More stable light comes from intentionally 'squashed' quantum dots

January 30, 2019

Intentionally “squashing” colloidal quantum dots during chemical synthesis creates dots capable of stable, “blink-free” light emission that is fully comparable with the light produced by dots made with more complex processes. The squashed dots emit spectrally narrow light with a highly stable intensity and a non-fluctuating emission energy. New research at Los Alamos National Laboratory suggests that the strained colloidal quantum dots represent a viable alternative to presently employed nanoscale light sources, and they deserve exploration as single-particle, nanoscale light sources for optical “quantum” circuits, ultrasensitive sensors and medical diagnostics.

“In addition to exhibiting greatly improved performance over traditional produced quantum dots, these new strained dots could offer unprecedented flexibility in manipulating their emission color, in combination with the unusually narrow, ‘subthermal’ linewidth,” said Victor Klimov, lead Los Alamos researcher on the project. “The squashed dots also show compatibility with virtually any substrate or embedding medium as well as various chemical and biological environments.”
The new colloidal processing techniques allow for preparation of virtually ideal quantum-dot emitters with nearly 100 percent emission quantum yields shown for a wide range of visible, infrared and ultraviolet wavelengths. These advances have been exploited in a variety of light-emission technologies, resulting in successful commercialization of quantum-dot displays and TV sets. The next frontier is exploration of colloidal quantum dots as single-particle, nanoscale light sources. Such future “single-dot” technologies would require particles with highly stable, nonfluctuating spectral characteristics. Recently, there has been considerable progress in eliminating random variations in emission intensity by protecting a small emitting core with an especially thick outer layer. However, these thick-shell structures still exhibit strong fluctuations in emission spectra.

In a new publication in the journal *Nature Materials*, Los Alamos researchers demonstrated that spectral fluctuations in single-dot emission can be nearly completely suppressed by applying a new method of “strain engineering.” The key in this approach is to combine in a core/shell motif two semiconductors with directionally asymmetric lattice mismatch, which results in anisotropic compression of the emitting core.

This modifies the structures of electronic states of a quantum dot and thereby its light-emitting properties. One implication of these changes is the realization of the regime of local charge neutrality of the emitting “exciton” state, which greatly reduces its coupling to lattice vibrations and fluctuating electrostatic environment, key to suppressing fluctuations in the emitted spectrum. An additional benefit of the modified electronic structures is dramatic narrowing of the emission linewidth, which becomes smaller than the room-temperature thermal energy.

Project members: Young-Shin Park (Research Scientist, LANL & UNM), Jaehoon Lim (Postdoctoral Research Associate), Victor I. Klimov (Laboratory Fellow, Project Leader).

Funding: Single-dot spectroscopic studies were funded by the U.S. Department of Energy’s Office of Science. The work on quantum dot synthesis was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.