Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Elchin Jafarov

Elchin Jafarov

Phone (505) 665-8183


  • Computational Physics and Applied Mathematics
  • Mathematics
  • Algorithms
  • Subsurface flow simulation
  • Applied Math
  • Statistics
  • Uncertainty analysis
  • Computer and Computational Sciences
  • High performance computing
  • Earth and Space Sciences
  • Geoscience
  • Geophysics
  • Hydrology
  • Climate modeling
  • Ecosystem dynamics
  • Biogeochemistry
  • Computational Physics and Applied Mathematics
  • Sensitivity analysis
  • Earth and Space Sciences
  • Inverse modeling


subsurface thermal and hydrology, earth system modeling


University of Alaska Fairbanks

  • Ph.D. in Geophysics, 2013
  • MA in Mathematics, 2007

Azerbaijan State Oil Academy

  • MS in Informatics, 2003
  • BS in Applied Mathematics, 2001




LANL Positions

Research Associate, Computational Arctic Hydrology, Inverse Modeling, Vulnerability Index, Decision Making, Computational Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, September 2016 – present.


Professional Societies




Community Surface Dynamics Modeling System (CSDMS) Student Modeler Award, 2009



1. Jafarov, E.E., Coon E. T., Harp, D.R., Wilson, C. J., Painter, S. L., Atchley, A.L., Romanovsky V.E.: (2018) Modeling the role of vegetation-induced preferential snow accumulation in open talik development and hillslope groundwater flow in a transitional permafrost landscape. In review in ERL. 2. Jafarov, E. E., Parsekian, A. D., Schaefer, K., Liu, L., Chen, A. C., Panda, S. K. and Zhang, T. (2017), Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geosci. Data J.. doi:10.1002/gdj3.49 3. Jafarov, E. and Schaefer, K.: The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics, The Cryosphere, 10, 465-475, doi:10.5194/tc-10-465-2016, 2016 4. Jafarov E.E., Nicolsky D.J., Romanovsky V.E., Walsh J.E., Panda S.K., Serreze M.C. 2014. The effect of snow: How to better model ground surface temperatures. Cold Regions Science and Technology, Volume 102, Pages 63-77, ISSN 0165-232X, doi: 10.1016/j.coldregions.2014.02.007.   5. Jafarov, E. E., Romanovsky V. E., Genet, H., McGuire A., D., Marchenko, S. S.: The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate, Environmental Research Letters, 8, 035030, 2013. 6. Jafarov, E. E., Marchenko, S. S., and Romanovsky, V. E.: Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset, The Cryosphere, 6, 613-624, doi:10.5194/tc-6-613-2012, 2012 7. Wang, K., Zhang, T., Zhang, X., Overeem, I., Clow, G.D., Peng, X., and Jafarov, E.: Where Has Climate Warming Been Most Amplified? 2018. submitted 8. Overeem, I., Jafarov, E., Wang, K., Schaefer K., Stewart, S., Clow, G., Piper, M., Elshorbany, Y.: A modeling toolbox for permafrost landscapes. In review EOS. 9. Anderson C., Lawrence, D., Wilson, C., McGuire, D., Koven, C., Schaefer, K., Jafarov, E., Hayes D., et al. 2018. Wetter or drier? Large uncertainty in permafrost hydrology projections. In review in ERL. 10. Schuster, P. F., K. M. Schaefer, G. R. Aiken, R. C. Antweiler, J. F. DeWild, J. D. Gryziec, A. Gusmeroli, G. Hugelius, E. Jafarov, D. P. Krabbenhoft ,L. Liu , N. Herman-Mercer, C. Mu, D. A. Roth, T. Schaefer, R. G. Striegl, K. P. Wickland, and T. Zhang (2018), Permafrost stores a globally significant amount of mercury, Geophys. Res. Lett, 45, GRL56886, DOI: 10.1002/2017GL075571 11. McGuire, A. D., et al., (including E. Jafarov). (2018), The Dependence of the Evolution of Carbon Dynamics in the Northern Permafrost Region on the Trajectory of Climate Change. Proceedings of the National Academy of Sciences Mar 2018, 201719903; DOI:10.1073/pnas.1719903115 12. Yumashev D., Hope, C., Schaefer, K., Riemann-Campe, K., Iglesias-Suarez, F., Jafarov, E., Whiteman, G., Young, P.: 2017 Climate policy implications of nonlinear decline of Arctic land permafrost and sea ice. Nature Climate Change, in review. 13. Wang, K., Zhang, T., Zhang, X., Clow, G. D., Jafarov, E. E., Overeem, I., Romanovsky, V., Peng, X. and Cao, B. (2017), Continuously Amplified Warming in the Alaskan Arctic: Implications for Estimating Global Warming Hiatus. Geophys. Res. Lett.. doi:10.1002/2017GL074232 14. Peckham S.D., M. Stoica, E. Jafarov, A. Endalamaw, and W.R. Bolton (2017), Reproducible, Component-based Modeling with TopoFlow, A Spatial Hydrologic Modeling Toolkit, Earth and Space Sci., 4, doi:10.1002/2016EA000237. 15. Pastick, N. J., Duffy, P., Genet, H., Rupp, T. S., Wylie, B. K., Johnson, K. D., Jorgenson, M. T., Bliss, N., McGuire, A. D., Jafarov, E. E. and Knight, J. F. (2017), Historical and Projected Trends in Landscape Drivers Affecting Carbon Dynamics in Alaska. Ecol Appl. Accepted Author Manuscript. doi:10.1002/eap.1538 16. McGuire, A. D., Koven,C., Lawrence, D., Clein, C., Xia, J., Beer,C., Burke, E., Chen, C., Chen, X., et al., (including E. Jafarov). 2016 Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009, Global Biogeochem. Cycles, 30, 1015–1037, doi:10.1002/2016GB005405. 17. Abbott, B.W., M, Bret-Harte, S., Hollingsworth, T.N., Jones, J.B., Epstein, H.E., Mack, M.C., (including E. Jafarov). 2016. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment, Environmental Research Letters. 11, 034014, doi:10.1088/1748-9326/11/3/034014. 18. Chen, A., Parsekian A., Schaefer K., Jafarov E., Panda S., Liu L., Zhang T., and Zebker H: 2016. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. GEOPHYSICS, 81(2), H1-H11. doi: 10.1190/geo2015-0124.1 19. Schaefer, K. and Jafarov, E.: A parameterization of respiration in frozen soils based on substrate availability, Biogeosciences, 13, 1991-2001, doi:10.5194/bg-13-1991-2016, 2016 20. Mao, J., Fu, W., Shi, X., Ricciuto, D. M., Fisher, J. B., Dickinson, R. E., et al., (including E. Jafarov). 2015. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 10(9), [094008]. DOI: 10.1088/1748-9326/10/9/094008 21. Koven, C. D.,  E. A. G. Schuur, C. Schädel, T. Bohn, E. J. Burke, G. Chen, X. Chen, P. Ciais, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, E. E. Jafarov, G. Krinner, P. Kuhry, D. M. Lawrence, A. H. MacDougall, S. S. Marchenko, A. D. McGuire, S. M. Natali, D. J. Nicolsky, D. Olefeldt, S. Peng, V. E. Romanovsky, K. M. Schaefer, J. Strauss, C. Treat, M. Turetsky: 2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A 373: 20140423. http://dx.doi.org/10.1098/rsta.2014.0423 22. Schaefer, K.M., Liu, L., Parsekian A., Jafarov E.E., Chen, A., Zhang T., Gusmeroli A., Zebker,. H., Schaefer. T.: 2015 "Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar." Remote Sensing 7, no. 4 (2015): 3735-3759. 23. Liu, L., Jafarov E.E., Schaefer K.M., Jones B. M., Zebker H.A., Williams C.A., Rogan J., Zhang, T.: 2014. InSAR detects increase in surface subsidence caused by an Arctic tundra fire. GRL. doi: 10.1002/2014GL060533  

Google Scholar