Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Daniel O'Malley

Dan O'Malley

Phone (505) 667-8684


  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Mathematics
  • Algorithms
  • Partial differential equations
  • Monte Carlo methods
  • Subsurface flow simulation
  • Applied Math
  • Statistics
  • Uncertainty quantification
  • Network modeling
  • Computer and Computational Sciences
  • Hybrid architecture
  • Earth and Space Sciences
  • Geoscience
  • Subsurface flow and transport
  • Hydrology
  • Computer and Computational Sciences
  • Machine learning,
  • High performance computing
  • Information Science and Technology
  • Heterogeneous Architectures
  • Uncertainty quantification (UQ)
  • Machine Learning
  • Quantum algorithms
  • Computational Physics and Applied Mathematics
  • Sensitivity analysis
  • Discrete Fracture Networks
  • Earth and Space Sciences
  • Decision Analysis
  • Inverse modeling
  • Model calibration
  • FEHM: Finite-Element Heat and Mass-Transfer



  • Subsurface flow and transport
  • Contaminant remediation
  • Geostatistics

Applied Mathematics & Statistics

  • Inverse analysis
  • Stochastic modeling
  • Matrix factorization

Computational Science

  • Inverse Analysis & Uncertainty Quantification
  • Numerical Methods
  • Quantum Computing


Ph.D. (2011)

  • Major: Applied Mathematics
  • Adviser: John H. Cushman
  • Purdue University

M.S. (2006)

  • Major: Pure Mathematics
  • Purdue University

B.S. (2004)

  • Majors: Computer Science & Mathematics
  • Purdue University

LANL Positions

Scientist (2016-present)

Director's Postdoctoral Fellow (2015-2016)

Postdoctoral Research Associate (2013-2015)


Professional Societies

  • American Geophysical Union (AGU)
  • International Society for Porous Media (InterPore)
  • Society of Industrial and Applied Mathematics (SIAM)


  • Director's Postdoctoral Fellowship (2014)
  • InterPore Fraunhofer Award for Young Researchers (2012)
  • Charles C. Chappelle Fellowship (2004)


See my Google Scholar profile for up-to-date information

O’Malley, D., S. Karra, J.D. Hyman, H.S. Viswanathan, G. Srinivasan. Efficient Monte Carlo with graph-based subsurface flow and transport models. Water Resources Research. 2018. (DOI: 10.1029/2017WR022073)
Lovell, A.E., S. Srinivasan, S. Karra, D. O’Malley, N. Makedonska, H.S. Viswanathan, G. Srinivasan, J.W. Carey, L.P. Frash. Extracting hydrocarbon from shale: an investigation of the factors that influence the decline and the tail of the production curve. Water Resources Research. 2018. (DOI: 10.1029/2017WR022180)
Qian, E., B. Peherstorfer, D. O’Malley, V.V. Vesselinov, K. Willcox. Multifidelity Monte Carlo estimation of variance and sensitivity indices. SIAM/ASA Journal on Uncertainty Quantification. 6:683. 2018. (DOI: 10.1137/17M1151006)
O’Malley, D. An approach to quantum-computational inverse analysis. Scientific Reports. 8:6919. 2018. (DOI: 10.1038/s41598-018-25206-0)
Karra, S., D. O’Malley, J.D. Hyman, H. Viswanathan, G. Srinivasan. Modeling flow and transport in fracture networks using graphs. Physical Review E. 97:033304. 2018. (DOI: 10.1103/PhysRevE.97.033304)
Moore, B.A., E. Rougier, D. O'Malley, G. Srinivasan, A. Hunter, and H. Viswanathan. Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Computational Materials Science. 148. 2018. (DOI: 10.1016/j.commatsci.2018.01.056)
Vesselinov, V.V., B.S. Alexandrov, and D. O'Malley. Contaminant source identification using semi-supervised machine learning. Journal of Contaminant Hydrology. 212:134. 2018. (DOI: 10.1016/j.jconhyd.2017.11.002)
Harp, D.R., P.H. Stauffer, D. O’Malley, Z. Jiao, E.P. Egenolf, T.A. Miller, D. Martinez, K.A. Hunter, R.S. Middleton, J.M. Bielicki, and R. Pawar. Development of robust pressure management strategies for geologic CO2 sequestration. International Journal of Greenhouse Gas Control. 64:43. 2017. (DOI: 10.1016/j.ijggc.2017.06.012)
Lin, Y., E.B. Le, D. O'Malley, V.V. Vesselinov, and T. Bui-Thanh. Large-scale inverse model analyses employing fast randomized data reduction. Water Resources Research. 53:6784. 2017. (DOI: 10.1002/2016WR020299)
Djidjev, H., D. O'Malley, H. Viswanathan, J.D. Hyman, S. Karra, and G. Srinivasan. Learning on graphs for predictions of fracture propagation, flow and transport. IEEE Parallel and Distributed Symposium Workshops. 2017. (DOI: 10.1109/IPDPSW.2017.11)
Bakarji, J., D. O'Malley and V.V. Vesselinov. Agent-based socio-hydrological hybrid modeling for water resource management. Water Resources Management. 2017. (DOI: 10.1007/s11269-017-1713-7)
Hansen, S.K., B. Berkowitz, V.V. Vesselinov, D. O'Malley, S. Karra. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior. Water Resources Research. 52:12. 2016. (DOI: 10.1002/2016WR018769)
O'Malley, D. and V.V. Vesselinov. ToQ.jl: A high-level programming language for D-Wave machines based on Julia. IEEE High Performance Extreme Computing. 2016. (DOI: 10.1109/HPEC.2016.7761616)
Hyman, J.D., J. Jim\'{e}nez-Martínez, H. S. Viswanathan, J. W. Carey, M. L. Porter, E. Rougier, S. Karra, Q. Kang, L. Frash, L. Chen, Z. Lei, D. O'Malley, N. Makedonska. Understanding hydraulic fracturing: a multi-scale problem. Philosophical Transactions of the Royal Society A. 374:2078. 2016. (Cover Article) (DOI: 10.1098/rsta.2015.0426)
Lin, Y., D. O'Malley and V.V. Vesselinov. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses. Water Resources Research. 52:6948. 2016. (DOI: 10.1002/2016WR019028)
Throckmorton, H.M., B.D. Newman, J.M. Heikoop, G.B. Perkins, X. Feng, D.E. Graham, D. O'Malley, V.V. Vesselinov, J. Young, S.D. Wullschleger and C.J. Wilson. Active layer hydrology in an Arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrologic Processes. 30:26. 2016. (DOI: 10.1002/hyp.10883)
Grasinger, M., D. O'Malley, V.V. Vesselinov, and S. Karra. Decision Analysis for Robust CO2 Injection: Application of Bayesian-Information-Gap Decision Theory. International Journal of Greenhouse Gas Control. 49:73. 2016. (DOI: 10.1016/j.ijggc.2016.02.017)
O'Malley, D., S. Karra, R.P. Currier, N. Makedonska, J.D. Hyman, and H. Viswanathan. Where does water go during hydraulic fracturing?. Groundwater. 54:488. 2016. (Cover Article) (DOI: 10.1111/gwat.12380)
O'Malley, D. and V.V. Vesselinov. Bayesian information-gap decision analysis applied to a CO2 leakage problem. Water Resources Research. 51:7080. 2015. (DOI: 10.1002/2015WR017413)
Cushman, J.H. and D. O'Malley. Fickian dispersion is anomalous. Journal of Hydrology. 531:161. 2015. (DOI: 10.1016/j.jhydrol.2015.06.036)
O'Malley, D., V.V. Vesselinov, and J.H. Cushman. Diffusive mixing and Tsallis entropy. Physical Review E. 91:042143. 2015. (DOI: 10.1103/PhysRevE.91.042143)
Dempsey, D., D. O'Malley, and R. Pawar. Reducing uncertainty associated with CO2 injection and brine production in heterogeneous formations. International Journal of Greenhouse Gas Control. 37:24. 2015. (DOI: 10.1016/j.ijggc.2015.03.004)
O'Malley, D. and V.V. Vesselinov. A combined probabilistic/non-probabilistic decision analysis for contaminant remediation. SIAM/ASA Journal on Uncertainty Quantification. 2:607. 2014. (DOI: 10.1137/140965132)
Park, M., J.H. Cushman, and D. O'Malley. Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids. Langmuir. 2014. (DOI: 10.1021/la502334s)
O'Malley, D., V.V. Vesselinov, and J.H. Cushman. A method for identifying diffusive trajectories with stochastic models. Journal of Statistical Physics. 156:896. 2014. (DOI: 10.1007/s10955-014-1035-6)
O'Malley, D. and V.V. Vesselinov. Analytical solutions for anomalous dispersion transport. Advances in Water Resources. 68:13. 2014. (DOI: 10.1016/j.advwatres.2014.02.006)
Park, M., D. O'Malley and J.H. Cushman. Generalized similarity, renormalization groups, and nonlinear clocks for multiscaling. Physical Review E. 89:042104. 2014. (DOI: 10.1103/PhysRevE.89.042104)
O'Malley, D. and V.V. Vesselinov. Groundwater remediation using the information gap decision theory. Water Resources Research. 50:246. 2014. (DOI: 10.1002/2013WR014718)
Cushman, J.H., D. O'Malley and M. Park. Anomalous Dispersion, Renormalization Groups, Scaling Laws and Classification: A Reflection on Recent Efforts. Advances in Water Resources. 62B:207. 2013. (DOI: 10.1016/j.advwatres.2013.07.001)
O'Malley, D., J.H. Cushman and G. Johnson. Random renormalization groups and Bayesian scaling of dispersion/diffusion in Lake Michigan and the Gulf of Mexico. Geophysical Research Letters. 40:4638. 2013. (DOI: 10.1002/grl.50918)
O'Malley, D. and J.H. Cushman. Ubiquity of, and geostatistics for, nonstationary increment random fields. Water Resources Research. 49:4525. 2013. (DOI: 10.1002/wrcr.20328)
O'Malley, D., J.H. Cushman and L.M. Flesch. Global sensitivity analysis for a micropolar Stokes flow problem. International Journal for Multiscale Computational Engineering. 11:359. 2013. (DOI: 10.1615/IntJMultCompEng.2013005115)
O'Malley, D. and J.H. Cushman. Random renormalization group operators applied to stochastic dynamics. Journal of Statistical Physics. 149:943. 2012. (DOI: 10.1007/s10955-012-0630-7)
O'Malley, D. and J.H. Cushman. Two-scale renormalization-group classification of diffusive processes. Physical Review E. 86:011126. 2012. (DOI: 10.1103/PhysRevE.86.011126)
O'Malley, D., J.H. Cushman and P. O'Rear. On generating conductivity fields with known fractal dimension and nonstationary increments. Water Resources Research. 48:W03201. 2012. (DOI: 10.1029/2011WR011681)
O'Malley, D. and J.H. Cushman. A renormalization group classification of nonstationary and/or infinite second moment diffusive processes. Journal of Statistical Physics. 146(5):989. 2012. (DOI: 10.1007/s10955-012-0448-3)
Cushman, J.H., M. Park and D. O'Malley. A stochastic model for anomalous diffusion in confined nano-films near a strain-induced critical point. Advances in Water Resources. 34(4):490. 2011. (DOI: 10.1016/j.advwatres.2011.01.005)
Cushman, J.H., M. Park, M. Moroni, N. Kleinfelter-Domelle and D. O'Malley. A universal field equation for dispersive processes in heterogeneous media. Stochastic Environmental Research and Risk Assessment. 25(1):1. 2010. (DOI: 10.1007/s00477-010-0446-4)
O'Malley, D., J.H. Cushman and G. Johnson. Scaling laws for fractional Brownian motion with power-law clock. Journal of Statistical Mechanics: Theory and Experiment. 2011(1):L01001. 2011. (DOI: 10.1088/1742-5468/2011/01/L01001)
O'Malley, D. and J.H. Cushman. Fractional Brownian motion run with a nonlinear clock. Physical Review E. 82:032102. 2010. (DOI: 10.1103/PhysRevE.82.032102)
Cushman, J.H., M. Park and D. O'Malley. Chaotic dynamics of super-diffusion revisited. Geophysical Research Letters. 36:L08812. 2009. (DOI: 10.1029/2009GL037399)
Cushman, J.H., D. O'Malley and M. Park. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Physical Review E. 79:032101. 2009. (DOI: 10.1103/PhysRevE.79.032101)
Parashar, R., D. O'Malley and J.H. Cushman. Mean first-passage time for superdiffusion in a slit pore with sticky boundaries. Physical Review E. 78:052101. 2008. (DOI: 10.1103/PhysRevE.78.052101)