New biosensor designed to detect toxins and more

Portable device can differentiate among bacteria, viruses, and other biothreats

June 7, 2021

Placeholder Image
PEGASUS, the Portable EnGineered Analytic Sensor with aUtomated Sampling, is a miniaturized waveguide-based optical sensor that can detect toxins, bacterial signatures, viral signatures, biothreats, white powders and more, from samples such as blood, water, CSF, food, and animal samples.
Placeholder Image

A device from Los Alamos National Laboratory researchers is not quite the Star Trek “tricorder” medical scanner, but it’s a step in the right direction. The Portable EnGineered Analytic Sensor with aUtomated Sampling (PEGASUS) is a miniaturized waveguide-based optical sensor that can detect toxins, bacterial signatures, viral signatures, biothreats, white powders and more, from samples such as blood, water, CSF, food, and animal samples.

“The ability to detect pathogens, biological threats or toxins, quickly and accurately, without prior knowledge of the agent, would lead to improved human and environmental health outcomes,” said lead researcher Harshini Mukundan. “This is an important step toward understanding what an emergency responder is dealing with, and providing them with quick results.”

 PEGASUS does not require trained personnel or laboratory equipment to operate, which means it can be used easily in remote areas of the world. It can discriminate between bacterial and viral signatures, allowing for the proper choice of treatment, which should improve health outcomes of patients and decrease the spread of antimicrobial resistance, Mukundan said.

The sensor includes an integrated sample-processing device with minimal hands-on steps, aimed at ensuring every sample is of the quality needed for detection. “It can help to solve the problem of misidentification of biomolecules, especially in the field, allowing us to be prepared for any potential outbreak or biothreat event,” said Mukundan.

“We are hoping for broad uses for this device,” Mukundan continued. “It can be used to detect bacterial infections in humans or animals, or outbreaks in the food supply, identify white powders, detect the presence of specific viruses in humans, animals, food, or water, identify potential biothreat agents, and more. For example, our technology can rapidly detect infection in a doctor’s office, a remote clinic, or a laboratory. In the case of bacterial infections, it can discriminate between Gram-positive, -negative, and indeterminate sources, without prior knowledge of the infection type, in 15-30 minutes,” she said. For such infections, once the class of bacteria is known, appropriate treatments can be chosen which will result in important benefits for the patient’s recovery. In addition, knowing the exact bacterium involved can also reduce the prescribing of broad-spectrum antibiotics, which can lead to the evolution of antibiotic-resistant organisms.

https://www.youtube.com/watch?v=SHfipRbOjbE

> Learn more about the PEGASUS biosensor here



Share
More In This Issue
Virtual festival boosts middle-schoolers’ math confidenceSubcontractor forums reach out to regional businessesLaboratory employees pledge more than $370,000 for scholarshipsAll Stories

More Community Connections Stories

Community Connections Home