Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Nataliia Makedonska

Nataliia Makedonska

Phone (505) 665-4716


  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Mathematics
  • Monte Carlo methods
  • Molecular dynamics
  • Deterministic Transport
  • Mesh generation
  • Computer and Computational Sciences
  • Open MPI development
  • Earth and Space Sciences
  • Geoscience
  • Geophysics
  • Subsurface flow and transport
  • Hydrology
  • Computer and Computational Sciences
  • High performance computing
  • Earth and Space Sciences
  • Earthquakes
  • Computational Physics and Applied Mathematics
  • Discrete Fracture Networks
  • Earth and Space Sciences
  • Multi-scale, multi-phase subsurface flow simulations
  • FEHM: Finite-Element Heat and Mass-Transfer
  • Oil and gas reservoir simulations


Subsurface flow and transport simulation in fractured media

  • Reservoir-sclae DFN modeling & prediction of natural gas production (FE)
  • Modeling & analysis of contaminant transport (UGTA, UFD)
  • CO2 sequestration (NRAP)

Development of dfnWorks software

  • Development and implementation of a particle tracking approach for transport modeling in three dimensional Discrete Fracture Networks (DFNs)
  • Development & implementation of fracture aperture variability
  • Meshing algorithms for "DFN_volume" mesh production
  • Reservoir-sclae DFN modeling & prediction of natural gas production

Granular Modeling (Doctoral Research)

  • Simulation & analysis of dry granular material behavior under external shear force
  • Modeling of cohesive bonds between grains for representing solid rock using DEM
  • Numerical modeling of pressure dissolution process, which allows granular dissolution at stressed contacts between grains, interactions with fractures, and grain sliding
  • Algorithm design for stylolites formation via localization of grains dissolution

Monte Carlo simulations of glassy systems (Doctoral Research)

  • Implementation of MC method for modeling of multicomponent glassy systems on an atomic level of particles interaction
  • Implementation of the new Multilevel Algorithm to calculate physical properties of a single-component systems at solid phase
  • Development of the Multilevel Monte Carlo Algorithm with Fast Summation method to model point-dipole lattices and to indicate a phase transition



  • Weizmann Institute of Science, Israel, 01/2006 - 02/2011

             Ph.D. in Applied Mathematics, Dept. of Environmental Sciences & Energy Research.

            Thesis: Interplay of structure and dynamics of out of equilibrium systems: Glass and

            Granular matter.

  • Weizmann Institute of Science, Israel, 10/2002 - 06/2005

             M.Sc. in Computer Science and Applied Mathematics, Dept. of Computer Science and

             Applied Mathematics.

            Thesis: Multilevel Monte Carlo method with Fast Summation for point-dipole lattices.


  • Kharkiv State Polytechnical University, Ukraine,  09/1993-02/1999

             B.Sc. and Specialist Degree in Computer Science and Engineering, Faculty of Automatics

                       and Instruments.

            Thesis: Methods and algorithms of medical diagnostic systems.


LANL Positions

  • Postdoctoral Researcher at Computational Earth Science Group, Subsurface Flow and Transport Team, EES-16 (2012-2015)
  • Scientist 2 at Computational Earth Science Group, Subsurface Flow and Transport Team, EES-16 (2015 - present)




Professional Societies


  • American Geophysical Union (AGU)
  • American Nuclear Society (ANS)



  • R&D 100 award, 2017
  • DisrupTECH, The most fundable project, Los Alamos National Laboratoriy, 2017
  • Honorable mention at Postdoc Research Day, Los Alamos National Laboratory, 2014


  • Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J.D., Klise, K., Viswanathan, H.S. and Wang, Y., 2017. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. Journal of Hydrology, 553, pp.59-70.

  • Aldrich, G., Hyman, J., Karra, S., Gable, C., Makedonska, N., Viswanathan, H., Woodring, J., & Hamann, B. Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Transactions on Visualization and Computer Graphics PP(99), 1-14, 2016.

  • Makedonska, N., Hyman, J. D., Karra, S., Painter, S. L., Gable, C. W., & Viswanathan, H. S. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Advances in Water Resources94, 486-497, 2016.
  • Hyman, J. D., Aldrich, G., Viswanathan, H., Makedonska, N., & Karra, S. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three‐dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resources Research52(8), 6472-6489, 2016.

  • Hyman, J.D., Jiménez-Martínez, J., Viswanathan, H.S., Carey, J.W., Porter, M.L., Rougier, E., Karra, S., Kang, Q., Frash, L., Chen, L.,Lei, Z., O'Malley, and N. Makedonska, Understanding hydraulic fracturing: a multi-scale problem. Phil. Trans. R. Soc. A374(2078), p.20150426, 2016.

  • HS Viswanathan, JD Hyman, S Karra, JW Carey, ML Porter, E Rougier, RP Currier, Q Kang, L Zhou, J Jimenéz-Martínez, N Makedonska, L Chen, RS Middleton. Using Discovery Science To Increase Efficiency of Hydraulic Fracturing While Reducing Water Usage. In Hydraulic Fracturing: Environmental Issues (pp. 71-88). American Chemical Society, 2015.

  • O’Malley, D., Karra, S., Currier, R.P., Makedonska, N., Hyman, J.D., & Viswanathan, H. S.  Where Does Water Go During Hydraulic Fracturing? Groundwater, 54(4), 488-497, 2015.

  • Karra, S., Makedonska, N., Viswanathan, H. S., Painter, S. L., & Hyman, J. D. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resources Research, 2015, DOI: 10.1002/2014WR016829.

  • Hyman, J. D., Painter, S. L., Viswanathan, H., Makedonska, N., & Karra, S. Influence of injection mode on transport properties in kilometer‐scale three‐dimensional discrete fracture networks. Water Resources Research, 2015, DOI:10.1002/2015WR017151.

  • Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H. S.  dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences, 84, 10-19, 2015.

  • Makedonska, N., Painter, S. L., Bui, Q. M., Gable, C. W., & Karra, S.  Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences, 1-15, 2015.

  • Hyman, J.D., Gable, C.W., , Painter, S.L., and Makedonska, N., Conforming Delaunay Triangulation of Stochastically Generated Three Dimensional Discrete Fracture Networks : A Feature Rejection Algorithm for Meshing Strategy, J.D Hyman, C.W. Gable, S.L.Painter, and N. Makedonska, SIAM J.Sci.Comput., 36, A1871-A1894, 2014.

  • Makedonska, N., Sparks, D., Aharonov, E., and Goren, L., Friction versus dilation revisited: insights from theoretical and numerical models, Journal of Geophysical Research - Solid Earth; 116, B09302, 2011.

  • Makedonska, N., Goren, L., Sparks, D., and Aharonov, E.,  What controls the effective friction of shearing granular media?  Meso-Scale Shear Physics in Earthquake and Landslide Mechanics; Editors: Y. H. Hatzor, J. Sulem, I. Vardoulakis. p. 191, 2009.

  • Ilyin, V., Makedonska, N., Procaccia, I., and Schupper, N., Mechanical Properties of Glass Forming Systems,  Physical  Review  E, 76, 052401, 2007.

  • Hentschel, H.G.E., Ilyin, V., Makedonska, N., Procaccia, I., and Schupper, N.,Statistical mechanics of the glass transition as revealed by a Voronoi tesselation, Physical Review E, 75, 050404(R), 2007.

  • Aharonov, E., Bouchbinder, E., Ilyin, V., Makedonska, N., Procaccia, I., and Schupper, N., Direct Identification of the Glass Transition: Growing Length Scale and the Onset of Plasticity,  Europhys. Lett, 77, 56002, 2007.

  • Brandt, A., Ilyin, V., Makedonska, N., and Suwan, I., Multilevel Summation and Monte Carlo simulations, Journal of Molecular Liquids, 127, 37-39, 2006.

  • Eremenko, V.,  Makedonska, N.,  Makedonska, P., and  Sirenko, V., Computer-aided design of nitrogen-free helium cryostats,  Cryogenics, 41, 549-555, 2001.