Higgs Boson Distributions from Effective Field Theory

Sonny Mantry
University of Wisconsin at Madison
NPAC Theory Group
PHENO Group

In Collaboration with Frank Petriello

Santa Fe Workshop 2010, LANL, July, 6th, 2010
Outline

- Introductory Remarks
- Collins-Soper-Sterman Approach
- Effective field theory Approach

- Factorization and resummation formula:

\[
\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j
\]

- Numerical Results and Comparison with Data for Z-production
- Conclusions
The Higgs boson is the last missing piece of the SM.

Search strategy complicated by decay properties:

- Typically there are three search regions:
 - (i) $90 \, \text{GeV} < M_H < 130 \, \text{GeV}$,
 - (ii) $130 \, \text{GeV} < M_H < 2 \cdot M_{Z^0}$,
 - (iii) $2 \cdot M_{Z^0} < M_H < 800 \, \text{GeV}$.

Search strategies vary in different mass regions.
Higgs Search at the LHC

- For the Higgs mass range:
 \[130 \text{ GeV} < m_h < 180 \text{ GeV} \]
- Higgs search channel:
 \[gg \rightarrow h \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}. \]
- Large backgrounds from:
 \[pp \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow \ell^+\nu\ell^-\bar{\nu} + \text{jets} \]
- Background elimination requires jet vetoes:
 \[\text{veto events with jets of } p_T > 20 \text{ GeV} \]

<table>
<thead>
<tr>
<th>LHC 14 TeV</th>
<th>Accepted event fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>reaction (pp \rightarrow X)</td>
<td>(\sigma \times BR^2) [pb]</td>
</tr>
<tr>
<td>(pp \rightarrow H \rightarrow W^+W^- \ (m_H = 170 \text{ GeV}))</td>
<td>1.24</td>
</tr>
<tr>
<td>(pp \rightarrow W^+W^-)</td>
<td>7.4</td>
</tr>
<tr>
<td>(pp \rightarrow t\bar{t} \ (m_t = 175 \text{ GeV}))</td>
<td>62.0</td>
</tr>
<tr>
<td>(pp \rightarrow Wtb \ (m_t = 175 \text{ GeV}))</td>
<td>(\approx 6)</td>
</tr>
</tbody>
</table>

Jet Veto enhances signal to background ratio

(Dittmar, Dreiner)
Higgs low p_T Restriction

$pp \rightarrow h + X$

• We restrict the transverse momentum of the Higgs:

\[m_h \gg p_T \gg \Lambda_{QCD} \]

• Such p_T restrictions can be studied for any color neutral particle. We use Higgs production as an illustrative example.
LHC is a complicated environment!

- Proton structure
- soft, collinear radiation
- underlying events
- hadronization
- hard interactions
- multiple scale physics

• How do we make sense of this environment?

Factorization!
Factorization

\[d\sigma = \sum_{i,j} d\sigma_{ij}^{\text{part}} \otimes f_i(\xi_a) \otimes f_j(\xi_b) \]

- Separates perturbative and non-perturbative scales.
- Turns perturbative calculations into a predictive framework in the complicated collider environment.
- Factorization is not obvious and often difficult to prove. Few theorems exist for hadron colliders.
Resummation

- Fully inclusive Drell-Yan:

\[d\sigma = \sum_{i,j} d\sigma_{ij}^{\text{part}} \otimes f_i(\xi_a) \otimes f_j(\xi_b) \]

Lives at the hard scale. Live at non-perturbative scale.

- Large logarithms of hard and non-perturbative scales arise. Resummation needed.

- Resummation done by evaluating PDFs at the hard scale after renormalization group running (DGLAP).
In the presence of final state restrictions:

\[d\sigma = \sum_{i,j} d\sigma_{ij}^{\text{part}} \otimes f_i(\xi_a) \otimes f_j(\xi_b) \]

- Multiple disparate scales involved.
- Live at non-perturbative scale.
- Additional resummation needed.

The low transverse momentum distribution in Drell-Yan is such an example.
Why do logs arise from final state restrictions?

- Recall fully inclusive electron-positron annihilation.

- Incomplete cancellation of IR divergences in presence of final state restrictions gives rise to large logarithms of restricted kinematic variable.

Infrared Safety!
Low pT Region

• The schematic perturbative series for the pT distribution for $pp \rightarrow h + X$

$$\frac{1}{\sigma} \frac{d\sigma}{dp_T^2} \simeq \frac{1}{p_T^2} \left[A_1 \alpha_s \ln \frac{M^2}{p_T^2} + A_2 \alpha_s^2 \ln^3 \frac{M^2}{p_T^2} + \ldots + A_n \alpha_s^n \ln^{2n-1} \frac{M^2}{p_T^2} + \ldots \right]$$

Large Logarithms spoil perturbative convergence

• Resummation of large logarithms required.

• Resummation has been studied in great detail in the Collins-Soper-Sterman formalism.

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Ladinsky, Yuan; Fai, Zhang; Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini,)
Collins-Soper-Sterman Formalism
CSS Formalism

\[A(P_A) + B(P_B) \rightarrow C(Q) + X, \quad C = \gamma^*, W^\pm, Z, h \]

- The transverse momentum distribution in the CSS formalism is schematically given by:

\[
\frac{d\sigma_{AB\rightarrow CX}}{dQ^2 \ dy \ dQ_T^2} = \frac{d\sigma^{(\text{resum})}_{AB\rightarrow CX}}{dQ^2 \ dy \ dQ_T^2} + \frac{d\sigma^{(Y)}_{AB\rightarrow CX}}{dQ^2 \ dy \ dQ_T^2}
\]

- Most singular contribution

- Soft or collinear pT emission

- Back to Back hard jets
CSS Formalism

Focus of this talk

\[
\frac{d\sigma_{AB\rightarrow CX}}{dQ^2 \, dy \, dQ^2_T} = \frac{d\sigma^{(\text{resum})}_{AB\rightarrow CX}}{dQ^2 \, dy \, dQ^2_T} + \frac{d\sigma^{(Y)}_{AB\rightarrow CX}}{dQ^2 \, dy \, dQ^2_T}
\]

- Singular as at least \(Q_T^{-2}\) as \(Q_T \rightarrow 0\)

- Important in region of small \(Q_T\).

- Treated with resummation.

- Less Singular terms.

- Important in region of large \(Q_T\).
CSS Formalism

- The CSS resummation formula takes the form:

\[
\frac{d^2\sigma}{dp_T\,dY} = \sigma_0 \int \frac{d^2b_\perp}{(2\pi)^2} e^{-i\vec{p}_T\cdot\vec{b}_\perp} \sum_{a,b} \left[C_a \otimes f_{a/P} \right] (x_A, b_0/b_\perp) \left[C_b \otimes f_{b/P} \right] (x_B, b_0/b_\perp)
\]

\[
\times \exp \left\{ \int_{b_0^2/b_\perp^2}^{\hat{Q}^2} \frac{d\mu^2}{\mu^2} \left[\ln \frac{\hat{Q}^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right] \right\} \cdot \text{Sudakov Factor}
\]

Coefficients with well defined perturbative expansions
The CSS resummation formula takes the form:

\[
\frac{d^2 \sigma}{dp_T \, dY} = \sigma_0 \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-i \vec{p}_T \cdot \vec{b}_\perp} \sum_{a,b} \left[C_a \otimes f_a/P \right] (x_A, b_0/b_\perp) \left[C_b \otimes f_b/P \right] (x_B, b_0/b_\perp) \\
\times \exp \left\{ \int_{b_0^2/b_\perp^2} \frac{d\mu^2}{\mu^2} \left[\ln \frac{\hat{Q}^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right] \right\}.
\]

PDF

Perturbatively calculable

Sudakov Factor

Coefficients with well defined perturbative expansions

Landau Pole
CSS Formalism

\[
\frac{d^2 \sigma}{dp_T dY} = \sigma_0 \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-ip_T \cdot \vec{b}_\perp} \sum_{a,b} [C_a \otimes f_{a/P}](x_A, b_0/b_\perp) [C_b \otimes f_{b/P}](x_B, b_0/b_\perp) \\
\times \exp \left\{ \int_{\hat{Q}_0^2 / \mu_0^2}^{\hat{Q}_2^2 / \mu_2^2} \frac{d\mu^2}{\mu^2} \left[\ln \frac{\hat{Q}^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right] \right\}.
\]

- Landau pole appears for ANY pT.
CSS Formalism

\[
\frac{d^2 \sigma}{dp_T \, dY} = \sigma_0 \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-i\vec{p}_T \cdot \vec{b}_\perp} \sum_{a,b} \left[C_a \otimes f_{a/P} (x_A, b_0/b_\perp) \right] \left[C_b \otimes f_{b/P} (x_B, b_0/b_\perp) \right] \times \exp \left\{ \int_0^{\hat{Q}^2} \frac{d\mu^2}{\mu^2} \left[\ln \frac{\hat{Q}^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right] \right\}.
\]

- **Landau pole** appears for ANY pT.
- **Landau pole** must be treated with a **model dependent prescription**.

(Collins, Soper, Sterma; Kulesza, Laenen, Vogelsang; Qiu, Zhang,...)
CSS Formalism

\[\frac{d^2 \sigma}{dp_T dY} = \sigma_0 \int \frac{d^2 b_\perp}{(2\pi)^2} e^{-i\vec{p}_T \cdot \vec{b}_\perp} \sum_{a,b} \left[C_a \otimes f_{a/P} \right] (x_A, b_0/b_\perp) \left[C_b \otimes f_{b/P} \right] (x_B, b_0/b_\perp) \]

\[\times \exp \left\{ \int_{\hat{Q}^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left[\ln \frac{\hat{Q}^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right] \right\} . \]

- Landau pole appears for ANY pT.
- Landau pole must be treated with a model dependent prescription.
- Obtaining a smooth transition from low to high pT is typically plagued with problems due to prescription dependence of resummed result.

(Collins, Soper, Sterma; Kulesza, Laenen, Vogelsang; Qiu, Zhang,...)
EFT Approach
EFT framework

• The low transverse momentum distribution is affected by physics at the scales:

\[m_h \gg p_T \gg \Lambda_{QCD} \]

• Hierarchy of scales suggests EFT approach with well defined power counting.

• The most singular pT emissions recoiling against the Higgs are soft and collinear emissions whose dynamics may be addressed in Soft-Collinear Effective Theory (SCET).
EFT framework

\[\text{QCD}(n_f = 6) \rightarrow \text{QCD}(n_f = 5) \rightarrow \text{SCET}_{pT} \rightarrow \text{SCET}_{\Lambda_{QCD}} \]

Top quark integrated out.

Matched onto SCET.

Soft-collinear factorization.

Matching onto PDFs.
EFT framework

\[\text{QCD}(n_f = 6) \rightarrow \text{QCD}(n_f = 5) \rightarrow \text{SCET}_{p_T} \rightarrow \text{SCET}_{\Lambda_{QCD}} \]

Top quark integrated out.

Matched onto SCET.

Soft-collinear factorization.

Matching onto PDFs.

Newly defined objects describing soft and collinear pT emissions
SCET Factorization Formula

- Factorization formula derived in SCET in schematic form:

\[
\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j
\]

- Hard function.
- Transverse momentum function.
- PDFs.
- Sums logs of m_h/p_T
- Evaluated at p_T scale.
- RG evolved to p_T scale

- All objects are field theoretically defined.
- Large logarithms are summed via RG equations in EFTs.
- Formulation is free of Landau poles.
Integrating out the top

- Leading term in the Higgs effective interaction with Gluons:

\[
\mathcal{L}_{m_t} = C_{GGh} \frac{h}{V} G^\alpha_{\mu\nu} G^{\alpha}_{\mu\nu}, \quad C_{GGh} = \frac{\alpha_s}{12\pi} \left\{ 1 + \frac{11}{4} \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}
\]

Two loop result for Wilson coefficient.

(Chetyrkin, Kniehl, Kuhn, Schroder, Steinhauser, Sturm)
Matching onto SCET

• Matching equation:

\[O_{QCD} = \int d\omega_1 \int d\omega_2 \ C(\omega_1, \omega_2) \ O(\omega_1, \omega_2) \]

• Effective SCET operator:

\[O(\omega_1, \omega_2) = g_{\mu\nu} h \ T \{ \text{Tr} \left[S_n (g B_{n\perp}^\mu) \omega_1 S_n^\dagger S_{\bar{n}} (g B_{\bar{n}\perp}^\nu) \omega_2 S_{\bar{n}}^\dagger \right] \} \]

Soft and Collinear emissions build into Wilson lines determined by soft and collinear gauge invariance of SCET.
• **SCET differential cross-section:**

\[
\frac{d^2\sigma}{du\,dt} = \frac{1}{2Q^2} \left[\frac{1}{4} \right] \int \frac{d^2 p_{h\perp}}{(2\pi)^2} \int \frac{dn\cdot p_h d\vec{n}\cdot p_h}{(2\pi)^2} (2\pi)^2 \theta(n\cdot p_h + \vec{n}\cdot p_h) \delta(n\cdot p_h p_h - \vec{p}_{h\perp} - m_h^2) \\
\times \delta(u - (p_2 - p_h)^2) \delta(t - (p_1 - p_h)^2) \sum_{\text{initial pols.}} \sum_X |C(\omega_1, \omega_2) \otimes \langle h_{X_n X_{\bar{n}} X_s} | O(\omega_1, \omega_2) | pp \rangle|^2 \\
\times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - P_{X_n} - P_{X_{\bar{n}}} - P_{X_s} - p_h),
\]

• **Schematic form of SCET cross-section:**

\[
\frac{d^2\sigma}{dp_T^2 dY} \sim \int PS |C \otimes \langle O \rangle|^2
\]

Phase space integrals. \hspace{1cm} Hard matching coefficient. \hspace{1cm} SCET matrix element.

Factorize using soft-collinear decoupling
Factorization in SCET

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim \int PS \left| C \otimes \langle O \rangle \right|^2 \]

Factorize cross-section using soft-collinear decoupling in SCET

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes B_n \otimes \bar{B}_n \otimes S \]

Hard matching coefficient squared

Decoupled collinear and soft functions
Factorization in SCET

\[
\frac{d^2\sigma}{dp_T^2dY} \sim H \otimes B_n \otimes B_{\bar{n}} \otimes S
\]

Hard function
Impact-parameter Beam Functions (iBFs)
Soft function

Physics of hard scale. Sums logs of mh/pT.
Describes collinear pT emissions
Describes soft pT emissions
Factorization in SCET

- Factorization formula in full detail:

\[
\frac{d^2 \sigma}{du \, dt} = \frac{(2\pi)^2}{(N_c^2 - 1)^2 \lambda_2} \int dp_h^+ dp_h^- \int d^2 k_{h\perp} \int d^2 b_{\perp} \frac{e^{-i k_{h\perp} \cdot b_{\perp}}}{(2\pi)^2} \delta \left[u - m_h^2 + Q p_h^- \right] \delta \left[t - m_h^2 + Q p_h^+ \right] \delta \left[p_h^+ p_h^- - k_{h\perp}^2 - m_h^2 \right] \int d\omega_1 d\omega_2 |C(\omega_1, \omega_2, \mu)|^2 \\
\times \int dk_n^+ dk_{-n}^- B_{n}^{\alpha \beta}(\omega_1, k_n^+, b_{\perp}, \mu) B_{\bar{n}\alpha \beta}(\omega_2, k_{-n}^-, b_{\perp}, \mu) S(\omega_1 - p_h^- - k_{-n}^-, \omega_2 - p_h^+ - k_n^+, b_{\perp}, \mu)
\]

- iBFs and soft functions field theoretically defined as the Fourier transform of:

\[
J_n^{\alpha \beta}(\omega_1, x^-, x_{\perp}, \mu) = \sum_{\text{initial pols.}} \langle p_1 | [g B_{1n\perp \beta}^A(x^-, x_{\perp}) \delta(\vec{P} - \omega_1) g B_{1n\perp \alpha}^A(0)] | p_1 \rangle
\]

\[
J_{\bar{n}}^{\alpha \beta}(\omega_1, y^+, y_{\perp}, \mu) = \sum_{\text{initial pols.}} \langle p_2 | [g B_{1n\perp \beta}^A(y^+, y_{\perp}) \delta(\vec{P} - \omega_2) g B_{1n\perp \alpha}^A(0)] | p_2 \rangle
\]

\[
S(\zeta, \mu) = \langle 0 | \bar{T} \left[\text{Tr} \left(S_{\bar{n}} T^D S_{\bar{n}}^\dagger S_n T^C S_n^\dagger \right)(\zeta) \right] T \left[\text{Tr} \left(S_n T^C S_n^\dagger S_{\bar{n}} T^D S_{\bar{n}}^\dagger \right)(0) \right] | 0 \rangle.
\]
Factorization in SCET

We are here

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes \tilde{B}_n \otimes \tilde{B}_{\bar{n}} \otimes S^{-1} \]

iBFs are proton matrix elements and sensitive to the non-perturbative scale

- The iBFs are matched onto PDFs to separate the perturbative and non-perturbative scales:

\[\tilde{B}_n = I_{n,i} \otimes f_i, \quad \tilde{B}_{\bar{n}} = I_{\bar{n},j} \otimes f_j \]
• iBF is matched onto the PDF with matching coefficient defined as:

\[\tilde{B}_{\alpha\beta}^n(z, t^n, b_\perp, \mu) = -\frac{1}{z} \sum_{i=g,q,\bar{q}} \int_0^1 \frac{dz'}{z'} \mathcal{I}^{\alpha\beta}_{n;i,g,i} \left(\frac{z}{z'}, t^n, b_\perp, \mu \right) f_{i/P}(z', \mu) \]

• The PDF is known to be scaleless and defined as:

\[f_{g/P}(z, \mu) = \frac{-z\bar{n} \cdot p_1}{2} \sum_{\text{spins}} \langle p_1 | \left[\text{Tr} \left\{ B^\mu_\perp(0) \delta(\vec{P} - z\bar{n} \cdot p_1) B^\mu_\perp(0) \right\} \right] | p_1 \rangle. \]

• The matching coefficient is given by:

\[\mathcal{I}^{\beta\alpha}_{n;g,i} \left(\frac{z}{z'}, t^n, b_\perp, \mu \right) = -z \left[\tilde{B}_{\alpha\beta}^n \left(\frac{z}{z'}, z't^n, b_\perp, \mu \right) \right] \text{finite part in dim-reg} \]
Factorization in SCET

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes \tilde{B}_n \otimes \tilde{B}_{\bar{n}} \otimes S^{-1} \]

- After matching the iBFs to the PDFs we get:

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes [I_n,i \otimes f_i] \otimes [I_{\bar{n}},j \otimes f_j] \otimes S^{-1} \]

- Group the perturbative pT scale functions into transverse momentum dependent function(TMF):

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes [I_n \otimes I_{\bar{n}} \otimes S^{-1}] \otimes f_i \otimes f_j \]

We are here

Hard function Transverse momentum dependent function(TMF) PDFs
Factorization Formula

- Factorization formula in full detail:

\[
\frac{d^2 \sigma}{dp_T^2 \, dY} = \frac{\pi^2}{4(N_c^2 - 1)^2 Q^2} \int_0^1 \frac{dx_1}{x_1} \int_0^1 \frac{dx_2}{x_2} \int_0^1 \frac{dx_1'}{x_1'} \int_0^1 \frac{dx_2'}{x_2'} \times H(x_1, x_2, \mu_Q; \mu_T) G^{ij}(x_1, x_1', x_2, x_2', p_T, Y, \mu_T) f_{i/P}(x_1', \mu_T) f_{j/P}(x_2', \mu_T)
\]

Hard function. Transverse momentum function. PDFs.

- The transverse momentum function is a convolution of the iBF matching coefficients and the soft function:

\[
G^{ij}(x_1, x_1', x_2, x_2', p_T, Y, \mu_T) = \int dt^+_n \int dt^-_n \int \frac{d^2 b_\perp}{(2\pi)^2} J_0(|\vec{b}_\perp|p_T)
\times \mathcal{I}^{\beta\alpha}_{n:g,i}(\frac{x_1}{x_1'}, \frac{t^+_n}{t^-_n}, b_\perp, \mu_T) \mathcal{I}^{\beta\alpha}_{n:g,j}(\frac{x_2}{x_2'}, \frac{t^-_n}{t^+_n}, b_\perp, \mu_T)
\times S^{-1}(x_1 Q - e^Y \sqrt{p_T^2 + m_h^2 - \frac{t^-_n}{Q}}, x_2 Q - e^{-Y} \sqrt{p_T^2 + m_h^2 - \frac{t^+_n}{Q}}, b_\perp, \mu_T)
\]
Fixed order and Matching Calculations
One loop Matching onto SCET

\[O_{QCD} = \int d\omega_1 \int d\omega_2 \, C(\omega_1, \omega_2) \, O(\omega_1, \omega_2) \]

\[C(\vec{n} \cdot \hat{p}_1 \vec{n} \cdot \hat{p}_2, \mu) = \frac{c \vec{n} \cdot \hat{p}_1 \vec{n} \cdot \hat{p}_2}{v} \left\{ 1 + \frac{\alpha_s}{4\pi} C_A \left[\frac{11}{2} + \frac{\pi^2}{6} - \ln^2 \left(-\frac{\vec{n} \cdot \hat{p}_1 \vec{n} \cdot \hat{p}_2}{\mu^2} \right) \right] \right\} \]

(Ahrens, Becher, Neubert, Yang; Harlander)
iBFs

- Definition of the iBF:

\[
\tilde{B}^{\alpha\beta}_{n}(x_1, t_1^+, b_\perp, \mu) = \int \frac{db^-}{4\pi} e^{i \frac{t_1^+ b^-}{Q}} \sum_{\text{initial pols. } X_n} \langle p_1 | [g B^A_{1n\perp\beta}(b^-, b_\perp) | X_n \rangle \\
\times \langle X_n | \delta(\bar{P} - x_1 \bar{n} \cdot p_1) g B^A_{1n\perp\alpha}(0) | p_1 \rangle,\]

One loop graphs
Soft function

• Soft function definition:

\[S(z) = \langle 0 | \text{Tr} \left(\bar{T} \{ S_n T^D S_n^\dagger S_n T^C S_n^\dagger \} \right) (z) \text{Tr} \left(T \{ S_n T^C S_n^\dagger S_n T^D S_n^\dagger \} \right) (0) | 0 \rangle \]
Running
Running

- Factorization formula:

\[
\frac{d^2\sigma}{dp_T^2 dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j
\]

- Schematic picture of running:

\[H \]

SCET Running

\[G^{ij} \]

DGLAP Running

\[f_i, f_j \]

\[\Lambda_{QCD} \]

\[\mu_Q \sim m_h \]

\[\mu_T \sim p_T \]
Running

• Factorization formula:

\[\frac{d^2 \sigma}{dp_T^2 dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j \]

• Schematic picture of running:

\[\Lambda_{QCD} \]

All objects evaluated at \(p_T \) scale. No Landau pole!

\[\mu_Q \sim m_h \]

\[\mu_T \sim p_T \]

SCET Running

DGLAP Running
Limit of very small p_T

- We derived a factorization formula in the limit:

$$m_h \gg p_T \gg \Lambda_{QCD}$$

- For smaller values of p_T, one can introduce a non-perturbative model for the transverse momentum function:

$$\frac{d^2\sigma}{dp_T^2dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j$$

Hard function.

Transverse momentum function.

Can make non-perturbative model

Field theoretically defined object

PDFs.

Scale dependence and running known
Numerical Results
(Preliminary: To appear soon)
• Prediction for Higgs boson p_T distribution.
Z-production: Comparison with Data

Preliminary

- Excellent agreement with data.
- The result is free of any ‘prescriptions’ and derived entirely in QFT.
Conclusions

• Derived factorization formula for the Higgs/Drell-Yan transverse momentum distribution in an EFT approach:

\[
\frac{d^2\sigma}{dp_T^2 dY} \sim H \otimes G^{ij} \otimes f_i \otimes f_j
\]

• Resummation via RG equations in EFTs.

• Formulation is free of Landau poles and prescription independent.

• Limit of very small pT described by an additional field theoretically defined non-perturbative pT dependent function.

• Formalism applies to the pT distribution of any other color neutral particles