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We propose a simple fast spectral method for
the Boltzmann collision operator with general
collision kernels. Compared with the direct spec-
tral method [8] which requires O(N6) memory
to store precomputed weights and has O(N6) nu-
merical complexity, the new method has com-
plexity O(MN4 logN), where N is the number of
discretization points in each velocity dimension,
M is the total number discretization points on a
sphere and M �N2. Furthermore, it requires only
O(MN4) memory to store precomputed functions
for more general collision kernels. Unlike previ-
ous methods, our new method can apply to arbi-
trary collision kernels including angularly depen-
dent models. A series of numerical tests is per-
formed to illustrate the efficiency and accuracy of
the proposed method.

Background and Motivation
Proposed by Ludwig Boltzmann in 1872, the

Boltzmann equation is one of the fundamen-
tal equations of kinetic theory. Yet its numer-
ical approximation still presents a huge compu-
tational challenge, even on today’s supercomput-
ers, due to the high-dimensional, nonlinear, non-
local structure of the collision integral. Two ap-
proaches have been primarily employed for solv-
ing the Boltzmann equation numerically: one
stochastic and one deterministic. Direct simula-
tion Monte Carlo (DSMC) methods [1, 6, 3] have
been historically popular because they avoid the
curse of dimensionality for this problem, however
they can suffer from slow convergence for certain

types of problems such as transient and low-speed
flows and give noisy results due to their stochas-
tic nature. The other approach is to use deter-
ministic solvers, which have undergone consid-
erable development over the past twenty years.
These methods include discrete velocity models
(DVM) and Fourier spectral methods [7, 2, 8, 4].
Spectral methods are invariably hindered in most
real-world applications since they require O(N6)
operations per evaluation of the collision oper-
ator, with N being the number of discretization
points in each velocity dimension, as well as
O(N6) bytes of memory to store precomputed
weight functions which quickly becomes a bot-
tleneck when solving large-scale problems [8, 4].
While fast spectral methods were earlier proposed
in [2, 5] based on the Carleman representation of
the collision integral (complexity O(MN3 logN),
where M is the total discrete points on a sphere
and M � N2), this steps required to obtain this
formulation will only give the needed decoupling
for fast evaluation in the case of the hard sphere
model. Therefore, the goal of this paper is to
introduce a fast spectral method for the Boltz-
mann collision operator that can handle general
collision kernels as well as mitigate the mem-
ory requirement in the direct spectral method.
Specifically, the numerical complexity of our new
method will be O(MN4 logN), and only O(MN4)
memory is needed to store precomputed functions
for more general collision kernels. The proposed
method can serve as a “black-box” solver in the
velocity domain to be used in conjunction with
existing time and spatial discretization methods
to treat more practical problems with complex ge-
ometries, multiple temporal/spatial scales, etc.

Description/Impact
To try to obtain a form for the weights in the

spectral formulation that can be expressed as a
convolution, we seek an approximation of the
weight G(l,m) in the following decoupled form

G(l,m)≈
Np

∑
p=1

αp(l +m)βp(l)γp(m),
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where αp, βp, γp represent appropriate functions
of l +m, l, and m respectively, and the total num-
ber of terms Np in the expansion is relatively
small. Using a fixed numerical quadrature in the
definition of G(l.m) allows us to make this de-
composition

G(l,m)≈

∑
ρ,φ1,φ2

wρwφ1wφ2 sinφ2 F(l +m,ρ,ω)ei π

L ρ
l
2 ·ωe−i π

L ρ
m
2 ·ω.

This form allows us a large increase in compu-
tational efficiency without sacrificing much accu-
racy.

N direct spectral fast spectral M = 14
8 0.09s 0.14s
16 6.31s 0.26s
32 542.34s 1.78s
64 — 33.15s

Average running time for one time evaluation of
the collision operator.
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Time evolution of error between the direct spec-
tral (lines) and fast spectral (symbols) for the
BKW solution to the Boltzmann equation.

Anticipated Impact
The new method was designed to accelerate the

direct spectral method as well as relieve its mem-
ory bottleneck in the precomputation. Through a
series of examples, we were able to demonstrate

that the proposed method can be orders of mag-
nitude faster than the direct method to achieve
the same level of accuracy. Furthermore, it can
be applied not only for the VHS model but also
for more general collision kernels that have both
velocity and angular dependence, unlike existing
fast spectral methods which can only treat hard
sphere molecules.

Path Forward
Ongoing work includes careful investigation of

the dependence of spherical discretization on the
property of the solution and development of adap-
tive quadrature to further improve the method.
The reduction in computational complexity al-
lows for implementation for much higher dimen-
sional problems than could previously be ob-
tained.
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