Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Velimir Valentinov Vesselinov

Monty Vesselinov

Phone (505) 665-1458


  • Chemical Science
  • Environmental isotopes
  • Computational chemistry
  • Radionuclide transport
  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Coupled multi-physics simulations
  • Mathematics
  • Algorithms
  • Computational fluid dynamics (CFD)
  • Computational Co-Design
  • Monte Carlo methods
  • Subsurface flow simulation
  • Applied Math
  • Statistics
  • Uncertainty quantification
  • Uncertainty analysis
  • Complex system evolutions
  • Earth and Space Sciences
  • Geoscience
  • Subsurface flow and transport
  • Hydrology
  • Geochemistry
  • Image analysis
  • Transient signal recognition
  • Information Science and Technology
  • Uncertainty quantification (UQ)
  • Data Intensive Computing and Infrastructure
  • Machine Learning
  • Visualization
  • Network design
  • Quantum algorithms
  • Nuclear Engineering and Technology
  • Probabilistic risk analysis
  • Science of Signatures - Remote and Standoff Sensing
  • Machine learning,
  • High performance computing
  • Hyperspectral data processing algorithms and analysis tools
  • Computational Physics and Applied Mathematics
  • Sensitivity analysis
  • Level set methods
  • Earth and Space Sciences
  • Decision Analysis
  • Inverse modeling
  • Model calibration
  • Multi-scale, multi-phase subsurface flow simulations
  • Oil and gas reservoir simulations
  • System modeling of energy applications


  • machine learning, blind source separation, feature extraction, data compression, exploratory analysis, unsupervised/supervised/deep machine learning

  • model inversion, parameter estimation, uncertainty, sensitivity and risk analysis, performance assessment  and decision support (MADS; http://mads.lanl.gov)

  • experimental and remediation design

  • simulation of multiphase flow, transport and biogeochemical reactions in porous/fractured media (CHROTRAN; http://chrotran.lanl.gov)

  • analytical and numerical techniques for simulation of flow/transport in saturated/unsaturated, porous/fractured media;

  • development of regional/site scale conceptual and numerical models; evaluation of conceptual model uncertainties; ontological trees;

  • parameter estimation; characterization of heterogeneity of subsurface flow medium; high-resolution stochastic imaging (tomography); stochastic inverse analysis; geostatistical and Monte-Carlo Markov-Chain methods;

  • scale effects in medium properties; Lévy (alpha-stable) distributions; fractal formalism;

  • subsurface fluid dynamics and contaminant transport; well hydraulics; exploration and protection of groundwater resources; design of groundwater-supply systems; capture-zone analyses;

  • decision support, model-based decision making, impact evaluation of uncertainties on decision making; risk assessment;

  • quantification of uncertainty associated with estimates, predictions, and conceptual model elements;

  • model selection; model ranking; Maximum Likelihood Bayesian Averaging (MLBA); Generalized Likelihood Uncertainty Estimation (GLUE);

  • value of information; data-worth analyses; global sensitivity and uncertainty analyses;

  • optimal design of environmental management activities (characterization, data acquisition; remediation; monitoring); experiment design aiming reduction of data gaps and uncertainties; optimal design of monitoring networks; decision trees;

  • General Information Theory (GIT); Fuzzy sets; Rough sets; Bayesian techniques;

  • single- and multi-objective optimization methods; global/local techniques; Levenberg-Marquardt and Particle Swarm methods;

  • model abstraction; model reduction; reduced order modeling;

  • high-performance programming;

  • quantum computing.


PhD, 2000

Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona Major: Hydrology Minor: Applied Mathematics Dissertation title: Numerical inverse interpretation of pneumatic tests in unsaturated fractured tuffs at the Apache Leap Research Site Advisor: Regents Professor Dr. Shlomo P. Neuman  

MEng, 1989 Department of Hydrogeology and Engineering Geology, University of Mining and Geology, Sofia, Bulgaria Major: Hydrogeology Minor: Engineering Geology Dissertation title: Hydrogeological investigation in applying the Vyredox method for groundwater decontamination Advisor: Professor Dr. Pavel P. Pentchev


LANL Positions

ASCEM (Advanced Simulation Capability for Environmental Management) (Velimir Vesselinov: Task Lead for "Decision Support"):

LANL Environmental Programs (Velimir Vesselinov: PI of "Flow and Transport Modeling"):


Professional Societies

AGU, GSA, Interpore



  • O'Malley, D., Vesselinov, V.V., Alexandrov, B.S., Alexandrov, L.B., Nonnegative/binary matrix factorization with a D-Wave quantum annealer, PNAS, 2018, (submitted).

  • Iliev, F.L., Stanev, V.G., Vesselinov, V.V., Alexandrov, B.S., Sources identification using shifted non-negative matrix factorization combined with semi-supervised clustering, 2018, (submitted).

  • Stanev, V.G., Iliev, F.L., Hansen, S.K., Vesselinov, V.V., Alexandrov, B.S., Identification of the release sources in advection-diffusion system by machine learning combined with Green function inverse method, Applied Mathematical Modelling, 2018, (in review).

  • Boukhalfa, H, et al., Chromium Reduction in Stimulated Groundwater Samples Collected from Wells in the Sandia Canyon in Los Alamos, Applied and Environmental Microbiology, 2018 (in review).

  • Qian, E., Peherstorfer, B., O'Malley, D., Vesselinov, V.V., Wilcox, K., Multifidelity Global Sensitivity Analysis, SIAM, 2018, (accepted).

  • Lin, Y., O'Malley, D., Vesselinov, V.V., Gutrie, G.D, Coblentz, D., Randomization in Characterizing the Subsurface, SIAM News, 2018.

  • Hansen, S.K., Haslauer, C.P., Cirpka, O.A., Vesselinov, V.V., Direct Breakthrough Curve Prediction from Statistics of Heterogeneous Conductivity Fields, Water Resources Research, 10.1002/2017WR020450, 2018.

  • Vesselinov, V.V., O'Malley, D., Alexandrov, B.S., Contaminant source identification using semi-supervised machine learning, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2017.11.002, 2017.

  • Lin, Y, Le, E.B, O'Malley, D., Vesselinov, V.V., Bui-Thanh, T., Large-Scale Inverse Model Analyses Employing Fast Randomized Data Reduction, Water Resources Research, 10.1002/2016WR020299RRR, 2017.

  • Hansen, S.K., Vesselinov, V.V., Characterizing the impact of model error in hydrologic time series recovery inverse problems, 10.1017/j.advwatres.2017.146.R2, Advances in Water Resources, 2017.

  • Hansen, S.K., Vesselinov, V.V., Local equilibrium and retardation revisited, Groundwater, 10.1111/gwat.12551, 2017.

  • Hansen, S.K., Vesselinov, V.V., Reimus, P., Lu, Z., Inferring subsurface heterogeneity from push-drift tracer tests, Water Resources Research, 10.1002/2017WR020852R, 2017.

  • Heerspinka, B.P., Pandey, S., Boukhalfaa, H., Warea, D.S., Marinaa, O., Perkins, G., Vesselinov, V.V., WoldeGabriela, G., Fate and Transport of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its Degradation Products in Sedimentary and Volcanic Rocks, Los Alamos, New Mexico, Chemosphere, 10.1016/j.chemosphere.2017.04.149, 2017.

  • Bakarji, J., Vesselinov, V.V., O’Malley, D., Agent-based Socio-hydrological Hybrid Modeling for Water Resource Management, Water Resources Management, DOI 10.1007/s11269-017-1713-7, 2017.

  • Zhang, X., Sun, A.Y., Duncan, I.J., Vesselinov, V.V., Two-Stage Fracturing Wastewater Management in Shale Gas Development, Ind. Eng. Chem. Res., 10.1021/acs.iecr.6b03971, 2017.

  • Zhang, X., Vesselinov, V.V., Integrated Modeling Approach for Optimal Management of Water, Energy and Food Security Nexus, Advances in Water Resources, 10.1016/j.advwatres.2016.12.017, 2017.

  • O'Malley, D., Vesselinov, V.V., ToQ.jl: A high-level programming language for D-Wave machines based on Julia. IEEE High Performance Extreme Computing, 10.1109/HPEC.2016.7761616, 2016.

  • Hansen, S.K., Berkowitz, B., Vesselinov, V.V., O'Malley, D., Karra, S., Push-pull tracer tests: their information content and use for characterizing non-Fickian, mobile-immobile behavior, Water Resources Research, 10.1002/2016WR018769RR, 2016.

  • Zhang, X., Vesselinov, V.V., Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers Applied Energy, Applied Energy, 10.1016/j.apenergy.2016.08.156, 2016.

  • Hansen, S.K., Vesselinov, V.V., Contaminant point source localization error estimates as functions of data quantity and model quality, 10.1016/j.jconhyd.2016.09.003, 2016.

  • Throckmorton, H., Newman, B., Heikoop, J., Perkins, G., Feng, X., Graham, D., O'Malley, D., Vesselinov, V.V., Young, J., Wullschleger, S., Wilson, C., Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes, Hydrological Processes, 10.1002/hyp.10883, 2016.

  • Lin, Y, O'Malley, D., Vesselinov, V.V., A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses, Water Resources Research, 10.1002/2016WR019028, 2016.

  • Lin, Y, O'Malley, D., Vesselinov, V.V., A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses, Water Resources Research, doi: 10.1002/2016WR019028, 2016. PDF
  • Grasinger, M., O'Malley, D., Vesselinov, V.V., Karra, S., Decision Analysis for Robust CO2 Injection: Application of Bayesian-Information-Gap Decision Theory, International Journal of Greenhouse Gas Control, 2016, doi: 10.1016/j.ijggc.2016.02.017. PDF
  • Mattis, S.A., Butler, T.D. Dawson, C.N., Estep, D., Vesselinov, V.V., Parameter estimation and prediction for groundwater contamination based on measure theory, Water Resources Research, doi: 10.1002/2015WR017295, 2015. PDF
  • O’Malley, D., Vesselinov, V.V., Bayesian-Information-Gap Decision Theory (BIG-DT) with an application to CO2 sequestration, Water Resources Research, doi: 10.1002/2015WR017413, 2015. PDF
  • Lu, Z., Vesselinov, V.V., Analytical Sensitivity Analysis of Transient Groundwater Flow in a Bounded Model Domain using Adjoint Method, Water Resources Research, 10.1002/2014WR016819, 2015. PDF
  • Barajas-Solano, D. A., Wohlberg, B., Vesselinov, V.V., Tartakovsky, D. M., Linear Functional Minimization for Inverse Modeling, Water Resources Research, doi: 10.1002/2014WR016179, 2015. PDF
  • O’Malley, D., Vesselinov, V.V., Cushman, J.H., Diffusive mixing and Tsallis entropy, Physical Review E, doi: 10.1103/PhysRevE.91.042143, 2015. PDF
  • O’Malley, D., Vesselinov, V.V., A combined probabilistic/non-probabilistic decision analysis for contaminant remediation, Journal on Uncertainty Quantification, SIAM/ASA, doi: 10.1137/140965132, 2014.PDF
  • Vesselinov, V.V., O'Malley, D., Katzman, D., Robust Decision Analysis for Environmental Management of Groundwater Contamination Sites, In Vulnerability, Uncertainty, and Risk Quantification, Mitigation, and Management (ed. Michael Beer, Siu-Kui Au, and Jim W. Hall), 2916 pp, ISBN: 9780784413609, doi: 10.1061/9780784413609.197, 2014. Link
  • O’Malley, D., Vesselinov, V.V., Cushman, J.H., A Method for Identifying Diffusive Trajectories with Stochastic Model, Journal of Statistical Physics, Springer, doi: 10.1007/s10955-014-1035-6, 2014. PDF
  • Alexandrov, B., Vesselinov, V.V., Blind source separation for groundwater level analysis based on non-negative matrix factorization, Water Resources Research, doi: 10.1002/2013WR015037, 2014. PDF
  • O’Malley, D., Vesselinov, V.V., Analytical solutions for anomalous dispersion transport, Advances in Water Resources, doi: 10.1016/j.advwatres.2014.02.006, 2014. PDF
  • Heikoop, J.M., Johnson, T.M., Birdsell, K.H., Longmire, P., Hickmott, D.D., Jacobs, E.P., Broxton, D.E., Katzman, D., Vesselinov, V.V., Ding, M., Vaniman, D.T., Reneau, S.L., Goering, T.J., Glessner, J., Basu, A., Isotopic evidence for reduction of anthropogenic hexavalent chromium in Los Alamos National Laboratory groundwater, Chemical Geology, doi: 10.1016/j.chemgeo.2014.02.022, 2014.
  • Freedman, V.L., Chen, X., Finsterle, S., Freshley, M., Gorton, I., Gosink, L., Keating, E., Lansing, C., Moeglein W., Murray C., Pau, G., Porter, E., Purohit, S., Rockhold, M., Schuchardt, K., Sivaramakrishnan, C., Vesselinov, V.V., Waichler, S., A high-performance workflow system for subsurface simulation, Environmental Modelling & Software, 55, pp. 176-189, doi: 10.1016/j.envsoft.2014.01.030, 2014. PDF
  • O’Malley, D., Vesselinov, V.V., Groundwater remediation using the information gap decision theory, Water Resources Research, doi: 10.1002/2013WR014718, 2014. PDF
  • Harp, D.R., Vesselinov, V.V., Accounting for the influence of aquifer heterogeneity on spatial propagation of pumping drawdown, Journal of Water Resource and Hydraulic Engineering, 2(3), pp. 65-83, 2013. PDF
  • Vesselinov, V.V., Katzman, D., Broxton, D., Birdsell, K., Reneau, S., Vaniman, D., Longmire, P., Fabryka-Martin, J., Heikoop, J., Ding, M., Hickmott, D., Jacobs, E., Goering, T., Harp, D.R., Mishra, P., Data and Model-Driven Decision Support for Environmental Management of a Chromium Plume at Los Alamos National Laboratory (LANL), Waste Management Symposium 2013, Session 109: ER Challenges: Alternative Approaches for Achieving End State, Phoenix, AZ, http://wmsym.org, 2013. PDF
  • Vesselinov, V.V., Pau, G., Finsterle, S, AGNI: Coupling Model Analysis Tools and High-Performance Subsurface Flow and Transport Simulators for Risk and Performance Assessments, Computational Methods in Water Resources (CMWR 2012), 2012. PDF
  • Vesselinov, V.V., Harp, D., Adaptive hybrid optimization strategy for calibration and parameter estimation of physical models, Computers & Geosciences, doi: 10.1016/j.cageo.2012.05.027, 2012. PDF
  • Harp, D., Vesselinov, V.V., Contaminant remediation decision analysis using information gap theory,Stochastic Environmental Research and Risk Assessment (SERRA), 10.1007/s00477-012-0573-1, 2012. PDF
  • Mishra, P.K., Gupta, H.V., Vesselinov, V.V.; On simulation and analysis of variable-rate pumping tests, Ground Water, doi: 10.1111/j.1745-6584.2012.00961.x, 2012. PDF
  • Mishra, P.K., Vesselinov, V.V., Kuhlmna, K.L.; Saturated–unsaturated flow in a compressible leaky-unconfined aquifer, Advances in Water Resources, doi: 10.1016/j.advwatres.2012.03.007, 2012. PDF
  • Mishra, P.K., Vesselinov, V.V., Neuman, S.P.; Radial flow to a partially penetrating well with storage in an anisotropic confined aquifer, Journal of Hydrology, doi: 10.1016/j.jhydrol.2012.05.010, 2012. PDF
  • Harp, D., Vesselinov, V.V., An agent-based approach to global uncertainty and sensitivity analysis,Computers & Geosciences, doi:10.1016/j.cageo.2011.06.025, 2012. PDF
  • Harp, D., Vesselinov, V.V., Analysis of hydrogeological structure uncertainty by estimation of hydrogeological acceptance probability of geostatistical models, Special issue of Uncertainty Quantification (invited), Advances in Water Resources, doi:10.1016/j.advwatres.2011.06.007, 2010. PDF
  • Mishra, P.K., Vesselinov, V.V., Unified Analytical Solution for Radial Flow to a Well in a Confined Aquifer, arXiv:1110.5940, 2011. PDF
  • Vesselinov, V.V., Harp, D., Decision support based on uncertainty quantification of model predictions of contaminant transport, CMWR 2010: XVIII International Conference on Water Resources, J. Carrera (Ed), CIMNE, Barcelona 2010. PDF
  • Harp, D., Vesselinov, V.V., Identification of Pumping Influences in Long-Term Water Level Fluctuations, Ground Water, DOI: 10.1111/j.1745-6584.2010.00725.x., 2010. PDF
  • Morales-Casique, E, Neuman, S.P., Vesselinov, V.V., Maximum Likelihood Bayesian Averaging of air flow models in unsaturated fractured tuff using Occam and variance windows, Special issue of Stochastic Environmental Research and Risk Assessment (SERRA) Journal celebrating 70th anniversary of Shlomo P Neuman, vol. 24, DOI: 10.1007/s00477-010-0383-2, 2010. PDF
  • Harp, D., Vesselinov, V.V., Stochastic inverse method for estimation of geostatistical representation of hydrogeologic stratigraphy using borehole logs and pressure, invited, Special issue of Stochastic Environmental Research and Risk Assessment (SERRA) Journal celebrating 70th anniversary of Shlomo P Neuman, vol. 24, DOI 10.1007/s00477-010-0403-2, 2010. PDF
  • Vrugt, J., Stauffer, P., Wöhling, Th., Robinson, B., Vesselinov, V.V., Inverse Modeling of Subsurface Flow and Transport Properties Using Recent Advances in Global Optimization, Parallel Computing and Sequential Data Assimilation, Vadose Zone Journal, pp 843-864, 2008. PDF
  • Morales-Casique, E., Neuman, S.P., Vesselinov, V.V., Maximum likelihood Bayesian averaging of air flow models in unsaturated fractured tuff, pp.70-75, IAHS Publication 320, ISBN 978-1-901502-49-7, 2008. PDF
  • Harp, D., Dai, Z., Wolfsberg, A., Vrugt, J., Robinson, B., Vesselinov, V.V., Aquifer structure identification using stochastic inversion. Geophysical Research Letters L08404, doi:10.1029/2008GL033585, 2008. PDF
  • Miller, T.A., Vesselinov, V.V., et al., Integration of geologic frameworks in meshing and setup of computational hydrogeologic models, Pajarito Plateau, New Mexico Geologic Society Book, pp. 492-499, 2007. PDF
  • Vesselinov, V.V., Uncertainties In Transient Capture-Zone Estimates, Computational Methods in Water Resources XVI, (edited by P. Binning, P. Engesgaard, H. Dahle, G. Pinder & W. Gray), Balkema, Rotterdam, ISBN 90-5809-124-4, pp. 307-314, 2006. PDF
  • Vesselinov, V.V., Robinson, B.A., Delineation of capture zones in transient groundwater flow systems,ModelCARE 2005 Calibration and reliability in groundwater modeling: From uncertainty to decision making(edited by M.Bierkens et al.), pp. 246-252, IAHS Publication 304, ISSN 0144-7815, 2006. PDF
  • Zyvoloski, G.A., Vesselinov, V.V., An investigation of numerical grid effects in automated calibration,Ground Water, (Special issue: Modflow and More 2003: Understanding through Modeling)v.44, no.6, p.814-825, 2006. PDF
  • Davis, P., Hollis, D., Birdsell, K., Vesselinov, V.V., Rives, D., Pozdniakov, S., Los Alamos National Laboratory’s Risk-Based Decision Analysis for Groundwater Remediation and Monitoring, ModelCARE 2005 Calibration and reliability in groundwater modeling: From uncertainty to decision making (edited by M.Bierkens et al.), pp. 297-302, IAHS Publication 304, ISSN 0144-7815, 2006.
  • Vrugt, J.A, Robinson, B.A., Vesselinov, V.V., Improved Inverse Modeling in Geophysics: Combined Parameter and State Estimation, Geophysical Research Letters, v.32, L18408, doi:10.1029/2005GL023940, 2005. PDF
  • Vesselinov, V.V., Estimation of parameter uncertainty using inverse model sensitivities, Computational Methods in Water Resources XV (CMWR 2004) (ed. Miller, C., Farthing, M.W., Gray, W.G., Pinder, G.), Elsevier, ISBN 0-444-51839-8, pp. 508-514, doi:10.1016/S0167-5648(04)80139-4, 2004. PDF
  • Vesselinov, V.V., Keating, E.H., Zyvoloski, G.A., Analysis of model sensitivity and predictive uncertainty of capture zones in the Española Basin regional aquifer, Northern New Mexico, ModelCARE 2002 Calibration and reliability in groundwater modelling: A few steps closer to reality (edited by K. Kovar & Z. Hrkal), IAHS Publication 277, ISBN 1-901-502-07-4, pp. 508-514, 2003.
  • Hyun, Y., Neuman, S.P., Vesselinov, V.V., Illman, W.A., Tartakovsky, D.M., Di Federico, V., Theoretical interpretation of a pronounced permeability scale-effect in unsaturated fractured tuff, Water Resources Research, 38(6), 10.1029/2001WR000658, 2002. PDF
  • Neuman, S.P., Illman, W.A., Vesselinov, V.V., Thompson, D.L, Chen, G., Guzman, A., Lessons learned from field studies at the Apache Leap Research Site in Arizona, in Conceptual Models of Flow and Transport in the Fractured Vadose Zone, National Research Council, National Academy Press, Washington, DC, pp. 295-334, 2001.
  • Chen, G., Illman, W.A., Thompson, D.L., Vesselinov, V.V., Neuman, S.P., Geostatistical, Type-Curve and Inverse Analyses of Pneumatic Injection Tests in Unsaturated Fractured Tuffs at the Apache Leap Research Site Near Superior, Arizona, Dynamics of Fluids in Fractured Rocks, (edited by B. Faybishenko, P. A. Witherspoon, & S. M. Benson), Geophysical Monograph Series, Volume 122, pp 73-98, AGU, Washington, DC, 2000.
  • Vesselinov, V.V., Neuman, S.P., Numerical inverse interpretation of multi-step transient single-hole pneumatic tests in unsaturated fractured tuffs at the Apache Leap Research Site, in Theory, Modeling and Field Investigation in Hydrogeology: A Special Volume in honor of Shlomo P. Neuman’s 60th birthday(ed. by D. Zhang & C. L. Winter), Special Paper 338, Geological Society of America, pp. 175-190, 2000.
  • Vesselinov, V.V., Neuman, S.P., Illman, W.A., Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 1. Methodology and borehole effects, Water Resources Research, 37(12), pp 3001-3018, 2001. PDF
  • Vesselinov, V.V., Neuman, S.P., Illman, W.A., Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale effects, Water Resources Research, 37(12), pp 3019-3042, 2001. PDF
  • Vesselinov, V.V., Neuman, S.P., Numerical inverse interpretation of single-hole pneumatic tests in unsaturated fractured tuff, Ground Water, 36(5), pp 685-695, 2001. PDF
  • Vesselinov, V.V., Analytical method for modeling multiple-well systems discharging groundwater at a constant drawdown, Vodno Delo Journal, No.1/93, pp.21-24, Sofia, 1993.