Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Satish Karra

Satish Karra

Email
Phone (505) 606-1894

Capabilities

  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Coupled multi-physics simulations
  • Algorithms
  • Partial differential equations
  • Subsurface flow simulation
  • Multiscale-multiphase-multicomponent subsurface reactive flows
  • Applied Math
  • Uncertainty quantification
  • Network modeling
  • Earth and Space Sciences
  • Geophysics
  • Subsurface flow and transport
  • Hydrology
  • Computer and Computational Sciences
  • Machine learning,
  • Earth and Space Sciences
  • Sensor technology
  • Computer and Computational Sciences
  • High performance computing
  • Earth and Space Sciences
  • Earthquakes
  • PFLOTRAN
  • Information Science and Technology
  • Machine Learning
  • Network dynamics
  • Materials
  • Complex fluids
  • Nuclear Engineering and Technology
  • Nuclear waste disposition
  • Computational Physics and Applied Mathematics
  • Stochastic simulations
  • Earth and Space Sciences
  • Multi-scale, multi-phase subsurface flow simulations

Expertise

Karra's research is focused on modeling processes in porous media. Some of the modeling aspects include:  a) developing thermodynamically consistent constitutive models, b) developing robust numerical algorithms, c) performing realistic simulations using high-performance computing, c) reduced-order models development (e.g., using machine learning).

His current research is used in LANL's subsurface programs such as Arctic hydrology, hydraulic fracturing, used fuel disposition, enhanced geothermal systems, carbon sequestration and contaminant transport.

He is one of the developers of PFLOTRAN and RD100 winner dfnWorks.

Google Scholar

Bitbucket

Gitlab

Education

Ph.D., Mechanical Engineering, Texas A&M University, 2011.

M.S., Mechanical Engineering, Texas A&M University, 2007.

B.Tech., Mechanical Engineering, Indian Institute of Technology Madras, 2005.

 

LANL Positions

Staff Scientist (2013-present)

Postdoctoral Research Associate (2011-2013)

 

Awards


		

R&D100 Award for dfnWorks, 2017.

Los Alamos Awards Program (LAAP) award for Publication, Los Alamos National Laboratory, 2017.

Federal Laboratory Consortium for Technology Transfer Notable Technology Development Award for dfnWorks Software Suite, 2017.

Los Alamos Awards Program award (LAAP) in recognition of Outstanding Performance in Prototyping Three-dimensional Calculations and Visualizing of Gas Migration in Fractures Following a Subsurface Explosion, Los Alamos National Laboratory, 2016.

LDRD Early Career Award, Los Alamos National Laboratory, 2014.

Argonne Training Program on Extreme-Scale Computing (ATPESC) Scholar, 2013.

Honorable Mention Award, Postdoc Research Day, Los Alamos National Laboratory, 2012.

Outstanding Graduate Student Teaching Award, Texas A&M University, 2010.

Mechanical Engineering Graduate Fellowship, Texas A&M University, 2005-06.

Graduate Pool Graduate Fellowship, Texas A&M University, 2005-06.

 

 

Publications

Peer-reviewed articles

Published

1. D. T. Birdsell, S. Karra, and H. Rajaram. On the representation of the porosity-pressure relationship in general subsurface flow codes. Water Resources Research, 54, 2018

2. J. D. Hyman, J. W. Carey, S. Karra, C. W. Gable, H. S. Viswanathan, E. Rougier, and Z. Lei. Discontinuities in effective permeability due to fracture percolation. Mechanics of Materials, 119:25–33, 2018

3. M. Mudunuru, S. Karra, D. Harp, G. Guthrie, and H. Viswanathan. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems. Geothermics, 70:192–205, 2017 


4. S. K. Hansen, S. Pandey, S. Karra, and V. V. Vesselinov. CHROTRAN 1.0: A mathematical and computational model for in situ heavy metal remediation in heterogeneous aquifers. Geoscientific Model Development Discussions, 2017:1–24, 2017 


5. T. Hadgu, S. Karra, E. Kalinina, N. Makedonska, J. D. Hyman, K. Klise, H. S. Viswanathan, and Y. Wang. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. Journal of Hydrology, 553:59–70, 2017 


6. H. Djidjev, D. O’Malley, H. Viswanathan, J. Hyman, S. Karra, and G. Srinivasan. Learning on graphs for predictions of fracture propagation, flow and transport. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1532–1539, May 2017 


7. M. K. Mudunuru, S. Karra, N. Makedonska, and T. Chen. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(5):326–342, 2017 


8. J. Chang, S. Karra, and K. B. Nakshatrala. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies. Journal of Scientific Computing, 70(1):243–271, 2017 


9. S. K. Hansen, B. Berkowitz, V. V. Vesselinov, D. O’Malley, and S. Karra. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior. Water Resources Research, 52(12):9565–9585, 2016

10. N. Makedonska, J. D. Hyman, S. Karra, S. L. Painter, C. W. Gable, and H. S. Viswanathan. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Advances in Water Resources, 94:486–497, 2016 


11. G. Aldrich, J. D. Hyman, S. Karra, C. W. Gable, N. Makedonska, H. S. Viswanathan, J. Woodring, and B. Hamann. Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Transactions on Visualization and Computer Graphics, doi: 10.1109/TVCG.2016.2582174, 2016 


12. J. D. Hyman, G. Aldrich, H. S. Viswanathan, N. Makedonska, and S. Karra. Fracture length and transmissivity correlations: Implications for transport simulations in discrete fracture networks. Water Resources Research, 52(8):6472–6489, 2016 


13. J. D. Hyman, J. Jiménez-Martínez, H. S. Viswanathan, J. W. Carey, M. L. Porter, E. Rougier, S. Karra, Q. Kang, L. Frash, L. Chen, Z. Lei, D. O’Malley, and N. Makedonska. Understanding hydraulic fracturing: A multi-scale problem. Philosophical Transactions A, 374(2078), 2016 


14. M. Grasinger, D. O’Malley, V. Vesselinov, and S. Karra. Decision analysis for robust CO2 injection: Application of Bayesian-information-gap decision theory. International Journal of Greenhouse Gas Control, 49:73–80, 2016 


15. D. O’Malley, S. Karra, R. P. Currier, N. Makedonska, J. D. Hyman, and H. S. Viswanathan. Where does water go during hydraulic fracturing? Groundwater, 54(4):488–497, 2015 


16. R. S. Middleton, J. W. Carey, R. P. Currier, J. D. Hyman, Q. Kang, S. Karra, J. Jiménez-Martínez, M. L. Porter, and H. S. Viswanathan. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147(0):500 – 509, 2015 


17. N. Makedonska, S. L. Painter, Q. M. Bui, C. W. Gable, and S. Karra. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences, 19(5):1123–1137, 2015 


18. J. D. Hyman, S. L. Painter, H. S. Viswanathan, N. Makedonska, and S. Karra. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resources Research, 51(9):7289–7308, 2015 


19. S. Srinivasan and S. Karra. Flow of “stress power-law” fluids between parallel rotating discs with distinct axes. International Journal of Non-Linear Mechanics, 74(0):73 – 83, 2015 


20. S. Karra, N. Makedonska, H. S. Viswanathan, S. L. Painter, and J. D. Hyman. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resources Research, 51(10):8646–8657, 2015 


21. J. D. Hyman, S. Karra, N. Makedonska, C. W. Gable, S. L. Painter, and H. S. Viswanathan. dfnworks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences, 84:10 – 19, 2015 


22. S. Karra, S. L. Painter, and P. C. Lichtner. Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0). The Cryosphere, 8(5):1935–1950, 2014 


23. S. L. Painter and S. Karra. Constitutive model for unfrozen water content in subfreezing unsaturated soils. Vadose Zone Journal, 13(4), 2014 


24. S. Kelkar, K. Lewis, S. Karra, G. Zyvoloski, S. Rapaka, H. S. Viswanathan, P. K. Mishra, S. Chu, D. Coblentz, and R. Pawar. A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media. International Journal of Rock Mechanics and Mining Sciences, 70(0):569 – 580, 2014 


25. K. C. Lewis, S. Karra, and S. Kelkar. A model for tracking fronts of stress-induced permeability enhancement. Transport in Porous Media, 99(1):17–35, 2013 


26. S. Karra. Modeling the diffusion of a fluid through viscoelastic polyimides. Mechanics of Materials, 
66(0):120 – 133, 2013 


27. S. Karra and K. R. Rajagopal. A model for the thermo-oxidative degradation of polyimides. Mechanics of Time-Dependent Materials, 16(3):329–342, 2012 


28. S. Karra and K. R. Rajagopal. Degradation and healing in a generalized neo-hookean solid due to infusion of a fluid. Mechanics of Time-Dependent Materials, 16(1):85–104, 2012 


29. S. Karra, V. Průša, and K. R. Rajagopal. On maxwell fluids with relaxation time and viscosity depending on the pressure. International Journal of Non-Linear Mechanics, 46(6):819 – 827, 2011

30. S. Karra and K. R. Rajagopal. Modeling the non-linear viscoelastic response of high temperature polyimides. Mechanics of Materials, 43(1):54 – 61, 2011 2010

31. C. Bridges, S. Karra, and K. R. Rajagopal. On modeling the response of the synovial fluid: Unsteady flow of a shear-thinning, chemically-reacting fluid mixture. Computers & Mathematics with Applications, 60(8):2333 – 2349, 2010

32. S. Karra and K. R. Rajagopal. Development of three dimensional constitutive theories based on lower dimensional experimental data. Applications of Mathematics, 54(2):147–176, 2009 


33. S. Karra and K. R. Rajagopal. A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mechanica, 205(1-4):105–119, 2009 


34. S. Karra and A. R. Srinivasa. Simulation of the electrospinning process. International Journal of Applied Mechanics and Engineering, 14(1):175–188, 2009

35. A. Narasimhan and S. Karra. An inverse heat transfer method to provide near-isothermal surface for disc heaters used in microlithography. International Journal of Heat and Mass Transfer, 49(23–24):4624 – 4632, 2006

Under review

1. A. Hunter, B. Moore, M. Mudunuru, V. Chau, R. Miller, R. Tchoua, C. Nyshadham, S. Karra, D. O’Malley, E. Rougier, H. Viswanathan, and G. Srinivasan. Reduced-order modeling through machine learning approaches for brittle fracture applications. Applied Soft Computing

2. V. V. Vesselinov, M. K. Mudunuru, S. Karra, D. O’Malley, and B. Alexandrov. Unsupervised machine learning based on non-negative tensor factorization for analyzing reactive-mixing. Water Resources Research

3. H. S. Viswanathan, J. D. Hyman, S. Karra, D. O’Malley, S. Srinivasan, A. Hagberg, and G. Srinivasan. Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resources Research

4. J. Riffault, S. Karra, R. Archer, and D. Dempsey. Microseismicity cloud can be substantially larger than the associated stimulated fracture volume: the case of the paralana enhanced geothermal system. Journal of Geophysical Research – Solid Earth

5. A. E. Lovell, S. Srinivasan, S. Karra, D. O’Malley, N. Makedonska, H. S. Viswanathan, G. Srinivasan, J. W. Carey, and L. P. Frash. Extracting hydrocarbon from shale: An investigation of the factors that influence the decline and the tail of the production curve. Water Resources Research

6. G. Srinivasan, J. D. Hyman, D. Osthus, B. Moore, D. O’Malley, S. Karra, E. Rougier, A. Hagberg, A. Hunter, and H. Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning. Scientific Reports

7. D. O’Malley, S. Karra, J. D. Hyman, H. S. Viswanathan, and G. Srinivasan. Efficient Monte Carlo with graph-based subsurface flow and transport models. Water Resources Research

8. G. D. Guthrie, R. J. Pawar, J. W. Carey, S. Karra, D. R. Harp, and H. S. Viswanathan. The mechanisms, dynamics, and implications of self-sealing and CO2 resistance in wellbore cements. International Journal of Greenhouse Gas Control

9. S. K. Hansen, H. Boukhalfa, S. Karra, D. Wang, and V. V. Vesselinov. Chromium (VI) reduction in acetate- and molasses-amended natural media: experimental results and model development. Environmental Science & Technology

Book Chapters

1. H. S. Viswanathan, J. D. Hyman, S. Karra, J. W. Carey, M. L. Porter, E. Rougier, R. Currier, Q. Kang, L. Zhou, J. Jiménez-Martínez, N. Makedonska, L. Chen, and R. S. Middleton. Using discovery science to increase the efficiency of hydraulic fracturing while reducing the water storage. In D. Drogos and R. Hauserman, editors, Hydraulic Fracturing. ACS, 2015 


2. P. C. Lichtner and S. Karra. Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application to CO2 sequestration and enhanced geothermal energy using PFLOTRAN. In R. Al-Khoury and J. Bundschuh, editors, Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage, pages 81–136. CRC Press, http://www.crcnetbase.com/doi/pdfplus/10.1201/b16790-6, 2014 


Codes

1. PFLOTRAN: A massively parallel reactive flow and transport model for describing surface and subsurface processes

2. PFLOTRAN-QK3: A high-performance computing simulator for induced seismicity.

3. PyFLOTRAN: A Python interface to PFLOTRAN for improving workflow.

4. dfnWorks: A discrete fracture network modeling workflow that includes, fracture generation, meshing, solving for flow and particle-tracking along with other post-processing tools.

5. Voronoi: A parallel Delauney to voronoi mesh conversion tool.

6. FEHM: LANL legacy subsurface flow and transport code. Developed coupled flow and mechanics with plasticity models and permeability-stress relationships in this code. 


7. PANTRA: A PArallel Non-negative TRAnsport solver for anisotropic and heterogeneous porous media. 


8. iPANTRA: A parallel inversion code for diffusion equation using discrete adjoint method. 


9. CHROTRAN: A massively parallel numerical simulator built on top of PFLOTRAN for in situ biogeochemical remediation of heavy metals in heterogeneous aquifers 


10. GRAFLOTRAN: A parallel flow and transport solver on graphs 


 
-->