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   Abstract:    CO 2  capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a 
commercial scale despite multiple high-profi le demonstration projects. We suggest that developing a 
large-scale, visible, and fi nancially viable CCUS network could potentially overcome many barriers to 
deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on tech-
nology development to reduce the costs of CO 2  capture from coal-fi red power plants. Here, we pro-
pose that near-term investment could focus on implementing CO 2  capture on facilities that produce 
high-value chemicals/products. These facilities can absorb the expected impact of the marginal in-
crease in the cost of production on the price of their product, due to the addition of CO 2  capture, more 
than coal-fi red power plants. A fi nancially viable demonstration of a large-scale CCUS network re-
quires offsetting the costs of CO 2  capture by using the CO 2  as an input to the production of market-
viable products. We demonstrate this alternative development path with the example of an integrated 
CCUS system where CO 2  is captured from ethylene producers and used for enhanced oil recovery in 
the US Gulf Coast region. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd      
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  Introduction 
   CCS is caught in a vicious cycle… Firms will not 
invest in CCS because it is fi nancially risky; it is 
fi nancially risky because public acceptance is low 
and there are big hurdles to large-scale deployment; 
and public acceptance is low because there is so little 
experience with CCS at a large scale. 

William Nordhaus 1    

 C
O 2  capture, utilization, and storage (CCUS) is a 
climate mitigation technology that can reduce 
industrial greenhouse gas (GHG) emissions 

by thousands of megatonnes of CO 2  annually (1000s 
MtCO 2 /yr). 2  CCUS involves capturing and compress-
ing CO 2  from stationary sources (e.g. coal-fi red power 
plants), transporting the CO 2  in dedicated pipelines, 
and injecting and storing the CO 2  in geologic reser-
voirs (e.g. deep saline aquifers) and perhaps using that 
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for several decades, 15  and multiple large (≥1 MtCO 2 /
yr) CCUS projects around the world are successfully 
demonstrating the performance of these technologies. 
Present projects include CO 2  capture from a range of 
industrial sources, including natural gas processing or 
stripping (e.g. Shute Creek, Wyoming; 16  Sleipner Vest, 
Norway; 17  Gorgon, Australia 18 ), coal gasifi cation (e.g. 
Beulah, North Dakota 19 ), and biorefi neries/ethanol 
production (e.g. Decatur, Illinois 20 ). Five of the nine 
large operational integrated CCUS systems in the 
world are in the United States 21  (Fig.  1 ), as well as the 
capture (Beulah, ND) for the single Canadian storage 
project. But despite the importance and potential of 
CCUS, and the safe demonstration of individual 
CCUS projects, commercial-scale deployment of 
CCUS has not yet occurred.  

 Numerous barriers to CCUS deployment exist, 
including interlinked issues such as costs, public 
awareness and acceptance, 22  regulation and permit-
ting, 15  and operational experience with large inte-
grated CCUS systems. 15  To initiate near-term com-
mercial-scale deployment of CCUS, a development 
path for an integrated system that handles 50–100 
MtCO 2 /yr is perhaps needed—roughly an order of 
magnitude larger than the 10 MtCO 2 /yr emitted from 
a large coal-fi red power plant. Accelerating CCUS 
deployment could be achieved by developing a highly 

CO 2  to produce marketable products. 3,4  CCUS is an 
essential component of the portfolio of approaches 
needed to reduce CO 2  emissions and stabilize the 
concentration of CO 2  in the atmosphere. 5,6  At present, 
68% of the electricity generated in the United States 
results from burning fossil fuels, more than half of 
which uses coal—the most CO 2 -intensive source—as 
the primary energy source. 7,8  Implementing CCUS 
could enable a gradual transition to energy sources 
that emit less CO 2  per unit of energy while continu-
ing to leverage the useful lifetime of existing energy 
infrastructure. CCUS is also pertinent for developing 
countries, such as China and India, that have or plan 
to rapidly expand their fl eet of coal-fi red power plants 
that will continue to emit CO 2  for many decades. 9  
Ultimately, CCUS must be deployed at a ’commercial 
scale’, where many CO 2  sources (including hundreds 
of power plants) and geologic reservoirs are connected 
by an extensive network of dedicated pipelines. 10  
Several examples of individual power plants con-
nected to geologic reservoirs already exist, including 
the Boundary Dam 11,12  and W.A. Parish 13,14  generating 
stations, but not multiple large power plants in a single 
network. 

 Technologies for each step in the CCUS supply 
chain—CO 2  capture, transport, and injection/
storage—have been implemented at commercial scale 

  Figure 1.    Distribution of currently operational (left, 24.08 MtCO 2 /yr) and 
planned (right, 99.54 MtCO 2 /yr) integrated CCS projects as of June 2013. 
Projects only include large coal (≥ 0.8 MtCO 2 /yr) and large industrial (≥ 0.4 
MtCO 2 /yr) projects. The operational project in Algeria—In Salah—is now 
inactive. 
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plans due to unacceptable increases in the rate that 
consumers would have to pay. 27,28   

 As an alternative, CO 2  that is emitted from facilities 
that produce HVCPs could be attractive candidates 
for CO 2  capture. Four of these industries—oil refi n-
ing, iron/steel production, ethylene manufacture, and 
ethanol production—each emit at least 50 MtCO 2 /yr 
(Table  1 ). 25  Collectively HVCP industries emit 360 
MtCO 2 /yr, which is roughly the same amount of CO 2  
emitted by natural gas power plants. Th ese HVCP 
facilities are located broadly throughout much of the 
non-mountainous portions of the United States 
(Fig.  2 ). Most importantly, the estimated marginal 
increase in the cost of production is much lower for 
HVCPs than for power plants. In a competitive 
industry, where profi t-maximizing fi rms should seek 
to set price equal to marginal cost, the estimated 
proportional increases in price for HCVP facilities 
range between 1 and 15%, which is substantially less 
than the estimated relative increases in the price of 
fossil-based electricity (Table  1 , Fig.  3 ).   

 HVCPs also enable targeted CO 2  capture to stimu-
late large-scale CCUS. For example, as Fig.  2  shows, 
ethanol facilities are distributed over the US Midwest. 
Th ese facilities currently emit around 50 MtCO 2 /yr in 
aggregate, which is an amount suffi  cient enough to be 
the basis for a large-scale CCUS network without 
oversupplying CO 2 . As a consequence, there would 
likely be a minimal impact on marginal price of CO 2  
supplied for EOR. Facilities in other HVCP industries, 
such as ethylene manufacturing, are larger in size and 
more clustered in location, which provides logistical 
advantages for the establishment of an integrated 
CCUS system. For the remainder of this paper we use 
CO 2  capture from ethylene production facilities as one 
example of how an integrated network using CO 2  
captured from HCVPs could stimulate commercial-
scale CCUS.  

  Ethylene manufacture and CO 2  
capture 
 Ethylene is used throughout the petrochemical 
industry Almost 60% of the supply is devoted to 
producing polyethylene for products such as packag-
ing and plastic bags. 29  Ethylene is manufactured by 
steam cracking hydrocarbons including ethane, 
naphtha, propane, and butane. 30  Th e energy necessary 
for this cracking is provided by burning natural gas 
and other residual gases from the cracking process. 31  

visible and economically viable demonstration of a 
commercial-scale CCUS system that integrates 
multiple CO 2  sources and reservoirs. Implementing 
CO 2  capture increases general production costs; for 
coal-fi red power plants this could result in almost a 
doubling of electricity prices for consumers. 23  We 
suggest that systems that use CO 2   captured from 
facilities that produce high-value chemicals/products 
(HVCPs), such as ethanol or iron/steel production, 
can better absorb the expected impact on the price of 
their products. 24  Using this HVCP CO 2  to produce a 
marketable commodity further adds economic 
viability. Near-term pathways that focus on the 
development of such an integrated system would 
complement present investment approaches, which 
have focused on developing and demonstrating  new  
technologies for two of the three stages in the CCUS 
supply chain: CO 2  capture and CO 2  storage. Our 
proposed pathway focuses on market-viable CO 2  
capture from HCVP facilities—some of which are in 
industries that already provide CO 2  for use else-
where—and the implementation of pipeline transpor-
tation like that which already exists for CO 2 -based 
enhanced oil recovery (CO 2 -EOR). We demonstrate 
our approach in a case study using  existing  technol-
ogy to capture CO 2  from ethylene producers as well 
as for CO 2 -EOR in the US Gulf Coast region. Our 
perspective is to provide an overview of near-term 
market-viable opportunities to establish the operation 
of CCUS, as an integrated system, while other 
pathways for technology development are being 
pursued.  

  CO 2  capture from high value 
chemicals and products (HVCPs) 
production 
 Much of the eff ort for developing CO 2  capture tech-
nology has focused on fossil-fueled power plants, in 
part because of the size of the installed base. Th e CO 2  
emissions from power plants form the majority of 
stationary CO 2  emissions in the United States. 25  In 
addition, CO 2  capture costs are estimated to comprise 
up to 90% of the CCUS supply chain costs, and CO 2  
capture on fossil fuel power plants can increase the 
cost of production 50–100%, from $31–51/MWh to 
$43–72/MWh for natural gas power plants and 
$43–52/MWh to $62–86/MWh for coal-fi red plants 26  
(Table  1 ). Th e potential doubling of electricity prices 
has led public utilities commissions to reject CCUS 
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United States, ethylene facilities are clustered in the 
Texas and Louisiana Gulf Coast region (Fig.  5 ), largely 
due to feedstock availability. Th ese US facilities emit 
approximately 50 MtCO 2 /yr. 25    

 We are not aware of literature that estimates CO 2  
capture costs specifi cally for ethylene facilities. Since a 
detailed facility-level systems analysis is outside the 
scope of this paper, we approximate these costs by the 
similarity of the fl ue gas CO 2  concentration and 
pressure to that of coal-fi red power plants (12% vs. 
12–15% by volume, 1 bar 2,34 ). As a result, CO 2  capture 
costs for ethylene facilities are broadly similar to those 
for coal-fi red power plants, approximately $35-$55/
tCO 2 . 26  Manufacturing one tonne of ethylene pro-
duces between 1 tCO 2  (ethane feedstock) and 2 tCO 2  
(naphtha feedstock), 35  and each tonne of CO 2  costs 
$35–55/tCO 2  to capture. Ethylene prices reached 
$1500–1800/t between 2008 and 2012, and typically 
are around $1000/t. 36  At a lower price of $1000/t, these 
increases in costs translate into an additional $35–
$110/t of ethylene. Assuming that ethylene markets 
are competitive and therefore priced at their marginal 
cost, CO 2  capture would add 3.5 to 11% to the price of 

Worldwide ethylene production is greater than 140 
Mt/yr, with production concentrated in three coun-
tries: the United States (27.6 Mt/yr) 32 , Saudi Arabia 
(13.2 Mt/yr), and China (13.0 Mt/yr) 33  (Fig.  4 ). In the 

  Figure 2.    Spatial distribution of HVCPs in the United States. 25  

  Figure 3.    Estimated relative price increases due to CO 2  
capture (last column in Table  1 ) are much lower for high 
value chemicals and products relative to fossil-fuel 
power plants. 
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  Figure 4.    Distribution of ethylene manufacturing by continent (left, 141 Mt/yr) 
and top ten producing countries (right, 91 Mt/yr). 

   Figure 5.    Ethylene and ethylene oxide production, major non-ethylene sources of CO 2 , existing CO 2  pipeline 
transportation network, and oil & gas fi elds in the western U.S. Gulf Coast region and surrounding areas. 54  
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additional 4–15% of the original oil in place (OOIP) 
on top of primary and secondary techniques that 
produce about 30–35% of the OOIP. 37  CO 2 -EOR in 
the United States accounts for 46% of the oil produced 
by EOR processes. 38  Next generation CO 2 -EOR 
technologies could recover 22% or more of the OOIP, 
resulting in production of up to 60% of the OOIP by 
primary, secondary, and tertiary means. 37  At present, 
about 4% of domestic U.S. oil production is by CO 2 -
EOR. 37  In 2012, there were 120 active CO 2 -EOR 
projects in the United States that produced more than 
352,000 bbl/d of oil 38  and purchased about 60 MtCO 2 /
yr. 39  Some of the CO 2  that is injected for CO 2 -EOR 
will be produced with the oil, but most of this pro-
duced CO 2  is recycled and re-injected. As a conse-
quence, the amount of CO 2  that is purchased ends up 
being stored in the reservoir, even if it is re-used 
multiple times. 

 Th e key goal of CCUS is to reduce the amount of 
CO 2  emitted to the atmosphere. However, about three 
quarters of the CO 2  used for CO 2 -EOR is extracted 
from natural geologic deposits 39  in a process that 
relocates naturally occurring CO 2  from one subsur-
face location—where it would have remained isolated 
from the atmosphere indefi nitely—to another. Only 
one quarter of the CO 2  that is used for EOR is cap-
tured from industrial sources. Using this ’byproduct’ 
CO 2 , which is normally vented to the atmosphere, 
instead of ’extracted’ CO 2 , is the only way that EOR 
can reduce net CO 2  emissions to the atmosphere on a 
life cycle basis. 39  Th e majority of the byproduct CO 2  
used for EOR is sourced from natural gas processing 
facilities where CO 2  is be stripped from produced gas 
in order to meet pipeline specifi cations. Using by-
product CO 2  can reduce the net amount of CO 2  
emitted to the atmosphere. 40  For example, byproduct 
CO 2 -EOR can reduce the wells-to-wheels emissions 
compared with conventional oil production by 
25–60%. 41  

 Purchase prices for EOR-ready CO 2  (i.e., including 
CO 2  capture, purifi cation, compression, and delivery/
transportation costs) are $28 to $52/tCO 2  for oil prices 
of $60 to $110/bbl. 42  Oil prices below $60/bbl will 
likely have a commensurate drop in CO 2  prices, 
though long-term crude prices are likely to substan-
tially rebound. One common CO 2  price relationship 
suggests EOR operators are prepared to pay 2.5% (in 
$/Mcf) of the Western Texas Intermediate (WTI) oil 
price ($/bbl); 43  at an oil price of $100/bbl this is 
equivalent to $47/tCO 2 . At this price, CO 2 -EOR off ers 

ethylene. Consequently, CO 2  capture from ethylene 
production results in a much lower increase in price 
than for fossil fueled electricity generation. For 
example, electricity prices from natural gas and coal 
are expected to increase prices by 55–70% (Table  1 ). 

 From the market perspective, individual facilities 
and their owners should be concerned about the 
competitiveness of their products. Th e modest esti-
mated increase in costs when CO 2  is captured is only 
a small portion of the price of the ethylene from 
facilities that do not capture CO 2 . As a result, CO 2 -
capturing ethylene facilities should not be at a com-
petitive disadvantage. In addition, ethylene is typically 
used as an input to other processes and products 
within complex supply chains. Th e price elasticity of 
demand for ethylene is low because there are no 
feasible substitutes, and as a result the marginal 
increase in cost is unlikely to aff ect the margins of 
other producers and suppliers. Further, cost increases 
for inputs will pass through these supply chains, but 
demand elasticities and effi  ciencies throughout the 
supply chain between the ethylene manufacturer and 
the public will mitigate this increase to the public. As 
a result, the public is unlikely to directly experience 
increased costs, which is in sharp contrast to electric 
utilities that will visibly pass on costs to consumers in 
their electricity bills. 

 In addition to the modest increase in costs and 
expected prices due to CO 2  capture, ethylene manu-
facturing facilities are more clustered than any other 
major CO 2 -emitting industry, and 20 out of 25 
sources in the region emit >1 MtCO 2 /yr, a higher 
proportion than any other major CO 2  emitting 
industry (Table  1 ). Assuming that fi xed and operating 
costs do not exhibit increasing marginal costs with 
increased facility size, these economies of scale 
suggest that larger sources are more attractive candi-
dates for CO 2  capture than are smaller sources. Th e 
combination of substantial CO 2  emissions (50 MtCO 2 /
yr), a small increase in price, and sources that are 
clustered together, make CO 2  capture from the US 
ethylene industry a promising avenue for stimulating 
regional-scale CO 2  capture.  

  CO 2 -enhanced oil recovery 
(CO 2 -EOR) 
 CO 2 -EOR produces oil by injecting large volumes of 
CO 2  and water into depleted oil reservoirs. Th is 
tertiary production technique typically produces an 
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for CO 2  transportation because economies of scale and 
utilization are signifi cant. 53,  54  Existing pipelines carry 
large volumes of extracted CO 2 , such as the approxi-
mately 1000 km Cortez pipeline running from Colo-
rado to West Texas for EOR; these pipelines are 
already at capacity. Industry has planned or estab-
lished several basic CO 2  pipeline networks, including 
those that allow byproduct CO 2  suppliers to join the 
network. 55–57  Multiple eff orts have developed detailed 
models to optimize integrated CCUS systems, 58–63  
including examining a hypothetical pipeline network 
that links byproduct CO 2  from ethylene manufactur-
ers with EOR reservoirs; CO 2  transport costs were 
estimated to be $5–6/tCO 2 . 54  Such a pipeline system 
could be constructed with a combination of public 
(federal and/or state government) and private invest-
ment. 64  Obtaining right of ways (ROWs) can be a 
barrier to constructing extensive pipeline systems, but 
policy and regulatory agencies could accelerate permit-
ting processes, as has been done for renewable energy 
generation projects, 65,66  and a combination of public 
and private investment, 64  could focus investment on 
ROWs that are robust to  a priori  uncertainties in 
where byproduct CO 2  may be captured and where it 
may be used. 66   

  Ethylene:CO 2 -EOR 
 Th e challenge is to develop a large, commercially 
viable, and fully integrated system to build awareness 
and acceptance, reduce the cost of CO 2  capture 
through technological learning, and gain familiarity 
with byproduct CO 2  capture in business models. 
Byproduct CO 2  from ethylene manufacture is not 
presently used for CO 2 -EOR, but the availability of 
large and clustered sources and the demand for CO 2  
for EOR suggests that a commercially viable, large-
scale integrated CCUS system could be deployed in 
the US Gulf Coast and neighboring regions (Texas, 
Louisiana, Mississippi, New Mexico, Oklahoma, and 
Kansas). Specifi cally, ethylene manufacturing could be 
an appropriate case study because the facilities are 
signifi cantly more geographically co-located than any 
other major CO 2  source (see the clustering column in 
Table  1 ); this would likely enable a lower-cost pipeline 
network to be constructed as well as potential collabo-
ration among ethylene facilities. Th e region has 
experience with large-scale oil and gas operations, a 
history of ROW development, pipeline safety, and 
public acceptance, pipeline transportation and use of 

a substantial incentive for high-purity CO 2  sources to 
capture their emissions (e.g. ethylene oxide, ammonia, 
and biorefi neries with capture and compression costs 
of less than $20/tCO 2 ) as well as signifi cantly off set-
ting costs for more expensive capture technologies 
(e.g. fossil fuel power plants and oil refi neries). And 
because EOR operators can sign up to 20 year CO 2  
supply contracts, 43  CO 2 -EOR has the potential to 
reduce CO 2  emissions over the medium to long term. 

 With present technology, CO 2 -EOR may reduce the 
CO 2  footprint of U.S. transportation fuel in the short 
and medium term, assuming that CO 2 -EOR gasoline 
is displacing conventional gasoline. For example, the 
one-third reduction in life cycle CO 2  emissions by 
using CO 2 -EOR relative to conventional gasoline 41  is 
approximately the same as that from compressed 
natural gas (CNG) vehicles (∼6–30% reduction 44–46 ) 
and fi rst-generation biofuels (∼3–20% reduction, 47,48 ). 
Similarly, the CO 2 -EOR gasoline footprint compares 
well with the one-third reduction in CO 2  emissions by 
hybrid electric vehicles (HEVs) 49  and plug-in hybrid 
electric vehicles (PHEVs) using a typical balance of 
electricity sources in the United States. 49  

 With larger quantities of cost-eff ective CO 2  from 
HVCPs and the appropriate market incentives, greater 
quantities of CO 2  could be used in the EOR process. 
At present, CO 2  is an input to EOR operations that 
optimize for oil production, but it is possible to 
co-optimize CO 2  storage and oil production if the 
incentives are in place to value sequestering CO 2  from 
the atmosphere. 50  A typical CO 2 -EOR operation uses 
roughly equal amounts of CO 2  and water whereas a 
pure CO 2  fl ood can increase production use and store 
larger quantities of CO 2 . 50–52  Furthermore, primary 
and secondary oil production techniques can reduce 
ultimate recovery rates (e.g. formation of gas caps, 
trapped water). With appropriate sequestration 
incentives and cost-eff ective supplies of CO 2 , primary 
and secondary production techniques could be 
skipped entirely, potentially enhancing total oil 
production while sequestering large volumes of 
byproduct CO 2 .  

  Regional-scale CO 2  transportation 
 A large and integrated pipeline network is necessary to 
demonstrate an integrated CCUS system, connecting 
spatially dispersed, reliable, and market-viable supplies 
and demands of byproduct CO 2 . Integrated pipeline 
networks minimize construction and operation costs 
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CO 2 . Several oil fi elds in the region already use 
byproduct CO 2  from the chemical industry. Th ese and 
other projects indicate the capacity to handle complex 
siting, liability, investment, and permitting issues. Th e 
preferred development pathway would be for ethylene 
byproduct CO 2  to initially complement the reliance 
on extracted CO 2  for EOR. Th e system would grow 
from individual ethylene facilities connected to 
individual EOR reservoirs to large-scale integrated 
clusters of multiple facilities. Th e CCUS pipeline 
network initiated with ethylene:CO 2 -EOR could then 
be the backbone for a network that evolves to incor-
porate byproduct CO 2  from other industries and 
ultimately coal-fi red and natural gas power plants. 
Our previous research has shown that it can be 
cost-eff ective to overbuild pipeline capacities and 
underutilize CO 2  transportation for a decade or more 
to enable the seamless integration of future CO 2  
sources. 67  Th e experience with byproduct CO 2  capture 
could stimulate CO 2  capture investment on the 
numerous other byproduct CO 2  sources in the 
region—including fossil fuel power plants and oil 
refi neries (Fig.  5 )—to eventually entirely displace 
extracted CO 2  for EOR. 

 Developing an ethylene:CO 2 -EOR network would 
have signifi cant challenges, notably the potential 
diff erence between a CO 2  capture and transport costs 
of $50–60/tCO 2  and a byproduct CO 2 -EOR purchase 
price of $28–52/tCO 2 . Th is diff erence could theoreti-
cally be profi table (-$12/tCO 2 ), though even the most 
unprofi table diff erence (+$32/tCO 2 ) only increases a 
$1000/t ethylene price by 3.2% (assuming that it is 
priced at marginal cost). Investment to provide 
byproduct CO 2  from ethylene facilities could also be a 
component of an initiative to reduce emissions from 
the industry, much like the approach in Houston, 
Texas that has targeted non-CO 2  emissions from a 
variety of chemical plants including facilities that 
crack ethane to produce ethylene. 68  A CO 2  tax or a 
cap-and-trade program that imposes a suffi  cient cost 
on emitting CO 2  could also encourage an integrated 
ethylene:CO 2 -EOR system. A targeted CO 2  regula-
tion—similar to the diff erence in treatment under 
proposed US Environmental Protection Agency 
standards for CO 2  emissions from natural gas-fi red 
turbines and coal-fi red units 69 —could be imple-
mented. And recently, Petra Nova has announced the 
installion of post-combustion CO 2  capture technology 
at its 240 MW W.A. Parish (Th ompsons, Texas) 
coal-fi red generating station, where 1.4 MtCO 2 /yr will 

be used to produce approximately 15,000 barrels of oil 
a day 13,14  through a partnership with an EOR opera-
tion; the CO 2  capture process is anticipated to be 
profi table, without further subsidization or incentives. 
SaskPower’s Boundary Dam carbon capture project 
has already successfully integrated a CO 2  capture 
retrofi t coupled with EOR. 11,12  

 CO 2  prices may fl uctuate, and the competitive 
market price for CO 2  could decrease if the total supply 
of CO 2  from ethylene of other HVCP manufacturers 
increased faster than an increase in demand. But the 
possibility of collapsing the market price for CO 2  is 
low, in part because the unfulfi lled demand for CO 2  
for CO 2 -EOR is larger than ethylene could ever 
supply. 70  Further, the market for CO 2  may not be 
perfectly competitive, in part because of the infra-
structure needs to supply CO 2 , and the present 
undersupply of CO 2  in the Permian Basin may be 
infl ating the prices that EOR operators are securing in 
their contracts. 71  For an asset such as an oilfi eld to be 
considered a reserve, oil production must be feasible; 
the present undersupply of CO 2  for EOR would not be 
considered an undersupply if the economically viable 
production of the resource was sensitive to prices that 
change as a function of changes in CO 2  supply. In 
addition, CO 2  supply is only likely to exceed demand 
for EOR when the quantities of byproduct CO 2  from 
coal-fi red and natural gas power plants are in the 
system. Such widespread CO 2  capture is only likely to 
occur in the long term and with credible and robust 
commitments to CO 2  emissions reductions, the 
regulation of which should also apply to emissions 
from HVCPs.  

  Making CCUS a reality in North 
America and beyond 
 An ethylene:CO 2 -EOR network would leverage 
favorable cost, engineering, and location factors in 
order to stimulate commercial-scale CCUS: clustered 
large CO 2  sources that could be captured at low cost, 
product prices that can absorb the increased costs 
with little if any impact on competitiveness, proximity 
to strong and consistent demand for CO 2 , and a 
favorable business and regulatory environment. Such 
a network could reduce CO 2  emissions by as much as 
50 MtCO 2 /yr while producing 200 million bbl/yr of 
lower-carbon oil. 71  A 50 MtCO 2 /yr system is equiva-
lent to taking 10 million cars off  the roads 72  and 
would be capturing, transporting, and storing more 
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and clustered sources of CO 2  as a byproduct of 
ethylene production as well as EOR opportunities are 
present. Such a visible integrated system can increase 
public awareness and demonstrate an approach that 
reduces CO 2  emissions while complementing existing 
CCUS technology development strategies.  
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