Appendix A

Statistical Treatment of Assay Data

This appendix provides a brief discussion of the statistical treatment of nondestructive assay data. It contains several useful statistical formulas and procedures for estimating assay errors. The discussion considers random errors (assay precision) only. There is no consideration of the often serious problem of systematic errors (assay bias). For a more thorough discussion of assay precision and bias, please refer to textbooks on statistics.

A.1 GENERAL DEFINITIONS

Assume that some physical quantity \(x \) is measured \(N \) times, with the results \(x_1, x_2, x_3, \ldots, x_N \). For example, \(x \) could be the plutonium mass of a sample measured with a neutron well counter. The best estimate of the true value of \(x \) is the average, or mean value,

\[
\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} \quad (A-1)
\]

In general, each individual measurement \(x_i \) deviates from the mean. A common indicator of the magnitude of this deviation is the standard deviation

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}} \quad (N > 1) \quad (A-2)
\]

The estimated standard deviation is often quoted as the relative standard deviation (RSD), which is given by

\[
\sigma_r(\%) = \left(\frac{\sigma}{\bar{x}} \right) \times 100 \quad (A-3)
\]
It is usually assumed that the measurements are distributed about the mean according to a Gaussian (or normal) distribution. An example of the Gaussian distribution is shown in Figure A.1, which is a histogram of 500 measurements with a Gaussian shape superimposed. The mean value of the measurements is 107.3, and the standard deviation σ is 2.43. The abscissa is in units of σ. For a Gaussian distribution, the full width at half maximum height (FWHM) is 2.354σ. One can also estimate the percentage of the measurements that should lie within a specified interval about the mean. Table A-1 summarizes the estimated percentages in units of σ. The distribution of measurements shown in Figure A.1 is very close to these estimates.

Table A-1. Percentage of measurements expected to lie within $\pm w\sigma$ of the mean of a Gaussian distribution

<table>
<thead>
<tr>
<th>Width of Region, $x \pm w\sigma$</th>
<th>Estimated Percentage of Measurements in Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm 0.6745\sigma$</td>
<td>50.00%</td>
</tr>
<tr>
<td>$\pm 1.0000\sigma$</td>
<td>68.27%</td>
</tr>
<tr>
<td>$\pm 2.0000\sigma$</td>
<td>95.45%</td>
</tr>
<tr>
<td>$\pm 3.0000\sigma$</td>
<td>99.73%</td>
</tr>
</tbody>
</table>

Fig. A-1. A histogram of 500 measurements distributed about a mean. The solid line is a superimposed Gaussian shape.
The mean value \bar{x} calculated from Equation A-1 is subject to some measurement uncertainty. The estimated standard deviation of the mean that is determined from N measurements is

$$\sigma_{\bar{x}} = \sigma / \sqrt{N}.$$ \hfill (A-4)

This equation indicates that the mean is determined more precisely as the number of measurements N increases. From Table A-1, there is a 68% probability that the true mean lies within the range $\bar{x} \pm \sigma / \sqrt{N}$ and a 95% probability that the true mean lies within the range $\bar{x} \pm 2\sigma / \sqrt{N}$.

The standard deviation σ calculated from Equation A-2 is also subject to measurement uncertainty. The standard deviation of the standard deviation follows a chi-square distribution. An approximate equation for the RSD of σ that is correct to about 10% for N greater than 3 is

$$\text{RSD of } \sigma \approx 1 / \sqrt{2(N-1)}.$$ \hfill (A-5)

Table A-2 provides a more accurate compilation of the probability that the standard deviation lies within a given interval. (From Table A-1 it can be seen that the interval in Table A-2, 90% probability, has a width of almost 2σ.) Equation A-5 and Table A-2 show that the standard deviation, like the mean, will be determined more precisely as the number of measurements increases, but that there is a large variation in the computed standard deviation even for 20 or 30 repeated measurements.

Table A-2. Standard deviation of the standard deviation for a series of repeated measurements. For example, for 10 measurements, there is a 90% probability that the true standard deviation lies in the interval 0.74σ to 1.59σ, where σ is the standard deviation estimated from Equation A-2

<table>
<thead>
<tr>
<th>Number of Measurements</th>
<th>Lower Limit of Interval 5% Probability</th>
<th>Upper Limit of Interval 95% Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.58</td>
<td>4.41</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>2.92</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td>2.37</td>
</tr>
<tr>
<td>5</td>
<td>0.67</td>
<td>2.09</td>
</tr>
<tr>
<td>7</td>
<td>0.71</td>
<td>1.80</td>
</tr>
<tr>
<td>10</td>
<td>0.74</td>
<td>1.59</td>
</tr>
<tr>
<td>15</td>
<td>0.77</td>
<td>1.44</td>
</tr>
<tr>
<td>20</td>
<td>0.80</td>
<td>1.36</td>
</tr>
<tr>
<td>25</td>
<td>0.81</td>
<td>1.31</td>
</tr>
<tr>
<td>30</td>
<td>0.83</td>
<td>1.27</td>
</tr>
</tbody>
</table>
A.2 PROPAGATION OF ERRORS

Often the final answer, such as grams plutonium, involves several different measurements with different uncertainties. For example, suppose that plutonium mass \(m = C(P - kB) \), where \(C \) = calibration constant, \(P \) = counts in peak window, \(k \) = a constant, and \(B \) = counts in background window. The variables \(C \), \(P \), and \(B \) may all have different uncertainties, which must be combined, or propagated, to arrive at the final error in the mass.

There are several common formulas that can handle most simple combinations of errors. Let \(x \pm \sigma_x \) and \(y \pm \sigma_y \) be two independent variables, and let \(k \) be a constant with no uncertainty.

If \(z = x + y \) or \(x - y \),
\[
\sigma_z = \sqrt{\sigma_x^2 + \sigma_y^2}.
\]

If \(z = x/y \) or \(xy \),
\[
\frac{\sigma_z}{z} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2}.
\]

If \(z = kx \),
\[
\sigma_z = k\sigma_x.
\]

For example, for \(m = C(P - kB) \),
\[
\sigma_m = \sqrt{\left(\frac{\sigma_C}{C}\right)^2 + \frac{\sigma_P^2}{(P - kB)^2} + k^2\sigma_B^2}.
\]

Other formulas for error propagation can be derived by differentiating the equation \(z = f(x,y) \) and squaring the result:
\[
(dz)^2 = \left(\frac{\partial z}{\partial x}\right)^2(dx)^2 + \left(\frac{\partial z}{\partial y}\right)^2(dy)^2 + 2\left(\frac{\partial z}{\partial x}\right)\left(\frac{\partial z}{\partial y}\right)(dx)(dy).
\]

The cross term contains the product \((dx)(dy)\). If \(x \) and \(y \) are independent variables, then \(dx \) and \(dy \) are uncorrelated. If a series of measurements are made to determine \(z \), then the measurement uncertainties \(dx \) and \(dy \) fluctuate randomly between positive and negative values, and the cross term \((dx)(dy)\) has an average value close to 0. Also, the average of squared differentials like \((dx)^2\) is the square of the standard deviation, \(\sigma_x^2\). Then the square root of Equation A-10 becomes
\[
\sigma_z = \left[\left(\frac{\partial z}{\partial x}\right)^2(\sigma_x)^2 + \left(\frac{\partial z}{\partial y}\right)^2(\sigma_y)^2\right]^{1/2}.
\]
Equations A-6, A-7, and A-9 can be derived from Equation A-11, as can any other equation needed for more complex error propagation.

A.3 Nuclear Counting Statistics

For measurements involving nuclear particle counting, all of the above information can be applied. In addition, in a nuclear counting measurement, the radioactive decays or other randomly-spaced events usually follow a Poisson distribution, for which the standard deviation \(\sigma_x \) of a single measurement can be estimated by

\[
\sigma_x \approx \sqrt{x}
\]

(A-12)

where \(x \) is the actual number of counts. Note that Equation A-12 applies to counts and not to count rate. If a count rate is measured for a time \(t \), yielding a single measurement of \(x \), there is a 68% probability that the actual rate is included in the interval \((x \pm \sqrt{x})/t \).

Consider the example of \(m = C(P - kB) \). Assume that \(k = 1 \) and that \(\sigma_C = 0 \).

\[
\sigma_P \approx \sqrt{P}, \quad \sigma_B \approx \sqrt{B}, \quad \text{and} \quad \sigma_m \approx C \sqrt{P + B}.
\]

The RSD (in percent) is

\[
\sigma_r(\%) = \frac{\sigma_m}{m} \approx 100 \frac{\sqrt{P + B}}{P - B}.
\]

(A-13)

If \(N \) measurements are made on the same sample, the RSD of the distribution \(\sigma_r \) can be calculated from Equation A-2 (with \(m_i \) replacing \(x_i \)) and Equation A-3, or it can be estimated from

\[
\sigma_r(\%) \approx 100 \frac{\sqrt{P + B}}{P - B}.
\]

(A-14)

The two ways of computing \(\sigma_r \) should yield similar results if the number of repeat measurements, \(N \), is large. If the results are not similar, the counting equipment may be malfunctioning.

Note that all of the discussion in this appendix pertains to the precision or repeatability of measurements. This analysis gives no information regarding the accuracy of a measurement (how well the measurement determines the correct amount of material).
Appendix B

Radiation Safety

The passive nondestructive assay (NDA) techniques described in this book rely on the natural radiation emitted by nuclear material. The assayist should be aware of the amount and type of radiation being emitted by the sample to ensure that the measurement does not pose a safety hazard. This appendix provides some background information on radiation safety and gives some examples of typical sample dose rates.

The radiation emitted by plutonium, uranium, thorium, and reactor fission products consists of alpha particles, beta particles, x rays, gamma rays, and neutrons. Because the alpha particles have a very short range (3-4 cm in air), they do not present a health hazard unless the active material is inhaled or ingested. When monitoring for alpha-particle contamination, the radiation meter must be held very close to the surface. Alpha-particle radiation is usually measured with an ionization chamber that has a very thin metal foil window. Beta particles have a range of several millimeters in most materials, and x rays and gamma rays have ranges of several centimeters or more. A typical beta-gamma meter has a Geiger tube or thin scintillator and a sliding metal window that is opened for measuring beta particles and closed for measuring x rays or gamma rays. Neutron radiation is more penetrating and more hazardous than any of the other radiations and is usually detected with a 3He or BF$_3$ detector surrounded with a 20-cm-diameter sphere of polyethylene (a Bonner sphere or "cow").

Radioactive material is usually characterized by its activity or disintegration rate, as measured in curies. One curie (Ci) is 3.7×10^{10} disintegrations per second. The amount of energy deposited, the absorbed dose, is given in units of rads. One rad is a quantity of radiation that leads to the absorption of 100 ergs (624 200 MeV) per gram of irradiated material. The biological damage produced by a dose of 1 rad varies with the rate of energy loss in tissue. To determine the equivalent dose from different kinds of radiation, one uses the unit rem defined as

\[
\text{rem (equivalent dose)} = QF \times \text{rad (absorbed dose)}
\]

Values for the quality factor QF are given in Table B-1. The International Commission on Radiation Protection has recommended that the quality factor for fast neutrons be increased to 20, but as of January 1989 the U.S. Department of Energy recommends that, based on the available data, the quality factor remain at 10. A new international unit of equivalent dose, the sievert, is equal to 100 rem.
Table B-1. Quality factor QF for the equivalent dose of different types of radiation

<table>
<thead>
<tr>
<th>QF</th>
<th>Radiation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>beta, x, gamma radiation</td>
</tr>
<tr>
<td>2.3</td>
<td>thermal neutrons</td>
</tr>
<tr>
<td>5</td>
<td>protons</td>
</tr>
<tr>
<td>10</td>
<td>alpha particles</td>
</tr>
<tr>
<td>10</td>
<td>fast neutrons</td>
</tr>
<tr>
<td>20</td>
<td>massive charged particles like fission fragments</td>
</tr>
</tbody>
</table>

There are several approximate relationships that can be used to convert the strength of gamma-ray and neutron sources into dose rates. For a gamma-ray source of energy E (in MeV) and strength C (in curies),

$$\text{rem/h at 30 cm} \approx 6CE.$$

For a fast-neutron source, the exposure rate is

$$\sim 1 \text{ millirem per hour (mrem/h) at 1 m per } 10^6 \text{ n/s}$$

For a thermal-neutron source, the exposure rate is

$$\sim 0.1 \text{ mrem/h at 1 m per } 10^6 \text{ n/s}.$$

Examples of typical dose rates encountered in passive NDA assay are given in Table B-2. The plutonium dose rate may be much higher if the americium content is more than 0.1%.

Table B-2. Some typical dose rates encountered in passive NDA

<table>
<thead>
<tr>
<th>Radiation Source</th>
<th>Source Strength</th>
<th>Dose Rate at 10 cm (mrem/h)</th>
<th>Dose Rate at 1 m (mrem/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neutron</td>
<td>Gamma</td>
</tr>
<tr>
<td>$1 \mu g^{252}\text{Cf}$</td>
<td>$2.3 \times 10^6 \gamma/s$</td>
<td>230</td>
<td>14</td>
</tr>
<tr>
<td>$100 \mu Ci^{137}\text{Cs}$</td>
<td>$3.1 \times 10^6 \gamma/s$</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>PuO$_2$(6% ^{240}Pu)</td>
<td>1 kg</td>
<td>~ 10</td>
<td>~ 100</td>
</tr>
<tr>
<td>UO$_2$ (93% ^{235}U)</td>
<td>1 kg</td>
<td>~ 0</td>
<td>1.2</td>
</tr>
<tr>
<td>Natural bkg</td>
<td>environment</td>
<td>0.01-0.02 (100-200 mrem/yr)</td>
<td></td>
</tr>
</tbody>
</table>
The biological effects of radiation are summarized in Table B-3 for acute (2 hours or less) and chronic (long term) exposures to the whole body. Based on these effects, maximum allowable radiation doses have been established by the International Commission on Radiation Protection. These recommendations are summarized in Table B-4 and may be compared to the natural background radiation level of 0.1 to 0.2 rem/yr. The maximum allowed doses are far below those that would show acute biological effects. Furthermore, in most facilities, worker exposure is held well below the allowed maximum.

The International Commission on Radiation Protection also recommends that the radiation dose should be kept as low as practical or "as low as reasonably achievable (ALARA)." The NDA operator can limit radiation dose from a source in three ways: minimize the exposure time, maximize the distance to the source, and shield the

<table>
<thead>
<tr>
<th>Dose</th>
<th>Probable Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dose below 25 rem</td>
<td>No noticeable effect</td>
</tr>
<tr>
<td>Acute dose of 25-75 rem</td>
<td>Blood changes detectable in lab tests</td>
</tr>
<tr>
<td>Acute dose above 100 rem</td>
<td>Physical symptoms such as nausea, hair loss</td>
</tr>
<tr>
<td>Acute dose of 350 rem</td>
<td>50% fatality rate in 1 month</td>
</tr>
<tr>
<td>Acute dose of 600 rem</td>
<td>95% fatality rate</td>
</tr>
<tr>
<td>Chronic low-level dose</td>
<td>1 death per 7000 man-rem/yr</td>
</tr>
<tr>
<td>Chronic low-level dose</td>
<td>Less than 1% increase in genetic disorders per million man-rem/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>Maximum Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation worker</td>
<td>3 rem in 3 months</td>
</tr>
<tr>
<td></td>
<td>(6 mrem/h continuous in 40-h week)</td>
</tr>
<tr>
<td></td>
<td>5 rem in 12 months</td>
</tr>
<tr>
<td></td>
<td>(2.5 mrem/h continuous in 40-h week)</td>
</tr>
<tr>
<td>Pregnant worker</td>
<td>0.5 rem to fetus during pregnancy</td>
</tr>
<tr>
<td>General population</td>
<td>0.5 rem in 12 months</td>
</tr>
</tbody>
</table>
source. The operator can measure the dose rate of the source with a health physics instrument or estimate the dose rate by calculation. Unless the dose rate is completely negligible, the operator should minimize the amount of time spent near the source. Because the radiation dose from most sources decreases as the square of the distance, the source should be kept as far away as practical and handled as little as possible. If large sources must be used, then radiation shielding is necessary. Information on gamma-ray attenuation by dense materials is given in Chapter 2, and information on neutron shielding is given in Chapter 12, Section 12.6.
Appendix C

Criticality Safety

The nondestructive assay (NDA) of fissile material often involves placing the sample into a highly reflecting geometry or placing it close to other samples to be assayed. Both of these actions can potentially lead to a criticality accident and fatal radiation exposure. If the proper combination of fissile material, moderators, and reflectors is present, a self-sustaining chain reaction can occur. The NDA user is responsible for the safety of himself and others and should have an awareness of criticality safety. This appendix provides a brief introduction to this subject. Additional information is available in the references listed below. In all situations, the NDA user must consult the Criticality Safety Officer in the facility where the user is working and must follow facility guidelines for handling and storing fissionable material.

Criticality results when the neutron fission process achieves a self-sustaining chain reaction. If the production of neutrons exceeds the loss of neutrons by capture or leakage, the system is said to be supercritical. Criticality depends not only on the quantity of fissile material present (such as 235U or 239Pu), but also on the size and shape of the container, on the nature of any neutron-moderating material present in the container, and on the presence of any adjacent material (including human bodies) that might reflect neutrons back into the container.

The minimum critical masses of some fissionable materials are given in Table C-1. The minimum critical masses occur for spherical geometries, and these masses are lower if the sphere is surrounded by materials that reflect and moderate neutrons. For example, a critical sphere of uranium metal at normal density with an enrichment of 93% 235U has a diameter of about 17.5 cm and a mass of about 49 kg. If the sphere is immersed in water, some of the neutrons are reflected back into the sphere, and the critical diameter drops to about 13 cm, with a corresponding uranium mass of about 22 kg. If sufficient water is also mixed homogeneously with the uranium, the critical diameter increases to 31 cm, but the critical mass of 235U is only 800 g. This last case represents the minimum critical mass of 235U that could be encountered in normal facility processing operations. Table C-1 lists minimum critical masses for three systems: pure metal, pure oxide, and a homogeneous metal-water solution, with the critical mass of each system given bare (no reflectors or moderators) and fully water-reflected (the system is surrounded by an unlimited quantity of water).
Table C-1. Minimum critical masses of some fissionable materials in spherical geometry, bare and fully water-reflected (FWR)

<table>
<thead>
<tr>
<th>Fissionable Material</th>
<th>Metal (kg)</th>
<th>Oxide (kg)</th>
<th>Solution (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bare FWR</td>
<td>Bare FWR</td>
<td>Bare FWR</td>
</tr>
<tr>
<td>$^{239}\text{Pu}(19.7 \text{ g/cm}^3)$</td>
<td>10 5</td>
<td>1000 510</td>
<td></td>
</tr>
<tr>
<td>$^{239}\text{Pu}(14.9 \text{ g/cm}^3)$</td>
<td>16 8</td>
<td>21 14</td>
<td></td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>~30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>~80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{235}U</td>
<td>49 22 90 43</td>
<td>1600 760</td>
<td></td>
</tr>
<tr>
<td>^{233}U</td>
<td>15 7 34 15</td>
<td>1000 500</td>
<td></td>
</tr>
</tbody>
</table>

a ^{239}Pu is assumed to be in the form of low-burnup plutonium with approximately 6% ^{240}Pu and 94% ^{239}Pu.

b ^{235}U is assumed to be in the form of highly-enriched uranium with approximately 93% ^{235}U and 7% ^{238}U.

Nondestructive assay often places a sample into a highly reflecting geometry for measurement. In particular, passive neutron assay often places the sample into a well surrounded by a thick polyethylene moderator. Some detector wells are lined with cadmium, a neutron poison, but this is not always the case. Although the moderator is not as well coupled to the sample as the fully water-reflected geometry used in Table C-1, it does lead to a measurable increase in neutron reflection and multiplication. The sample itself will usually contain much less than the minimum critical mass of fissionable material, but the NDA operator must be certain that the sample cannot inadvertently contain sufficient material to become critical when placed in the well counter. This can be a difficult problem, particularly for large containers of scrap and waste for which there is no reliable information on the amount of fissionable material, its enrichment, and the matrix in which it is embedded. For small containers of dense material, the operator must also consider the possibility of accidentally placing two containers in the counter.

Another area of concern for the NDA operator is sample storage and transport. It is customary to store many samples in a single vault or safe and to transport them to the NDA instrument in containers that may hold several samples at once. The operator must consider the possibility that, although each individual sample may be critically safe, the storage area or transport container may constitute a stacked array that is not critically safe. Flooding of the array is particularly dangerous, because a flooded array can approach the geometry of a metal-water mixture and, like a reactor fuel assembly, can be much more critical when it is flooded than when it is dry.
The most conservative approach is to rely only on the known gross weight and volume of the sample and assume that the sample-instrument combination constitutes a fully water-reflected geometry. The operator can establish a weight limit for the sample, its transport container, and its storage area that is so low that the given volume could not contain a critical combination of fissionable material and optimum moderator.

If the sample containers are too heavy to meet this conservative limit, there are several other possible ways to arrive at critically safe operating limits. Multiplication measurements may be made inside the assay system (Ref. 1) or neutron transport calculations (such as those described in Chapter 12, Section 12.7) may be carried out using properly validated computational methods (Ref. 2). Many calculations already exist in Refs. 1–7, and some may be applicable to the problem at hand. Another option is administrative control of sample geometry, matrix, or other parameters. If all else fails, it may be necessary to repackage the samples into smaller containers for which critically safe limits can be established.

Regardless of how critically safe limits and operating procedures are established, they must be determined in cooperation with the facility Criticality Safety Officer. This person is an expert because of his experience and training, and the criticality safety of all operations that involve the handling, storage, and measurement of fissionable material are his responsibility as well as the responsibility of the NDA operator.

Considerable information is available on the subject of criticality safety and critical limits. Some of this literature is listed in Refs. 1–8. Reference 3 is an excellent and very readable report that covers the factors influencing critical parameters, critical limit data, computational techniques, and general criticality control practices. References 4 and 5 specify safety limits for a variety of conditions. References 6, 7, and 8 are three of the available compilations of experimental or calculated critical data.

REFERENCES

This paper was presented at the Nuclear Criticality Safety Short Course at Taos, New Mexico, May 6–11 (1973). It presents and discusses the draft of a standard prepared by Work Group ANS 8.11 of the ANS Standards Committee for validating calculational methods of establishing subcritical limits for operations with fissionable materials.

Page numbers in boldface type indicate main discussion
A, atomic mass number, 3
absorption edge, 33, 316
densitometry, 273
discontinuity, 33, 281
energy, 281
absorption efficiency, 59
accidental coincidence rate, 469
activation products, 535
Active Well Coin. Counter, 515-519
adiabatic calorimeter, 624
α particle decay, 4, 344
energy, half lives, yields, 344, 345
heat production, 618
particle range, 344, 619
(a, n) reaction
Coulomb barrier, 346-347
gamma rays, 348
neutron sources, 351-352
n spectrum, 347-349, 418-421
neutron yields, 345-347
Q value, 3 44, 347
thick target yield, 346, 348
thin target yield, 419
threshold energy, 346-347
241Am - 237U peaks, 224
AmBe, neutron spectrum, 349
AmBe, neutron source, 353
AmLi, neutron spectrum, 349
AmLi, neutron source, 353
amplifier, 73-80
analog-to-digital converter, 85-88
Argonne bulk calorimeter, 647-648
atomic mass number (A), 3
atomic number (Z), 3
attenuation coefficients
compound materials, 30
curves, 39, 279
linear, 29, 30, 161, 164
mass, 30-31, 162-165, 279
power law dependence, 186
attenuation correction factor
approximate forms, 178-179
Compton-scattering-based, 329
far-field assay, 168-171
holdup measurement, 610
intensity ratio, 165, 185-186
internal standard, 329
interpolation and extrapolation, 185
numerical computation, 171-178
precision, 181
segmented gamma scan, 190
transmission(g-ray), 165, 315
XRF, 324-327
attenuation, fundamental law, 27
attribute measurement, 589
Auger electron, 5, 9, 315
background radiation, 19, 564
cosmic rays, 19, 20, 496
natural radioactivity, 19-21
40K, 21
backscatter peak, 35, 36, 54, 319
barn, 358
baseline restoration, 76
Be(γ, n) detector, 547
beta decay, 5, 7
binding energy, electron, 8, 32, 314
bird cage counter, 503
Bi4Ge3O12, scintillation detector, 45
Boiling Water Reactor fuel, 530-531
BF3 neutron detector, 381-390
gamma-ray sensitivity, 384, 390
neutron capture cross section, 387
pulse-height spectrum, 389
B10 neutron detector, 395
branching intensity, gamma ray, 4
bremsstrahlung, 22, 32, 324, 619
burnup
calorimeter measurement, 657, 658
Cinder code, 555
definition, 531
gamma-ray assay, 546-549
neutron assay, 552-554
burnup indicator
134Cs/137Cs, 541-542
single ROI subtraction, 124-125
step function, 124-125, 252
straight-line subtraction, 121-123
two-standard subtraction, 126
Compton edge, 35-37, 54
Compton scattering, 31, 38-36, 39, 53
Compton suppression, 92
concentration meter, 215-216

cosmic rays
background, 19-20
neutrons, 496
criticality, 373, 479, Appendix C

cross section
10B, 387
barn, 358
definition, 357
1H and 4He elastic scattering, 392
3He, 387
6Li neutron capture, 387
macroscopic, 363-366
microscopic, 357
table of neutron, 368-369
curium, neutrons, 537, 543-546, 552
data throughput/resolution, 136-142
deadtime/pileup corrections, gamma
pulser based, 143-146, 160
pulser-peak precision, 144
reference-source, 146-149
deadtime correction, neutron
coincidence counter, 475
empirical correction, 474
shift register, 471
updating and non updating, 462
delayed gamma rays, 343
delayed neutrons, 343
ergy spectrum, 343
detectability limit, 592
densitometer, K-edge
Allied General Nuc. Services, 295
Karlsruhe, 301-302
Los Alamos, 294
Oak Ridge Y-12, 294
performance, 292
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNC-Japan, 295-297</td>
<td></td>
</tr>
<tr>
<td>portable K-edge, 299-300</td>
<td></td>
</tr>
<tr>
<td>Savannah River plant, 297-298</td>
<td></td>
</tr>
<tr>
<td>densitometer, L_{III} edge</td>
<td></td>
</tr>
<tr>
<td>Los Alamos, 306-307</td>
<td></td>
</tr>
<tr>
<td>New Brunswick Lab, 304</td>
<td></td>
</tr>
<tr>
<td>performance, 293</td>
<td></td>
</tr>
<tr>
<td>Savannah River Lab, 303</td>
<td></td>
</tr>
<tr>
<td>densitometry</td>
<td></td>
</tr>
<tr>
<td>absorption-edge, 278</td>
<td></td>
</tr>
<tr>
<td>characteristic concentration, 275-276, 282, 291</td>
<td></td>
</tr>
<tr>
<td>matrix effects, 281, 286-288</td>
<td></td>
</tr>
<tr>
<td>measurement precision, 275-282</td>
<td></td>
</tr>
<tr>
<td>measurement sensitivity, 285</td>
<td></td>
</tr>
<tr>
<td>sample cell thickness, 282-283</td>
<td></td>
</tr>
<tr>
<td>single energy, 274</td>
<td></td>
</tr>
<tr>
<td>two energy, 277</td>
<td></td>
</tr>
<tr>
<td>x-ray generator, 288-289</td>
<td></td>
</tr>
<tr>
<td>XRF comparison, 313</td>
<td></td>
</tr>
<tr>
<td>detectability limit, 446-447, 592</td>
<td></td>
</tr>
<tr>
<td>detector design, neutron</td>
<td></td>
</tr>
<tr>
<td>collimation, 429-432</td>
<td></td>
</tr>
<tr>
<td>3He tube arrangement, 427-428</td>
<td></td>
</tr>
<tr>
<td>moderator thickness, 428-431</td>
<td></td>
</tr>
<tr>
<td>detector, gamma-ray</td>
<td></td>
</tr>
<tr>
<td>gas-filled, 43</td>
<td></td>
</tr>
<tr>
<td>scintillation, 45</td>
<td></td>
</tr>
<tr>
<td>selection, 62, 66</td>
<td></td>
</tr>
<tr>
<td>solid state, 46</td>
<td></td>
</tr>
<tr>
<td>detector efficiency, gamma-ray, 58, 67</td>
<td></td>
</tr>
<tr>
<td>full-energy peak, 61-62, 153</td>
<td></td>
</tr>
<tr>
<td>geometric efficiency, 58</td>
<td></td>
</tr>
<tr>
<td>intrinsic, 59, 153-154</td>
<td></td>
</tr>
<tr>
<td>relative, 59, 155-156</td>
<td></td>
</tr>
<tr>
<td>detector, fast n, 4He and CH$_4$, 391</td>
<td></td>
</tr>
<tr>
<td>detector, 3He and BF$_3$, 381-390</td>
<td></td>
</tr>
<tr>
<td>gamma sensitivity, 384, 390-391</td>
<td></td>
</tr>
<tr>
<td>neutron capture cross section, 387</td>
<td></td>
</tr>
<tr>
<td>plateau curve, 389</td>
<td></td>
</tr>
<tr>
<td>pulse-height spectrum, 387-389</td>
<td></td>
</tr>
<tr>
<td>detector, neutron</td>
<td></td>
</tr>
<tr>
<td>activation foil, 403</td>
<td></td>
</tr>
<tr>
<td>10B lined, 395</td>
<td></td>
</tr>
<tr>
<td>die-away time, 429</td>
<td></td>
</tr>
<tr>
<td>efficiency table, 86</td>
<td></td>
</tr>
<tr>
<td>fission chamber, 393</td>
<td></td>
</tr>
<tr>
<td>gamma-ray sensitivity, 383-386</td>
<td></td>
</tr>
<tr>
<td>gas mixture, 383, 390-392</td>
<td></td>
</tr>
<tr>
<td>gas-filled thermal-n, 381-386</td>
<td></td>
</tr>
<tr>
<td>gas-flow proportional counter, 575</td>
<td></td>
</tr>
<tr>
<td>Hornyak button, 403</td>
<td></td>
</tr>
<tr>
<td>loaded scintillator, 401-403</td>
<td></td>
</tr>
<tr>
<td>neutron interaction probability, 384</td>
<td></td>
</tr>
<tr>
<td>operating voltage, 388, 392</td>
<td></td>
</tr>
<tr>
<td>plastic scintillators, 396-398,</td>
<td></td>
</tr>
<tr>
<td>573-574</td>
<td></td>
</tr>
<tr>
<td>Shalev spectrometer, 404</td>
<td></td>
</tr>
<tr>
<td>detector resolution, gamma, 55-57</td>
<td></td>
</tr>
<tr>
<td>Fano factor, 56</td>
<td></td>
</tr>
<tr>
<td>full width half maximum, 55</td>
<td></td>
</tr>
<tr>
<td>measurement, 113, 153</td>
<td></td>
</tr>
<tr>
<td>theoretical, 57</td>
<td></td>
</tr>
<tr>
<td>die-away time, 459, 493</td>
<td></td>
</tr>
<tr>
<td>measurement, 470</td>
<td></td>
</tr>
<tr>
<td>differential die-away counter, 592</td>
<td></td>
</tr>
<tr>
<td>Dual-Range Coincidence Counter, 512</td>
<td></td>
</tr>
<tr>
<td>effective Z, 184</td>
<td></td>
</tr>
<tr>
<td>elastic scattering, neutron</td>
<td></td>
</tr>
<tr>
<td>energy loss, 360</td>
<td></td>
</tr>
<tr>
<td>3H and 4He cross section, 392</td>
<td></td>
</tr>
<tr>
<td>electron</td>
<td></td>
</tr>
<tr>
<td>binding energy, 8, 32, 314</td>
<td></td>
</tr>
<tr>
<td>capture reaction, 5, 7</td>
<td></td>
</tr>
<tr>
<td>electron volt (eV), 2</td>
<td></td>
</tr>
<tr>
<td>energy calibration, 95</td>
<td></td>
</tr>
<tr>
<td>internal, 96-98</td>
<td></td>
</tr>
<tr>
<td>linear, 96, 100-101</td>
<td></td>
</tr>
<tr>
<td>energy spectrum</td>
<td></td>
</tr>
<tr>
<td>(α, n) reaction, 349, 418-421</td>
<td></td>
</tr>
<tr>
<td>252Cf prompt gamma rays, 343</td>
<td></td>
</tr>
<tr>
<td>252Cf prompt neutrons, 340-341</td>
<td></td>
</tr>
<tr>
<td>delayed fission neutrons, 343</td>
<td></td>
</tr>
<tr>
<td>neutron measurement, 404</td>
<td></td>
</tr>
<tr>
<td>spontaneous-fission n, 418-419</td>
<td></td>
</tr>
<tr>
<td>far-field assay, 167, 170, 176, 187</td>
<td></td>
</tr>
</tbody>
</table>
Fast Breeder Reactor fuel, 530-531
fertile isotopes, definition, 340
fission cross sections, 364
Feynman variance technique, 465-466
filters
gamma ray, 40-41
Pu isotopic assay, 233, 237, 250
fission reaction, 19
cross sections, 364
fragments, 338
induced, 340
spontaneous, 337-340
fission chamber, 393-394
pulse-height spectrum, 394
spent fuel measurement, 550
fission product, 19
activity ratio, 541-542
gamma rays, 18, 534-537
mass distribution, 533
solution assay, 330
yields, 532
fork detector, 551-553
gamma rays
delayed, 343
fission product, 18-21, 534-539
from (α, n) reactions, 348
(γ, n) reactions, 350
heat production, 629
prompt, 341-343
reaction cross section, 30
shielding, 41
signatures, 18
spent fuel measurement, 546-549
gamma-ray spectrum
Compton edge, 35-37, 54
escape peaks, 38
full width half maximum, 113-120
full-energy interact rate, 142-148
full-energy peak, 35, 58, 59, 65, 67
plutonium, 15-16
single-channel analyzer, 82-84
spent fuel, 20-21, 534
thorium, 17
uranium, 12-14
uranium ore, 23
gas proportional counter
BF₃, 386-390
³He, 386-391
He and CH₄, 391-392
Gaussian function, 101-102, 106-109,
119-120, 130-131
Geiger-Mueller detector, 44, 383
Ge detector, 46, 55
gamma rays
delayed, 343
fission product, 18-21, 534-539
from (α, n) reactions, 348
(γ, n) reactions, 350
heat production, 629
prompt, 341-343
reaction cross section, 30
shielding, 41
signatures, 18
spent fuel measurement, 546-549
³He neutron detector, 381, 386
gamma sensitivity, 384, 390-391
neutron capture cross section, 387
plateau curve, 389
pulse-height spectrum, 387-388
high-voltage bias supply, 68
High Level Neutron Counter, 494-502
detection efficiency, 432-433
efficiency profile, 501
HLNCC-II, 499-502
holdup, 596
causes and mechanisms, 596-597
magnitude, 598
statistical modeling, 599
holdup measurement, 601
attenuation correction, 610-611
calibration, 607-609
radiation signatures, 603
slab neutron detector, 442
SNAP-II, 439
typical accuracy, 612
Hornyak button, 403
hybrid counter, 330-332
induced fission multiplicity, 339-340
inelastic scattering, 24, 350, 360
internal conversion, 4, 5
interval distribution, 460
intrinsic efficiency, 59, 153-154
Inventory Sample Counter, 506-510
inverse-square law, 59
sample rotation, 150-152
ION-1 electronics, 551-553
ionization chamber, 44
irradiated fuel
active assay, 556
burnup, 531-532
burnup codes, 555
calorimeter, 656
134Cs/137Cs, 541-542
137Cs, 533, 539
Cerenkov, 537-538, 549-551
154Eu/137Cs, 541-542
exposure, 532, 562
fission chamber, 550
fission product yields, 532-536
fork detector, 551-553
gamma-ray assay, 546-549
gamma-ray spectra, 20, 21
neutron capture reactions, 536
neutron assay, 550-554
neutron production, 537, 543-546
physical attributes, 537
TLD measurement, 546
US fuel assembly inventory, 529
leached hull assay, 540, 556
least-squares fit
linear, 100
weighted, 107
weighted quadratic, 112
mean free path, 18
gamma ray, 29
neutron, 367
moderating power and ratio, 370-371
Monte Carlo calculations, 375-377
moderator design, 428
sample multiplication, 479-482
photon transport, 171
multichannel analyzer, 51, 65, 84-91
multiplication, 372-373, 422-425
correction factors, 481, 484-486
K_{eff} factor, 372
leakage, 422-425, 480, 485
sample self-, 479
multiplicity, prompt n, 341-342
(n, 2n) and (n, n') reactions, 350
NaI(Tl) detector, 45, 55
linear attenuation coefficient, 29
resolution, 66
near-field assay
239Pu in solution, 189
numerical computation, 171
neutron coincidence circuit
accidental rate, 469
auto- and cross-correlation, 463
die-away time, 470, 493
gate length, 462-463, 493
nonupdating/updating deadtime, 462
reduced-variance logic, 465
shift register, 466-467
updating one-shot, 464
variable deadtime counter, 464
neutron coincidence counters
Active Well, 515
Bird Cage Counter, 503
Channel, 502
Dual-Range, 512
family tree, 495
55-gal drum, 495
fuel-pin tray, 504-505
High Level, 497-502
Inventory Sample, 506-510
solution, 510-513
Universal Fast Breeder Reactor,
505-508
Uranium Collar, 520
neutron energy-velocity relation, 358
neutron multiplicity, 339-341
neutron production rate
PuO₂ plus fluorine, 417-418
PuO₂ plus moisture, 416-417
spent fuel, 537, 543-546
²³⁴U thin target, 420
uranium and plutonium, 410-415
neutron pulse train, 458-461
neutron reactions
(α, n) yield, 345
absorption, 359
delayed neutrons from fission, 343
energy leakage spectrum, 426-427
energy losses, 426
inelastic scattering, 24
mean free path, 367
notation, 359
prompt neutrons from fission, 340
reaction rate, 367
scattering, 359
spontaneous fission yield, 339
neutron cross section
¹⁰B, 362, 387
cadmium, 363
common materials, 368-369
energy dependence, 361-362
fission, 364
³He and ⁶Li, 387
²³⁹Pu, 362
²³⁸U, 364
neutron shielding, 374-376
neutron sources
(α, n), 349-353
AmBe and AmLi, 353
energy and dose, 352
spontaneous fission, 339
neutron totals counters
box counter, 443
²⁵²Cf hydrogen analyzer, 449
long counter, 451
²³⁸Pu heat source counter, 444
slab detector, 440
SNAP Assay Probe, 435
pair production, 31, 36-40
Passive Neutron Collar, 521-523
peak area determination
complex fit, tailing functions, 133
multiplets, known shape, 131-132
peak fitting, 252
region of interest sums, 127-130
simple Gaussian fit, 130
peak position determination
first-moment method, 105
five-channel method, 105
graphical, 104
linearized Gaussian fit, 106, 110
parabolized Gaussian fit, 109-111
peak width determination
analytical interpolation, 117-118
graphical, 116-117
linearized Gaussian fit, 119
parabolized Gaussian fit, 120
second-moment method, 119
perimeter monitor
alarm threshold, 570
automatic vehicle monitor, 583-584
calibration, 579-580
contamination, 563-566, 581
diagnostic tests, 578
electronics, 576-578
hand-held, 581-582
long-term monitoring, 573
moving-average method, 571-572
nuc-material diversion, 563, 577
pedestrian, 563-565, 582-585
performance, 584-585
portal, 563-564
sequential hypothesis test, 571-572
statistical alarm test, 580
stepwise method, 571-572
photoelectric effect, 31-39, 51, 316
photomultiplier tube, 45-46
pileup rejection, 69, 78, 136, 139, 142-149
plutonium
gamma-ray spectrum, 15, 226-227
neutron production, 410
production reaction, 24, 536
specific power, 621
plutonium isotopic assay
high americium content, 652-653
Lawrence Livermore Lab, 263-264
Los Alamos, 256
mass ratio, 245
response function analysis, 254
Rockwell Hanford, 255
Tokai-Mura, Japan, 264-265
Poisson statistics, 136
pole-zero compensation, 76
preamplifier, 69-74
Pressurized Water Reactor
calorimeter burnup assay, 657-658
fuel parameters, 530-531
spent fuel neutron output, 543-545
prompt γ and n spectrum and
multiplicity, 340-343
Pu gamma rays, isotopic assay
40-keV region, 225-230
100-keV region, 230-232
125-keV region, 233-234
148-keV region, 234-236
160-keV region, 235-238
208-keV region, 238-239
332-keV region, 238-241
375-keV region, 240-243
640-keV region, 242-245
Pu decay characteristics, 221-223
\(^{239}\)Pu heat source
neutron counter, 444
standards, 637
\(^{240}\)Pu effective mass
neutron coincidence, 457
neutron totals, 411
\(^{241}\)Pu-\(^{237}\)U equilibrium, 221-223
\(^{242}\)Pu correlation, 248-249, 257
\(^{242}\)Pu gamma rays, 223
pulse-shape discrimination, 398-403
Q-value, 4, 344-348
radiation damage, Ge detector, 48
radiation dose, Appendix B
neutron sources, 352
shielding calculations, 375-376
radioactivity in soil, 565-566, 591
Random Driver, 517
rate-related loss corrections (γ ray)
ADC deadtime, 134-139
data throughput, 135-140
electronic correction, 141-149
Poisson statistics, 136
pulse pileup, 134-139
pulsed-based, 143-146
reference-source based, 146-149
reaction rate, neutron, 367
Receipts Assay Monitor, 523-526
reduced chi-square, 105-113
reduced variance logic, 465-466
region of interest selection, 120-122
relative efficiency, 59, 155
curve, 60, 246-247, 257, 261
Rossi-alpha distribution, 461
SAM-II Assay Meter, 202-204
scintillation detectors, 45
\(^{10}\)B, Gd, and \(^{8}\)Li loaded, 401
gamma ray, 45-46
light output, 398-399, 574
NaI(Tl), 55
plastic/liquid, 396-399, 573-579
ZnS(Ag), 401-402
segmented gamma scanner, 190-192
Shalev spectrometer, 404
shielding, gamma ray, 41
neutron, 374
shift register circuit, 466-470
AMPTEK electronics, 475
counting precision, 476-478
deadtime correction, 471-475
multiplication correction, 483-486
signal-to-noise ratio, 69, 74, 570
Si(Li) detector, 50
slab neutron detector, 440-442
SNAP-II Assay Probe, 435
holdup assay, 439-440, 604
plutonium metal assay, 437

UF₆ cylinder verification, 438

Solution Coincidence Counter, 510-512

specific power, 620-622, 256-257

spectrum stabilizer, 88-89

spontaneous fission, 337-341, 457

fragment mass distribution, 533

half lives, 338-339

isotopic dependence, 340

neutron spectrum, 341, 418-419

neutron multiplicity and yield, 339

neutron sources, 351

sum peaks, 235-237

thermal neutrons, 358-360

thermoluminescent dosimeter, 403

holdup assay, 605

spent fuel assay, 546

thorium, gamma-ray spectrum, 17

Universal Fast Breeder Reactor
counter, 505-508

uranium

atom and weight fraction, 195

compounds, infinite thickness, 199

gamma-ray spectrum, 12-14, 198

natural isotopic abundance, 195

neutron production rate, 412-414

uranium ore, spectrum, 23

²³⁴U origin, 195

²³⁴U, n assay, 203, 210, 438

uranium enrichment assay

enrichment meter equation, 201

gas-phase monitor (UF₆), 207-210

in-line liquid UF₆ assay, 203-204

infinite thickness, 197

relative efficiency curve, 206-207

SAM-II Assay Meter, 202-203

²³⁸U background, 202

UF₆ slab neutron detector, 440

wall correction, 211-213

variable deadtime circuit, 464

vehicle monitor, 583-585

waste, low-level

detectability limit, 446-447, 592

55-gal drum assay, 447-448

measurement, 445, 496, 591

100 nCi/g activity limit, 591-592

x ray

fluorescence yield, 9, 315

generator, 320-323

line shape, 233, 254

nomenclature, 10, 314-315

production, 314

U and Pu, energy and intensity, 316

x-ray fluorescence assay

attenuation correction, 324

beta-particle-induced, 330

excitation sources, 320-322

measurement geometry, 318

reprocessing plant solutions, 330

sensitivity, 329

Z (atomic number), 3

WiFi GOVERNMENT PRINTING OFFICE : 1993 O - 350-602