolution simulations

needed to address these issues are not possible on
today’s computers, unless specialized computa-
tional strategies are used, such as those developed
and implemented for this work.
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