Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Zhiming Lu

Zhiming Lu

Phone (505) 665-2126


  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Mathematics
  • Algorithms
  • Computational fluid dynamics (CFD)
  • Monte Carlo methods
  • Subsurface flow simulation
  • Multiscale-multiphase-multicomponent subsurface reactive flows
  • Applied Math
  • Uncertainty quantification
  • Uncertainty analysis
  • Computer and Computational Sciences
  • High performance computing
  • Earth and Space Sciences
  • Subsurface flow and transport
  • Hydrology
  • Information Science and Technology
  • Uncertainty quantification (UQ)
  • Latin hypercube sampling (LHS)
  • Computational Physics and Applied Mathematics
  • Sensitivity analysis
  • Stochastic simulations
  • Level set methods
  • Earth and Space Sciences
  • Inverse modeling
  • Model calibration
  • FEHM: Finite-Element Heat and Mass-Transfer
  • Oil and gas reservoir simulations
  • Subsurface energy applications risk analysis


  1. Sensitive analysis of flow to model shape parameters.
    • Sensitivity to material interfaces;
    • Sensitivity to model domain or boundary locations.
  2. Quantifying flow and transport in randomly heterogeneous porous media
    • Probability collocation methods;
    • Flow in multimodal heterogeneous porous media;
    • Analytical solutions for saturated and unsaturated flow;
    • Efficient and accurate, KL-based moment equation methods (KLME);
    • Analytical solutions to ergodic/non-ergodic transport in bounded domains;
    • Quantifying moments of permeability with uncertain material interfaces;
    • Uncertainty due to uncertain boundary locations and material interfaces.
  3. Inverse modeling
    • Markov Chain Monte Carlo method (MC 2);
    • Data assimilation using the KL-based Karman Filter method (KLKF);
    • Field-scale inverse modeling with Amanzi simulator on HPC platform;
    • Identifying subsurface zonation structure and permeability using the level set method
  4. Upscaling of heterogeneous porous media
    • Uncertainty of effective parameters.
    • Scale-dependent flow & transport parameters;
    • Effective permeability of random fracture networks;
    • Effective permeability of statistically homogeneous porous media;
  5. Simulations of rare events using importance sampling methods
    • Estimating the probability of contaminant reaching an area of interest (i.e, city limit).


PhD., Hydrology, University of Arizona, 2000

M. S., Applied Earth Sciences, specializing in Geomathematics, 1995

M. S., Geology, Zhejiang University, 1985

B. S., Mathematics, major in Statistics, Zhejiang University, 1982.


LANL Positions

2002-present, Staff Scientist

2000-2002, Post-doc 


Professional Societies

American Geophysical Union

American Geological Society



2001 AGU Editors’ Citation for Excellence in Scientific Refereeing for Water Resource Research



Google Scholars: https://scholar.google.com/citations?user=OoI_pwIAAAAJ&hl=en
<div itemscope itemtype="https://schema.org/Person"><a itemprop="sameAs" content="https://orcid.org/0000-0001-5800-3368" href="https://orcid.org/0000-0001-5800-3368" target="orcid.widget" rel="noopener noreferrer" style="vertical-align:top;"><img src="https://orcid.org/sites/default/files/images/orcid_16x16.png" style="width:1em;margin-right:.5em;" alt="ORCID iD icon">orcid.org/0000-0001-5800-3368</a></div>
  1. Kwicklis, E. Z. Lu, R. Middleton, T. Miller, S. Bourret, and K. Birdsell. 2019. Numerical evaluation of unsaturated-zone flow and transport pathways at Rainer Mesa, Nevada. Vadose Zone Journal. 18:190005. Doi:10.2136/vzj2019.01.0005
  2. Lu, Z. , V. V. Vesselinov, and H. Lei (2018). Identifying arbitrary parameter zonation using multiple level set functions Journal of Computational Physics, 364,  257–273.
  3. Lu, Z. (2018). Sensitivity analysis of hydraulic head to locations of model boundariesWater Resources Research, 54, https://doi.org/10.1002/2017WR021955.
  4. Hansen, S. K., V. V. Vesselinov, P. W. Reimus, and Z. Lu (2017). Inferring subsurface heterogeneity from push-drift tracer testsWater Resources. Research, 53, doi:10.1002 /2017WR020852.
  5. Ma, T., C. Li, and Z. Lu (2016). Geographical environment determinism for discovery of mineral deposits, Journal of Geochemical Exploration, 168, 163–168.
  6. Lu, Z. and V. V. Vesselinov (2015), Analytical sensitivity of transient groundwater flow in a bounded model domain using the adjoint methodWater Resources Research, 10.1002 /2014WR016819.
  7. Ma, T., C. Li, Z. Lu, and Q. Bao (2015), Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, ChinaGeomorphology, 245, 193-206.
  8. Ma, T., C. Li, and Z. LuEstimating the average concentration of minor and trace elements in surficial sediments using fractal methodsJ. Geochemical Exploration, 139, 207-216, 2014.
  9. Ma, T., C. Li, Z. Lu, and B. Wang, An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall levelGeomorphology, 216, 187-192, 2014.
  10. Dai, Z. P. H. Stauffer, J. W. Carey, R. S. Middleton, Z. Lu, J. F. Jacobs, K. Hnottavange-Telleen, and L. H. Spangler (2014), Pre-site characterization risk analysis for commercial-scale carbon sequestrationEnviron. Sci. & Tech., 48, 3908-3915. .
  11. Chen, M., Y. Sun, P. Fu, C. R. Carrigan, Z. Lu,, C. H. Tong, and Th. A. Buscheck, Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networksComputers and Geosciences, 58, 69-79, 2013.
  12. Sun, Y. A., M. Zeidouni, J.-P. Nicot,Z. Lu, and D. Zhang, Assessing Leakage Detectability at Geologic CO2 Sequestration Sites Using the ProbabilisticAdvances in Water Resources, 56, 49-60, 2013.
  13. Deng, H., Z. Dai, A. V. Wolfsberg, M. Ye, P. H. Stauffer,Z. Lu, and W. Kwicklis, Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies Chemosphere, 91(3), 248-257, 2013.
  14. Lu, Z., and Edward M. Kwicklis, Numerical evaluation of effective unsaturated hydraulic properties of fractured rocks using a stochastic continuum approach,Vadose Zone Journal, doi:10.2136/vzj2011.0164, 2012.
  15. Robinson B. A.,Z. Lu, and D. Pasqualini, Simulating solute transport in porous media using model reduction techniquesApplied Mathematics, 3, 1161-1169, doi:10.4236 /am.2012.310170, 2012.
  16. Robinson B. A., S. Chu, and Z. LuSimulation of radionuclide transport through unsaturated fractured rock: Application to Yucca Mountain, NevadaVadose Zone Journal, doi:10.2136/ vzj2011.0142, 2012.
  17. Stauffer, P. H., and Lu, Z.Quantifying transport uncertainty in unsaturated rock using Monte Carlo sampling of retention curvesVadose Zone Journal, doi:10.2136/vzj2011.0171, 2012.
  18. Lu, Z., and P. H. Stauffer, On estimating functional average breakthrough curve using time-warping technique and perturbation approachWater Resources Research, 48, W05541, doi:10.1029/2011WR011506, 2012.
  19. Lu, Z., A. Wolfsberg, Z. Dai, and C. Zheng Characteristics and controlling factors of dispersion in bounded, randomly heterogeneous porous mediaWater Resources Research,46, W12508, doi:10.1029/2009WR008392, 2010.
  20. Chang, H, D. Zhang, and Lu, Z.History matching of facies distribution with the EnKF and level set parameterizationJournal of Computational Physics, 229, 8011-8030, 2010.
  21. Deng, H., Z. Dai, A. Wolfsberg, Lu, Z., M. Ye, and P. Reimus, Upscaling sorption coefficient for fractured rocks with multimodal reactive mineral faciesWater Resources Research, 46, W06501, doi:10.1029/2009WT008363, 2010.
  22. Li, W., Z. Lu, and D. Zhang, Stochastic analysis of unsaturated flow with probabilistic collocation method,Water Resour. Res., 45, W08425, doi:10.1029/2008WR007530, 2009.
  23. Dai, Z., A. Wolfsberg, Z. Lu, amd H. Deng, Scale dependence of sorption coefficients for contaminant transport in saturated fractured rockGeophys. Res. Lett., 36, L01403, dod:10.1029/2008GL036516, 2009.
  24. Li, C., Z. Lu, T. Ma, and X. Zhu, A simple kriging method incorporating multiscale measurements in geochemical surveysJournal of Geochemical Exploration, 101, 147-154, 2009.
  25. Chen, M., A. Keller, and Z. Lu,, Stochastic analysis of transient three-phase flow in heterogeneous porous mediaStochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-007-0198-y, 2007.
  26. Dai, Z., A. Wolfsberg, Lu, Z., and B. Ritzi, Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrixGeophysical Research Letter, 34, L20406, doi:10.1029/2007GL031608, 2007.
  27. Lu, Z., D. Zhang, and B. A. Robinson, Explicit analytical solutions for one-dimensional steady state flow in layered, heterogeneous unsaturated soils under random boundary conditionsWater Resource Research , 43, W09413, doi:10.1029/2005WR004795, 2007.
  28. Chen, M., Z. Lu, and G. A. Zyvoloski, Conditional simulations of transient water-oil flow in randomly heterogeneous porous mediaStochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-007-0178-2, 2007.
  29. Liu, G., Z. Lu, and D. Zhang, Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loeve based moment equation approachWater Resour. Res., 43, W07427, doi: 10.1029/2006WR005193, 2007.
  30. Lu, Z., and D. Zhang, Stochastic simulations for flow in nonstationary randomly heterogeneous media using a Karhunen-Loeve based moment-equation approach,SIAM Multiscale Model. Simul., 6(1), 228-245, 2007.
  31. Dai, Z., A. Wolfsberg, Z. Lu, and P. Reimus, Upscaling matrix diffusion coefficients for multimodal heterogeneous fractured rocksGeophysical Research Letters, 34, L07408, doi:10.1029/2007GL029332, 2007.
  32. Zhang, D., Z. Lu, , and Y. Chen, Dynamic reservoir data assimilation with an efficient, dimension-reduced Kalman filter SPE Journal , 12(1), 10.2118/95277-PA, 108-117, 2007.
  33. Liu, G., D. Zhang, and Z. Lu Stochastic uncertainty analysis for unconfined flow systemsWater Resources Research, 42, W09412, doi:10.1029/2005WR004766, 2006.
  34. Lu, Z., and B. Robinson, Parameter structure identification using the level set method, movie1, movie2, Geophys. Res. Letts., 33, L06404, doi:10.1029/2005GL025541, 2006.
  35. Lu, Z., and D. Zhang, Accurate, efficient quantification of uncertainty for flow in heterogeneous reservoirs using the KLME approachSPE Journal, 11(2), 10.2118/ 93452-PA, 239-247, 2006.
  36. Chen, M., A. A., Keller, D. Zhang, Z. Lu, and G. A. Zyvoloski, A stochastic analysis of transient two-phase flow in heterogeneous porous mediaWater Resources Research, 42, W03425, doi:10.1029/2005WR004257, 2006.
  37. Yuan, F, and Z. LuAnalytical solutions for vertical unsaturated flow in rooted soils with variable surface fluxesVadose Zone Journal, 4(4), 1210-1218, 2005.
  38. Robinson, B. A., G. Cole, J. M. Carey, M. Witkowski,C W. Gable, Z. Lu, and R. Gray, A vadose zone flow and transport model for Los Alamos Canyon, Los Alamos, New Mexico Vadose Zone Journal, 4(3), 729-943, 2005.
  39. Lu, Z. and D. Zhang, Analytical solutions of statistical moments for transient flow in two-dimensional bounded, randomly heterogeneous mediaWater Resources Research, 41, W01016, doi:10.1029/2004WR3389, 2005.
  40. Chen, M., D. Zhang, A.A. Keller, and Z. LuA stochastic analysis of steady state two-phase flow in heterogeneous media Water Resources Research, 41, W01016, doi:10.1029/2004WR003412, 2005.
  41. Lu, Z. , and D. Zhang, A comparative study on quantifying uncertainty of flow in heterogeneous media using Monte Carlo simulations, the conventional and the KL-based moment-equation approachesSIAM J. on Scientific Computing, 26(2), 558-577, 2004.
  42. Lu, Z. and D. Zhang, Conditional simulations of flow in randomly heterogeneous porous media using a KL-based moment-equation approachAdvances in Water Resources, 27(9), 859-874, 2004.
  43. Lu, Z. and D. Zhang, Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformationAdvances in Water Resources, 27(8), 775-784, 2004.
  44. Yang, J., D. Zhang, and Z. LuStochastic analysis of saturated-unsaturated flow in heterogeneous media by combining Karhunen-Loeve expansion and perturbation methodJ. of Hydrology, 294, 18-38, 2004.
  45. Zhang, D. and Lu, Z. Stochastic delineation of well capture zonesStochastic Envir. Res. and Risk Assessment, 18(1), 39-46, 2004.
  46. Zhang, D. and Lu, Z. An efficient, higher-order perturbation approach for flow in randomly heterogeneous porous media via Karhunen-Loeve decomposition,Journal of Computational Physics, 194(2), 773-794, 2004.
  47. Lu, Z. , and D. Zhang, On importance sampling Monte Carlo approach to flow and transport in heterogeneous geological formations, 26(11), 1177-1188, Advances in Water Resour. , 2003.
  48. Tartakovsky, D. M., Z. Lu, A. Guadagnini, and A. Tartakovsky, Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters,J. Hydrology, 275, 182-193, 2003.
  49. Lu, Z. , and D. Zhang, Stochastic studies of well capture zones in bounded heterogeneous mediaWater Resour. Res., 39(4), 1100, doi:10.1029/2002WR001633, 2003.
  50. Lu, Z. , and D. Zhang, Solute spreading in nonstationary flows in bounded heterogeneous saturated-unsaturated mediaWater Resour. Res., 39(3), 1049, doi:10.1029/2001WR000908,2003.
  51. Keating, E., V. Vesselinov, E. Kwicklis, and Z. LuCoupling large- and local-scale inverse models of the Espanola basinGround Water, 41, 200-211, 2003.
  52. Lu, Z. , and D. Zhang, On stochastic modeling of flow in multimodal heterogeneous formationsWater Resour. Res., 38(10), 1190, doi:10.1029/2001WR001026, 2002.
  53. Lu, Z. , and D. Zhang, Stochastic analysis of transient flow in heterogeneous variably saturated porous media: the van Genuchten-Mualem constitutive model,Vadose Zone Journal, 1, 137-149, 2002.
  54. Khaleel, R., T.-C. J. Yeh, and Z. LuUpscaled flow and transport properties for heterogeneous unsaturated mediaWater Resour. Res., 38(5), 1053, 10.1029/ 2000WR000072, 2002.
  55. Lu, Z. , S. P. Neuman, A. Guadagnini, and D. M., Tartakovsky, Conditional moment analysis of steady state unsaturated flow in bounded, randomly heterogeneous soilsWater Resour. Res., 38(4), 1038, 10.1029/2001WR000278, 2002.
  56. Zhang, D., and Z. LuStochastic analysis of flow in a heterogeneous unsaturated-saturated systemWater Resour. Res., 38(2), 1018, doi:10.1029/2001 WR000515, 2002.
  57. Tartakovsky, D. M., S. P. Neuman, and Z. LuConditional stochastic averaging of steady state unsaturated flow by means of Kirchhoff transformationWater Resour. Res., 35(3), 731-745, 1999.