The LANL Seismoacoustics Team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models constrained by a single dataset and used for quick and efficient predictions – to the complex – multi-dimensional models constrained by several types of data and result in more accurate predictions. Team members typically build Earth models at scales of 1 to 1000s of km, and the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismoacoustics Team at LANL.

Case 1:
Source location determination
When an event of interest occurs, accurately determining where and when it occurred is critical to understanding the type of event and its cause. The Seismoacoustics Team employs a variety of techniques to accurately determine source locations of both natural and anthropogenic events, including those that excel in recovering accurate locations in cases of individual events and those that excel in recovering precise locations in cases of multiple neighboring events. Depending on the particular situation, inverse or grid-search methods may be employed. Future directions of research include increasing the robustness of uncertainty calculations.

Case 2:
Inversion of disparate datasets
While many inversions consider one type of data to constrain a model, incorporating multiple types of data into a single inversion can produce a model that is simultaneously consistent with all data types and accurately predicts all types of observations. This exploits the differing sensitivities of each dataset, allowing the strengths of one dataset to accommodate for the weaknesses in another. In this process, the weighting and influence of each dataset must be considered in order to understand the value of the final model. Future directions of research include expanding the types of data that can be used simultaneously, expanding the spatial scales of modeling capabilities, and moving toward exploiting signals from the full waveform.
Case 3: Propagation Modeling

In many cases, the utility of a model is dependent upon the ability to accurately propagate a signal, i.e., forward model, through it. Beyond the model itself, it may be necessary to incorporate the effects of additional information on propagation, such as topography, scattering/focusing, or an imprecisely known source location. The computational time and intensity of these propagation calculations depends upon the complexity of the model, effects of additional information, and the needs of the user.

Modeling Team Members

Dale Anderson dand@lanl.gov, 505-606-1960
Michael Begnaud mbegnaud@lanl.gov, 505-667-7620
Phillip Blom pblom@lanl.gov, 505-665-0052
K. Michael Cleveland mcleland@lanl.gov, 505-667-1511
Fransiska Dannemann fransiska@lanl.gov, 505-667-0272
Jonathan MacCarthy jkmacc@lanl.gov, 505-665-4448
Omar Marcillo omarcillo@lanl.gov, 505-606-0192
W. Scott Phillips wsp@lanl.gov, 505-667-8106
Charlotte Rowe char@lanl.gov, 505-665-6404
Ellen Syracuse syracuse@lanl.gov, 505-667-2269

Recent Publications

